Use of CFD for Exploring the Effect of Mixing on MMA Solution Polymerization in a CSTR

#### Sh. Fathi Roudsari, F. Ein Mozaffari, R. Dhib

Department of Chemical Engineering, Ryerson University Toronto, Canada

May 2011

## Outline

Introduction
Objectives
Reactor Specifications
CFD Model
Results and Discussion
Concluding Remarks

#### Introduction

- Objectives
   Reactor Specifications
   CFD Model
   Results and Discussion
  - **Concluding Remarks**

#### **Considerations:**

- **Good Mixing**?
- No Effect of Mixing in Conventional Kinetic models (rarely)
- **Conversion/Mw Dependent on Mixing?**
- □ Influence of Dead Zones



#### Introduction

**U** Objectives

- Reactor Specifications
  - CEDModel
  - Results and Discussion
  - **Concluding Remarks**

#### **Computer Simulation Tool involves:**

- □ Transport phenomena (Reaction)
- □ Flow pattern
- □ Trial and error analysis (Time/Cost)
- □ CFD modeling → Improve reactor performance, Safety issues

#### Introduction

- **Objectives**
- D Reactor Specifications
- D CFD Model
  - I Results and Discussion
- Concluding Remarks
- Patel et al. (2010) investigated the CFD modeling of styrene bulk polymerization in a CSTR.
- Shi and Luo (2010) studied the effects of velocity and solid particle size on the CFD modeling of Propylene Polymerization in a tubular loop.
- □ Cherbanski et al. (2007) used CFD to study the effect of process parameters on temperature behaviour in suspension polymerization .
- Serra et al. (2007) investigated the styrene free radical polymerization in a T-junction micro reactor and calculated conversion.
- Heath and Koh (2003) applied CFD modeling to calculate aggregation and breakage of solid polymer particles in a tubular pipe.
- Maschio & Moutier (1989) studied the effect of solvent fraction on polymer chain mobility in batch and CSTR reactors

# Introduction Objectives Reactor Specifications CFD Model Results and Discussion Concluding Remarks

□ Study the effects of solvent content, impeller speed and residence time, on MMA conversion in a CSTR using CFD

#### **Geometry Grid**



Gambit 2.4 **Tetrahedral**,

Introduction Objectives **Reactor Specifications CFD** Model Results and Discussion. **Concluding Remarks** 



Outlet

□ Introduction

D Objectives

**Reactor Specifications** 

CFD Model

- Results and Discussion
- **D** Concluding Remarks

8

| Parameter       | Value                 | Parameter          | Value       |
|-----------------|-----------------------|--------------------|-------------|
| Tank diameter   | 4 inches              | Impeller diameter  | 2 inches    |
| Liquid level    | 5.3 inches            | Blade width        | 0.55 inches |
| Outlet diameter | 0.25 inches           | Blade thickness    | 0.8 inches  |
| Inlet diameter  | 0.25inches            | Inlet wall length  | 1.5 inches  |
| Impeller type   | 45° six pitched blade | Outlet wall length | 1.5 inches  |

| Fluid                         | Density (kg/m <sup>3</sup> ) | Viscosity (Pa. s) | Molecular Weight (g/mole) |
|-------------------------------|------------------------------|-------------------|---------------------------|
| Methyl Methacrylate (MMA)     | 895                          | 0.00037           | 100.12                    |
| Azobisisobutyronitrile (AIBN) | 1100                         | 0.000278          | 164                       |
| Toluene (Solvent)             | 866                          | 0.000586          | 92.07                     |

Introduction
 Objectives
 Reactor Specifications
 CFD Model
 Results and Discussion
 Concluding Remarks

Transport Equations
 Polymerization Source Equations
 Physical Properties

#### **Transport equations**

$$\begin{aligned} \frac{\partial \rho}{\partial t} + (\nabla \bullet \rho \vec{v}) &= 0 \\ \frac{\partial}{\partial t} (\rho \vec{v}) + \nabla \bullet (\rho \vec{v} \vec{v}) &= -\nabla P + (\nabla \bullet \vec{t}) + \rho g + \vec{h} \\ \vec{t} &= \mu \Big[ ((\nabla \vec{v}) + (\nabla \vec{v})^T) - \frac{2}{3} \nabla \bullet \vec{v} \Big] \\ \frac{\partial}{\partial t} (\rho W_j) + \nabla \bullet (\rho \vec{v} W_j) &= -\nabla \bullet J_j + R_j + S_j \\ \vec{J}_j &= -\rho D \nabla W_j \end{aligned}$$

