

University of

Waterloo

University of

Outline

- What is Model discrimination
- Model discrimination and polymerization
- Previous works in our group
- Our motivation
- Complete Model Discrimination Procedure
- Hsiang-Reilly method
- Sequential Marginal Likelihood
- Case study
- Future work
- Conclusion

Model Discrimination

The problem of choosing the most appropriate model to describe the behavior of a real system in situations where more than one candidate model can be proposed to explain a process.

Model Discrimination

Two class of Models

Empirical models:

Predict the response (response surface problem)

Mechanistic models:

Physical mechanisms can be suggested

Copolymerization

Terminal

$$R_{n,i^{\cdot}} + M_j \xrightarrow{k_{ij}} R_{n+1,j^{\cdot}}$$

$$r_1 = \frac{k_{11}}{k_{12}}; \quad r_2 = \frac{k_{22}}{k_{21}}$$

Penultimate

$$R_{n,ij} + M_k \xrightarrow{k_{ijk}} R_{n+1,jk}$$

$$\hat{r}_{11} = \hat{r}_{21}$$

$$\hat{r}_{22} = \hat{r}_{12}$$

$$\hat{s}_1 = \hat{s}_2 = 1$$

$$r_{11} = \frac{k_{111}}{k_{112}};$$
 $r_{21} = \frac{k_{211}}{k_{212}};$ $r_{22} = \frac{k_{222}}{k_{221}};$ $r_{12} = \frac{k_{122}}{k_{121}};$

$$s_1 = \frac{k_{211}}{k_{111}}; \quad s_2 = \frac{k_{122}}{k_{222}}$$

Application of Model Discrimination in Polymerization

•Burke, A.L., Duever, T.A. & Penlidis, A. 1994, "Model discrimination via designed experiments: discriminating between the terminal and penultimate models on the basis of composition data", *Macromolecules*.

•STY/MMA: Styrene methyl methacrylate •STY/AN: Styrene Acrylonitrile •STY/BA: Styrene butyl acrylate	Real system: •Terminal •Strong Penultimate •Small Penultimate
Initial Reactivity Ratio Estimates: •Poor •Neutral •Good	Error Level: •Low •Medium •High

Application of Model Discrimination in polymerization

- •Burke, A.L., Duever, T.A. & Penlidis, A. 1994, "Model Discrimination Via Designed Experiments
- Discriminating between the Terminal and Penultimate Models Based on Triad Fraction Data", *Macromolecular theory and simulations*.
- •Burke, A.L., Duever, T.A. & Penlidis, A. 1995, "Model discrimination via designed experiments: Discrimination between the terminal and penultimate models based on rate data", *Chemical Engineering Science*.
- •Burke, A., Duever, T. & Penlidis, A. 1996, "An experimental verification of statistical discrimination between the terminal and penultimate copolymerization models", *Journal of Polymer Science Part A Polymer Chemistry*.
- •Landry, R., Duever, T.A. & Penlidis, A. 1999, "Model Discrimination via Designed Experiments: Discriminating Between the Terminal and Penultimate Models on the Basis of Weight Average Chain Length", POLYMER REACTION ENGINEERING.
- •Landry, R., Penlidis, A. & Duever, T.A. 2000, "A study of the influence of impurities when discriminating between the terminal and penultimate copolymerization models", Journal of Polymer Science Part A: Polymer Chemistry

Motivation

➤ Hsiang and Reilly method works poorly

New Markov Chain Monte Carlo (MCMC) Methods are available

Objective

- •Establishing a procedure for model discrimination between nonlinear models using an MCMC based approach
 - •sequential marginal likelihood
 - •modified Hsiang and Reilly approach in which MCMC methods will be used

•Applying this method to polymerization case studies

Model Discrimination

Hsiang - Reilly

Waterloo

Hsiang and Reilly (1971)

Set Prior for models

Set Prior for parameters

Design and Perform experiment

Update Parameter Probabilities

Models probability:

Rescale parameter tables and update probabilities

Calculate model probabilities and check adequacy

Model 1: Parameter 1:

٠.		1.5	1.85	2.15	2.5
Parameter 2	100	0.01	0.07	0.02	0.02
	110	0.02	0.05	0.06	0.01
	120	0.01	0.12	0.20	0.03
	130	0.02	0.14	0.032	0.01
_	140	0.015	0.08	0.01	0.003

Model 2: Parameter 1:

	10	20
1e5	0.1	0.11
2e5	0.08	0.08
3e5	0.12	0.13
4e5	0.1	0.08
5e5	0.02	0.08
6e5	0.01	0.09
	2e5 3e5 4e5 5e5	1e5 0.1 2e5 0.08 3e5 0.12 4e5 0.1 5e5 0.02

