

Facilitating Reactivity Ratio Estimation with the Error-in-Variables-Model: 'prêt-à-porter' computational package.

Alison Scott and Alexander Penlidis Department of Chemical Engineering May 3, 2017

Introduction

- Reactivity ratios are a valuable piece of information in polymer synthesis, but reported values are often inaccurate
- Many researchers shy away from statistically correct techniques (excuses.)
 - Linear approximation is "close enough"
 - Non-linear parameter estimation is computationally intensive
- Solution. MATLAB-based computational package designed for the 'non-programming' polymer chemist or engineer

verview

- **Background Information**
 - **Reactivity Ratio Estimation**
 - Error-in-Variables-Model (EVM)
 - Scott Low Conversion & Medium-High Conversion Analyses
- EVM Program Detail
- Case Studies: (more at poster in the evening)
 - #1: Low Conversion Data Analysis - styrene (STY) & Ethyl Acrylate (EA)
 - #2: Medium-High Conversion Data Analysis
 - *n*-Butyl Methacrylate (BMA) & *n*-Butyl Acrylate (BA)

Reactivity Ratio Estimation

- Sources of error in parameter estimation:
 - Scott Linear parameter estimation techniques
 - **Experimental difficulties**
 - Inappropriate kinetic models
 - Poorly designed experiments
- The copolymerization model is NOT LINEAR!

$$F_{1} = \frac{r_{1}f_{1}^{2} + f_{1}f_{2}}{r_{1}f_{1}^{2} + 2f_{1}f_{2} + r_{2}f_{2}^{2}}$$

Error-in-Variables-Model (EVM)

Source of Error	EVM Solution
Linear estimation techniques	Non-linear parameter estimation technique
Experimental difficulties	Considers error in all variables (both independent & dependent)
Inappropriate kinetic models	Allows for medium-high conversion data (no conversion restrictions)
Poorly designed experiments	Uses sequential design of experiments (more information from fewer runs)

EVM for Parameter Estimation

Low Conversion Analysis of **Copolymerization Systems**

- Simplest case: instantaneous Mayo-Lewis model
 - Assumes no composition drift

• Assumes no composition drift
• Conversion restricted below 5% - 10%

$$\underbrace{g\left(\underline{\xi}_{i},\underline{\theta}\right) = F_{1} - \left(\frac{\eta_{f_{1}} f_{1}}{r_{1} f_{1}} + 2f_{1}(1-f_{1}) + r_{2}(1-f_{1})^{2}\right)$$

Low Conversion Analysis of Copolymerization Systems

Input data required:

- Preliminary estimates for reactivity ratios (from literature or preliminary experiments)
- Initial feed composition
- Cumulative copolymer con cosition
- No conversion data ne eded
 - This may require in accurate assumptions
 - Low conversion data prone to error

Data File

Medium-High Conversion Analysis of Copolymerization Systems

- More complex case: cumulative model using direct numerical integration
 - Valid for full conversion range
 - Provides more data in fewer experimental runs
 - Higher degree of accuracy
 - Easily solved

$$\overline{\underbrace{\xi_i, \theta}} = \overline{F_1} - \left(\frac{f_{1,0} - f_1(1 - X_n)}{X_n}\right)$$

Medium-High Conversion Analysis of Copolymerization Systems

Input data required:

- As before: preliminary estimates, initial feed composition & cumulative copolymer composition for each point
- Conversion at each point
- Molecular weight of each comonomer

 Potential to include variance/ covariance matrix, if available **Data File**

EVM Program Details

Zip file contents:

- Program instructions ("read me" file)
- MATLAB program for RR estimation (for the conversion OR medium-high conversion data)

MATLAB

- MATLAB program for plotting SCRs (optional)
- Data files for several somple case studies

EVM Program Details

- **Quick Start Menu**
- Data Input:
 - Step-by-Step (for beginners)
 - Data File (for advanced users)

SP.

- رمین Low Conversion Data Medium High Conversion Date

Data Input:
Manually with prompts)
Data File
Data Type:
Instantaneous
Cumulative
ОК

Case Study #1: Low Conversion Data for Styrene and Ethyl Acrylate ^[1]

🛃 Preliminary Estimates 📃 💷 🗮 🎫	1	Default Settings
Enter preliminary estimate for r1:		# Parameters
0.717		
Enter preliminary estimate for r2: 0.128		1
OK Cancel		# Varia le
	17	3
		Error Type (0-additive, 1-multiplicative)
Copolymerization Data		
Enter f10 values (separated by semicolons		Error Tolerance
[0.079; 0.079; 0.079; 0.079; 0.719; 0 ; 719, 0.71J]		
		Scaling Factor
Enter F1 value (s) pl rate y sel sicolons)		
[0.296; 0.308; 503; 0.286; 0.716; 0.736; 0.736; 0.732]		Variance-Covariance
		[0.000033; 0; 0; 0.000833]
OK Cancel		OK Cancel

Case Study #1: Low Conversion Data for Styrene and Ethyl Acrylate

Command Window	+ □ ₹ X
THETA =	
0.7187	• THETA (θ) = Best estimates for
VT =	parameters (real tively ratios)
0.0790	"true (varues of variables
0.0791	0.2982
0.0789 0.7186	0.2980 0.7297
0.7192 0.7192	0.7301
0.7191	0.7300
Y	

