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Introduction

Theory for Binary Blends

Ternary Blend – Future Work

Mixing polymers helps tune properties.
Adding diblocks promotes mixing.
Applications require understanding
phase behavior of ternary blends.

Pure diblocks microphse separate.
Pure homopolymers macrophase separate.

⇒
L

L

Δ

...

φh 0 0.6 0.7 0.8 0.85 0.9 1

T
(◦
C
)

φhomopolymer

BμE

LAM

DIS

φh

φh 1− φh

+

Bicontinuous microemulsions form
between extremes.
Bicontinuous microemulsions are of 
technological and fundamental interest.

We start with pure copolymer or homopolymer. 
Then move on to ternary blends and 
bicontinuous microemulsions.

MC-FTS worked well describing the limiting cases of pure homopolymer and pure diblock copolymer.
Moving on to ternary blends, below are snapshots of simulations varying homopolymer concentration.

χeNc = 15

Nc/Nh = 5

The techniques used for simple cases can be extended to the full ternary blend phase diagram, to 
locate the bicontinuous microemulsion channel.
MC-FTS can then be used to study the nature of bicontinuous microemulsions. 
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Use Monte Carlo to solve       integral exactly.
Treat incompressibility using mean-field theory. 
Extension to ternary blends is straightforward.
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Diblock Copolymer Results
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MC-FTS successfully 
found the structure 
function.
Results deviate from 
RPA, Renormalized one 
loop calculation and 
results by Fredrickson 
and Helfand.

ODT was found 
for various    .
Results are 
consistent with 
those of particle 
simulations.

MC-FTS was able to examine the behavior of 
a diblock copolymer melt, probing the 
disordered phase and locating the ODT for 
various polymer lengths.

D0

Simulate a melt starting 
from order or disorder 
at various      .
Hysteresis loops allow 
us to bracket the ODT 
in small region.
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Homopolymer Blend Results
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MC-FTS 
successfully found 
the structure 
function.
Results consistent 
with RPA.

Fourth-order 
cumulant method 
allows us to 
precisely locate 
the critical point, 
accounting for 
finite size effects.

Demixing is 
suppressed by 
fluctuations. 
Suppression scales 
as           .
Suppression is less 
than predicted by 
ROL.

MC-FTS was able to study the behavior of a 
homopolymer blend, probing the disordered 
phase and precisely locating the critical point 
for various polymer lengths. 
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N̄ = 104

χeN = 10

ROL: Qin and Morse (2009)
FH: Fredrickson and Helfand (1987)
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