Hsiang - Reilly

Experimental Design:

$$C(x_n) = \sum_{i=1}^{K} \sum_{j=i+1}^{K} |\hat{y}_i - \hat{y}_j| [pr(M_j|y) + pr(M_i|y)]$$

$$\hat{y}_i = \sum_{\tilde{\theta}_i} f_i(x_n, \tilde{\theta}_i) pr(\tilde{\theta}_i | M_i, y)$$

Sequential Marginal Likelihood

The posterior probability of a hypothesis is proportional to the product of the likelihood and the prior probability.

$$P(M_i|\mathbf{y}) = L(M_i|\mathbf{y}) \times \pi(M_i)$$
Posterior Likelihood

Following Bayes theorem, the marginal likelihood:

$$L(M_i|\mathbf{y}) = \int l_i(\theta|\mathbf{y}, M_i) \, \pi_i(\theta, M_i) \, d\theta$$

Design Step

Methods Based on Maximum Divergence:

Conditions where the difference between the predicted values of the rival models is maximized

$$\max \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} (\hat{y}_i - \hat{y}_j)^2$$

$$\max \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} \frac{(\hat{y}_i(x) - \hat{y}_j(x))^2}{var(\hat{y}_i(x) - \hat{y}_j(x))}$$

Roth (1965) weighted average of the total separation between the models where weights are the Bayesian posterior probabilities _Γ

$$Z(\xi) = \sum_{i=1}^{K} \left[p(i, n-1) \prod_{\substack{j=1 \ j \neq i}}^{K} \left| \hat{y}_{(j)}(\xi) - \hat{y}_{(i)}(\xi) \right| \right]$$

Sequential Marginal Likelihood SML

- Using Roth method to pick the next experiment
- Calculating the posterior probability of the models

Case study

(Order of a chemical reaction)

•Box and Hill (1967)

$$f_1(t, T, A_1, E_1) = \exp[-A_1 t \exp(-E_1/T)]$$

$$f_2(t, T, A_1, E_1) = [1 + A_2 t \exp(-E_1/T)]^{-1}$$

$$f_3(t, T, A_1, E_1) = [1 + 2A_3 t \exp(-E_1/T)]^{-1/2}$$

$$f_4(t, T, A_1, E_1) = [1 + 3A_4 t \exp(-E_1/T)]^{-1/3}$$

Case study (Order of a chemical reaction)

$$M_j: ln\nu_i = \ln f_i(t_i, T_i, A_j, E_j) + \epsilon_i$$
 $i = 1, 2, 3, ..., N$
 $j = 1, 2, 3, 4$

 ϵ_i is the measurement error which is assumed normally distributed with mean zero and known standard deviation $\ln(1.25)$. So, errors on $\ln(v_i)$ are normally distributed.

Case study (Order of a chemical reaction)

Temperature: $450 \le T_i \le 600 \text{ Kelvin}$

Experimental results are simulated by assuming that the reaction is of second order, where

$$A_2 = 50000000$$
, $E_2 = 100000$

$$0 < E_j < 25000$$
, $10^5 \le A_j \le 49.6 \times 10^6$

HR Method (Case study)

Experiment				Probability			
Iteration	t_i	T_i	v_i	π_1	π_2	π_3	π_4
1	149.519	599.954	-3.18818	0.388303	0.0860234	0.270728	0.254945
2	123.252	537.307	-1.67623	3.82878e-009	0.120238	0.794711	0.0850514
3	29.3985	564.197	-1.28813	4.62886e-023	0.267502	0.732215	0.000282809
4	27.6406	560.686	-1.07611	1.19216e-040	0.567527	0.432473	1.16335e-007
5	127.683	561.647	-2.6718	7.97811e-074	0.777846	0.222154	1.60512e-008
6	120.359	571.032	-2.5703	8.12498e-117	0.999065	0.000934847	7.06358e-009

SML Method (Case study)

Experiment			Probability				
Iteration	t_i	T_i	v_i	π_1	π_2	π_3	π_4
1	123.202	561.702	-2.45356	1.15159e-022	0.386645	0.613355	1.97201e-022
2	106.392	499.147	-0.772253	2.98121e-024	0.608582	0.391418	7.28182e-02 <mark>4</mark>
3	123.138	578.132	-3.177	3.13135e-028	0.991917	0.00808252	8.82541e-029

Future Works

☐ Modifying and finalizing of the SML procedure

□Appling the SML method in more case studies

Waterloo Value Value

RAFT

The RAFT process was introduced in 1998 as a controlled/living radical polymerization method (CLRP).

√ The irreversible termination method

√ The slow fragmentation mechanism

Termination with other radical species, cross termination, or even self-termination

Acknowledgment

I would like to thank my supervisor Prof. Duever for giving me the opportunity to work on this research and for his continual support, encouragement and constant guidance.

And, I specially like to thank Prof. Reilly for his great ideas, suggestions and encouragement.