Case Study #1: Low Conversion Data for Styrene and Ethyl Acrylate

Command Window	× 5 ⊡ I+		
Phi =	5-5-		
2.1471	Phi (Φ) = Objective function		
	<u>G</u> = Provides valuable		
G =	information about the		
1.02+004 *	paranie ter estimates		
-0.0998 5.1008	(related to the <u>V</u> matrix)		
All Calculations converged.	10.		
Jt Do you wish to continue with Joint Confidence Calculations (Y/N):			
Do you wish to continue wit	th Joint Confidence Calculations (Y/N): Y		

Case Study #1: Low Conversion Data for Styrene and Ethyl Acrylate

Case Study #2: Medium-High Conversion Data for BMA and BA^[2]

Table 2. Bulk BA/BMA copolymerization results for reactivity ratio estimation at 80 °C, [BPO] = 0.1 wt%.

				5-5
Sample	Feed composition f _{BMA} [mol fraction]	Copolymer composi- tion F _{BMA} [mol fraction]	Tirne [n]	o.version [wt%]
1	0.100	0.187	25	1.4
2	0.200	93250 ·	20	2.1
3	0.300		18	1.5
4	0.410	0.620	18	2.9
5	0.501	0.668	18	3.9
6	1.902	0.762	15	3.8
7	0.700	0.820	15	6.8
8	0.801	0.882	15	6.5
9	0.897	0.968	15	1.0

Case Study #2: Medium-High Conversion Data for BMA and BA^[2]

Table 2. Bulk BA/BMA copolymerization results for reactivity ratio estimation at 80 °C, [BPO] = 0.1 wt%.

Sample	Feed composition <i>f</i> _{BMA} [mol fraction]	Copolymer composi- tion F _{BMA} [mol fraction]	Time [n.i.]	o version [wt%]
:	:	i non	:	:
TM1-1	0.487	0 51.65	15	5.1
TM1-2	0.487	0.654	15	5.9
TM1-3	0.487	0.651	15	4.0
TM1-4	0.487	0.655	15	5.0
TM2-1	1.396	0.344	22	8.5
TM2-2	0.196	0.348	22	9.0
TM2-3	0.196	0.344	22	8.7
TM2-4	0.196	0.353	22	9.5

Case Study #2: Medium-High Conversion Data for BMA and BA^[2]

Case Study #2: Medium-High Conversion Data for BMA and BA

QuickStart09	Select MATLAB data file		
Data Input:	Search PretAPorter EVM > + + Search PretAPorter EVM >		
Manually (with prompts)	Organize 🔻 New folder		
Oata File	★ Favorites ■ Desktop Desktop Desktop	Arrange by: Folder -	
Data Type:	Downloads Name	Date modified Type	
◎ Instantaneous	E Case Study BMABA	3/24/2017 2:48 PM File folder	
Oumulative	Libraries	4/7/2017 4:54 PM File folder 8/14/2014 9:51 AM Text Document	
	Music	3/24/2017 2:41 PM Text Document	
ОК	Pictures	3/24/2017 3:17 PM Text Document 3/17/2017 12:22 PM Text Document	
	Videos cumul_datafile_BA_BMA_design	3/17/2017 12:17 PM Text Document	
	Comuter cumul_datafile_BA_BMA_plot	3/24/2017 12:37 PM Text Document	
1		9/11/2014 1:18 PM Text Document	
Proy	File name: cumul_datafile_BA_BMA_all		

Case Study #2: Medium-High Conversion Data for BMA and BA

		Cumul datafil
Row	Contents	File Edit Format View Heid
1	Default Parameters	2 1 1 1 0.000001 1
2	Preliminary RRE	2.100 0.489 142.2 120 2
3	Monomer MWs	0.009(3)
4	V Matrix (Default)	0.015 0.300 0.459
5+	Data	0.029 0.410 0.620 0.039 0.501 0.668
•••	X_W T_0 \overline{F}_1	0.038 0.601 0.762
	Prot	0.010 0.897 0.968
		I I I I I I I I I I I I I I I I I I I

Case Study #2: Medium-High Conversion Data for BMA and BA

Concluding Remarks

- The error-in-variables-model (EVM) should be used for reactivity ratio estimation
 - Non-linear parameter estimation technique
 - Applicable to low and medium. Figh conversion data
- Additional advantages of cumulative model
 - Fewer assumptions
 - Increased information content
- MATLAB-based EVM program is user-friendly
 - No excuses statistically correct & easy to use!

Concluding Remarks

Poster Session: "EVM-on-a-Chip"

- Additional examples & special cases
- EVM program demonstration

References

- [1] N. McManus and A. Penlidis, J. Polym. Sci. Part A: Polym.
 Chem., vol. 34, no. 2, pp. 237-248, 1996.
- S. Ren, L. Hinojosa-Castellanos, L. Zhang and A. [2] rinnon Alison Property of Alison Macromol. React. Eng., 2016. doi:10.1002/m en.201600050

Facilitating Reactivity Ratio Estimation with the Error-in-Variables-Model: 'prêt-à-porter' computational package.

Alison Scott and Alexander Penlidis Department of Chemical Engineering May 3, 2017