A Statistical Study Of The Compatibility And Curing Of Devulcanized Rubber And Polypropylene

> *P. Mutyala, C. Tzoganakis* Department of Chemical Engineering, University of Waterloo, Ontario, Canada

IPR -2011, UW, ON

DEVULCANIZATION

* C. Tzoganakis, "Method of Modifying Crosslinked Rubber", Patent Number US 7189762 B2, March 13, (2007)

Outline

- Introduction
- Objectives
- Experimental
- Results
- Conclusions

Introduction

- Review of work on blending devulcanized rubber and plastics
- Role of compatibilizers
- Cure compatibilization
- Mixture designs

Objectives

To statistically evaluate:

1. The compatibility between devulcanized rubber and Polypropylene (PP)

2. Compatibilizing efficiency of sulphur curing

A. Materials:

- PP PP31KK01 (MFI=5), Lyondell Basell, North America , TS 24 MPa and EB of 7%
- Devulcanized Rubber- Tread based, TS= 9 MPa and EB of 388%
- Sulphur (S) and zinc oxide (ZnO) are supplied by Sigma Aldrich and Fischer Scientific respectively.
- Stearic acid (St. A) and TBBS are supplied by Western Reverse Chemical Co.
- Dicumyl Peroxide (DCP)-99% was by Sigma Aldrich.

B. Procedure:

Mixing: Rheomix 3000 attached to Haake Rheocord 90 , 180°C, 80 rpm DR, PP, ZnO, St. A, Curing package Molded - 180 °C, 40,000 psi

Instron tensiometer

- **C. Experimental design Constrained Mixture Design**
- Variables and constraints DR: 40% 80%, PP: 20%-60%, S: 0.5%-4%, TBBS: 0.5%-4%.
- ZnO and St. A were assumed to be sufficient for the ranges in which the experiment was carried out and hence were kept constant
- Another set: 3% DCP and 2% S added to the blends DR: PP 60:40, 70:30 and 80:20.

Data points

Experiment									
<i>No</i> .	1	2	3	4 (3)	5	6	7	8	9
Components					S				
DR %	75.50	40.00	40.00	57.75	40.00	79.00	72.00	40.00	75.50
PP %	20.00	52.00	59.00	37.75	55.50	20.00	20.00	55.50	20.00
Sulphur %	0.50	4.00	0.50	2.25	4.00	0.50	4.00	0.50	4.00
TBBS %	4.00	4.00	0.50	2.25	0.50	0.50	4.00	4.00	0.50
ZnO %	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72
St. A %	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15

If x = DR content %, y = PP content %, z = S content %)

- TS: Dosages of DR, PP, support (S) and interactions between (DR + PP') and (DR + S') seem significant. TS = +3.0*x + 11.9*y + 46.9*z - 9.89*x*y - 36.50*x*z + 14.79*(-.012)*x - 148.06*(-.012)*z - 0.1
- EB: Dosages of DR, PP and interactions between 'DR+ PP', and 'DR+ S' seem significant. EB = + 35.6*x + 7.7*y - 10.0*z - 42.49*x*y-16.42*x*z + 27.4*(-.01)*x + 15.7*(-.012)*z - 0.0

- The significant negative influence of DR+PP on TS and EB - a statistical representation of the 'incompatibility' between DR and PP phases.
- The negative influence of 'DR + S' on both TS and EB - Sulphur cure system is not an effective compatibilizer.

Conclusions

- A mixture design approach can be used to analyze the compatibility between phases in a thermoplastic elastomer.
- DR and PP matrix have been proven statistically to be mutually incompatible. Sulphur cure system has been shown to be ineffective as a cure compatibilizer.
- Peroxide/ sulphur cure system has shown promising properties and a better option as a cure compatibilizer.