Introduction
 Objectives
 Reactor Specifications
 CFD Model
 Results and Discussion
 Concluding Remarks

#### **Polymerization Source**

Introduction
 Objectives
 Reactor Specifications
 CFD Model
 Results and Discussion
 Concluding Remarks

#### **Assumptions:**

Steady-state condition
 Termination: Combination reaction only
 No gel effect

### **Polymerization Source**

$$\begin{bmatrix} R \cdot \end{bmatrix} = \sqrt{\frac{2 f K_d [I]}{K_{tc}}}$$

$$R_{p} = -K_{p} \left[ M \right] \sqrt{\frac{2f K_{d}[I]}{K_{w}}}$$

$$S_{monomer} = R_P \times M_{w,monomer}$$

$$S_{initiator} = R_P \times M_{w, initiator}$$

$$K = A \exp\left(-E / R_g T\right)$$

| Parameter       | Values <sup>1</sup>                         | Parameter       | Values <sup>1</sup> |
|-----------------|---------------------------------------------|-----------------|---------------------|
| $A_d$           | 1.33 10 <sup>15</sup> m <sup>3</sup> /s     | $E_d$           | 30700 cal/mol       |
| $A_p$           | 4.41 10 <sup>5</sup> m <sup>3</sup> /kmol s | $E_p$           | 4350 cal/mol        |
| A <sub>tc</sub> | 6.5 10 <sup>7</sup> m3/kmol s               | E <sub>tc</sub> | 700 cal/mol         |
| f               | 0.4                                         |                 |                     |

<sup>1</sup> Maschio and Moutier, 1989

- Reactor Specifications
- CFD Model

D

Results and Discussion Concluding Remarks

#### **Physical Properties**

Introduction
 Objectives
 Reactor Specifications
 CFD Model
 Results and Discussion
 Concluding Remarks

 $\log_{10} \mu = J_{1} + \frac{J_{2}}{T} + J_{3}T + J_{4}T^{2}$   $J_{1} = -7.7825$   $J_{2} = 7.3478 \times 10^{2}$   $J_{3} = 1.0258 \times 10^{-2}$   $J_{4} = -1.1343 \times 10^{-5}$   $\log_{10} (\mu) = K' + a \log_{10} X_{m} + \log_{10} M_{w}$   $K' = -3.64 \times 10^{1}$  a = 12.8 b = 3.4

 $\rho_m = 966.5 - 1.1(T - 273.15)$  $\rho_p = 1200 \ Kg \ / m^3$ 

Yaws, 1999
 Sangwai et al., 2006
 Baillagou & Soong, 1985

**Viscosity Correlation with Temperature 1** 

Viscosity Correlation with Conversion & Molecular Weight<sup>2</sup>

**Density Correlation with Temperature** <sup>3</sup>

#### **Solving Procedure**

Introduction
 Objectives
 Reactor Specifications
 CFD Model
 Results and Discussion
 Concluding Remarks

□ Space: 3D
 □ Time: Steady state
 □ BC on inlet→ Velocity, Mass Fractions (M, S, I), T= 65° C
 □ UDF→ Reaction Source
 □ HPCVL system→ parallel with 24 CPUs

Introduction
 Objectives
 Reactor Specifications
 CFD Model

Results and Discussion
 Concluding Remarks

### Effects of Solvent Volume Fraction Residence Time Impeller Speed On Conversion of MMA Polymerization Contour of Monomer Mass Fraction Medium Viscosity

#### **Convergence Monitoring**





**Concluding Remarks** 

Introduction Objectives **Reactor Specifications** CFD Model **Results and Discussion Concluding Remarks** 

#### **Effect of Solvent Fraction at 100 rpm**



Monomer (MMA) inlet volume fraction  $,\phi_m$ 

Introduction
 Objectives
 Reactor Specifications
 CFD Model
 Results and Discussion
 Concluding Remarks

#### **Effect of Solvent Fraction at 100 rpm**



Monomer (MMA) inlet volume fraction ,  $\phi_m$ 





#### Effect of Impeller Speed $\Phi_m = 0.5$ , $\tau = 60$ min







# Introduction Objectives Reactor Specifications CFD Model Results and Discussion Concluding Remarks

- □ CFD gave good prediction for conversion at different solvent fractions and different residence times
- □ CFD showed decrease in conversion with increase in impeller speed at fixed solvent fraction and residence time
- Homogeneity of medium was improved at higher impeller speeds

#### Acknowledgements:

# NSERC and Ryerson University for financial support Supervisors: Dr. Ein-Mozaffari and Dr. Dhib

# Thanks for your attention