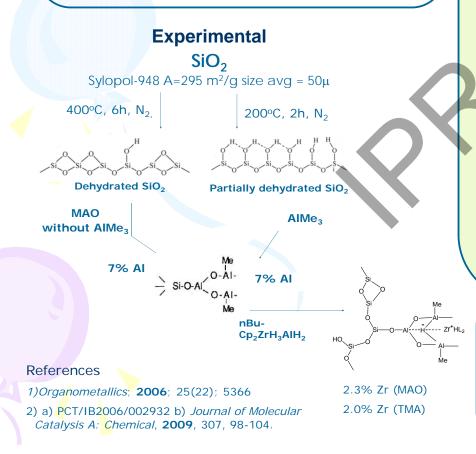
Influence of Supporting Conditions on the Performance of Zirconocene Aluminohydrides Odilia Pérez, João B.P. Soares **Department of Chemical Engineering** University of Waterloo

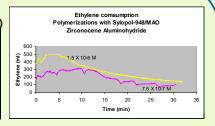
University of


Introduction

Zirconocene aluminohydrides are metallocene-derivative complexes with bridged and terminal hydride ligands with very high homogeneous polymerization activity.1

We recently supported them onto two porous SiO₂ (PQ and silica gel) carriers² according to the method reported for classical metallocenes. However, significant catalyst leaching was observed, which affected the polymer particle morphology.

In this work we supported aluminohydride complexes on SiO₂ sylopol-948, and obtained significantly improved results.

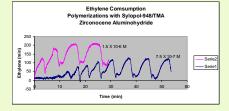


Objectives

Investigate how supporting zirconocene aluminohydrides on SiO₂ sylopol-948 with different MAO-modification methods affects the catalytic activity of the supported species for ethylene polymerization, polyethylene properties, and particle morphology.

Results Ethylene Polymerizations

nBu	-Cp₂Zrl	H ₃ AIH ₂ /S	ylopol-94	48/MAO at lo	w ratios A	I/Zr (MAO	activato
Exp	Cat (gr)	MAO (gr)	Co-Cat (Al/Zr)	A KgPE/molZr h	Mn g/mol	Mw g/mol	Mw/Mn
1	0.003	0.1	230	17,450	100,502	287,052	2.8
2	0.005	0.06	80	161	94,117	253,208	2.6
3	0.005	0.1	140	13,700	87,229	267,354	3.0
4	0.006	0.12	140	14,300	90,326	253,840	2.8
5	0.006	0.25	285	7,400	58,064	174,230	3.0
6	0.006	0.5	570	10,650	90,133	243,887	2.7
7	0.015	1.5	680	2,980	61,101	211,851	3.4
m 700	G 150 I	I D	CE : 500	. 0 5 1 50 1	0.75 0.037 100	114	


T = 70°C, 150 mL hexane, P_{C2} = 65 psi, 500 rpm, t = 0.5 h, [Cat] = 0.75-3.8 X 10⁻⁶ M

nBu-Cp₂ZrH₃AIH₂/Sylopol-948/MAO and high ratios AI/Zr (MAO activator)

Exp	Cat	MAO	Co-Cat	Α	Mn	Mw	Mw/Mn
	(gr)	(gr)	(Al/Zr)	KgPE/molZr h	g/mol	g/mol	
8*	0.010	1.5	1,000	5,200	124,967	350,362	2.8
9	0.008	1.0	1,300	7,200	114,680	285,954	2.5
10	0.006	1.5	1,700	10,700	71,315	258,119	3.6
11	0.005	1.5	2,000	8,300	84,473	263,915	3.0
$T = 70^{\circ}$	C 150 m	L he xane	$P_{co} = 65 \text{ nsi}$	500 mm = 0.5 h *	$E_{xp} 8 T = 60^{\circ}$	C [Cat] = 0	75-38X 10 ⁻⁶ N

nBu-Cp₂ZrH₃AIH₂/Sylopol-948/TMA at low ratios AI/Zr (MAO activator)

Exp	Cat (gr)		Co-Cat (Al/Zr)	A KgPE/molZr h			
1	0.010	0.72	230	4,133			
2	0.034	0.1	570	5,108			
T = 70°C, 150 mL hexane, P_{C2} = 65 psi, 500 rpm, t = 0.5 h, [Cat] = 0.75-1.5 X 10 ⁻⁶ M							

Concluding Remarks

Sylopol-948 silica modified with MAO and TMA (in-situ MAO synthesis) had the same AI and Zr content when the zirconocene aluminohydride system (nBuCp₂ZrH₂AlH₂) was supported at the same conditions.

The aluminohydride zirconocene supported on Sylopol-948 had higher activity for ethylene polymerization when the silica was modified directly with MAO, instead of with TMA.

It is likely that the TMA could not be completely hydrolized to MAO in the TMA-treated Sylopol-948