Studies on chemical heterogeneity of multi-component polymers: Sequence Length Distributions

Woosung Jung, T. A. Duever, A. Penlidis

Department of Chemical Engineering IPR annual symposium, University of Waterloo May 13, 2008

Outline

- Introduction
- Copolymerization characteristics
- Macroscopic approach
- Microscopic approach
- Summary

Introduction

- Multicomponent polymerization

Introduction

- Multicomponent polymerization
- Competitive reactions between same or different radical/monomer species
- Governed by probabilistic nature of reactions
- Numerous combinations of monomer species
- Macroscopic approach (Composition)
- Microscopic approach (SLD & Triad fraction)

Copolymerization characteristics

Model

- Random (Bernoullian)
- Statistical (1st/2nd order Markov)

Structures

- Alternating $(-M_1M_2M_1M_2M_1M_2M_1M_2-)$
- Block $(-M_1M_1M_1M_1M_1M_2M_2M_2M_2M_2M_1M_1-)$
- Graft $(-M_1M_1M_1M_1M_1M_1M_1M_1M_1M_1)$

 $\boldsymbol{M_2}\boldsymbol{M_2}\boldsymbol{M_2}\boldsymbol{M_2}\boldsymbol{M_2}\boldsymbol{M_2}\boldsymbol{-}$

Copolymerization characteristics - 1st order Markov (terminal) model

Reactivity of the propagating chain depends only on the monomer unit at the growing end and independent of chain composition.

- 1st order Markov (terminal) model

$$M_{1}^{\bullet} + M_{1} \xrightarrow{k_{p11}} M_{1}^{\bullet}$$

$$r_{1} = \frac{k_{p11}}{k_{p12}}$$

$$M_{1}^{\bullet} + M_{2} \xrightarrow{k_{p22}} M_{2}^{\bullet}$$

$$r_{2} = \frac{k_{p22}}{k_{p21}}$$

$$r_{2} = \frac{k_{p22}}{k_{p21}}$$

Copolymerization characteristics - 2nd order Markov (penultimate) model

Reactivity of the propagating chain is affected by the last and the next-to-last monomer units and independent of chain composition.

Copolymerization characteristics - Reactivity ratios

- **Relative** rate of *homo* to *cross*-propagation
- Estimated from experimental (NMR) data
- r > 1 : homo-propagation favored
- r < 1 : cross-propagation favored
- *r* = 0 : No *homo*-propagation (alternating)
- *Q-e* scheme, Hammet and Taft equation for starting values
- Determines polymerization tendency

Macroscopic approach - Instantaneous composition

Macroscopic approach - Instantaneous composition

Figure 1. Simulation of Styrene-Acrylonitrile bulk *co*-polymerization $T = 60^{\circ}C$ (Experimental data from Hill *et al.*, 1982) 10/31

Macroscopic approach - Instantaneous composition

Figure 2. Simulation of Methyl methacrylate-Methyl acrylate bulk *co*-polymerization T = 50°C (Experimental data from Kim and Harwood, 2002) 11/31

Macroscopic approach - Cumulative (average) composition

Composition changes during polymerization; 'Composition drift'

Macroscopic approach - Cumulative composition drift

Figure 3. Simulation of Styrene-Ethyl acrylate bulk *co*-polymerization T = 50°C (Experimental data from McManus and Penlidis, 1996) 13/31

Macroscopic approach - Limitation

• Does not give information on monomer arrangements

 $M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2$ Alternating

Different properties, same composition

$$F_{1, \text{ Block}} - F_{1, \text{ Alternating}} - 0.5$$

Shows intramolecular heterogeneity

 $M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2 M_1 M_2$ Alternating

Sequence length of $M_{1, Block} = 5$

Sequence length of M_{1, Alter.} – 1

Probability of reaction between radical species *i* and monomer species *j*

$$N_{in} = P_{ii}^{n-1} \sum_{k=1}^{N} P_{ik}$$

= $P_{ii}^{n-1} (1 - P_{ii})$ (k \neq

 $-M_1M_1M_1M_1M_2-$

 $\sum_{n=1}^{\infty} N_{in} = \sum_{k=1}^{N} P_{ik} \left(\sum_{i=1}^{\infty} P_{ii}^{n-1} \right)$

Probability of having *n* consecutive units of monomer species *i*

$$N_{15} = (P_{11})^4 P_{12}$$

Long Chain Approximation

$$\approx \sum_{k=1}^{N} P_{ik} \frac{1}{1 - P_{ii}} = \frac{1 - P_{ii}}{1 - P_{ii}} = 1$$

 $(k \neq i)$

Figure 4. Sequence Length Distribution of Sty monomer in Styrene-Acrylonitrile *co*-polymer, T = 60°C

18/31

Microscopic approach - Average Sequence Length

Instantaneous number average sequence length

Microscopic approach - Average Sequence Length

Instantaneous weight average sequence length

$$\overline{N_{in,Ray}} = \int_{0}^{X_{i}} N_{in} dX_{i} = \int_{0}^{X} N_{in} F_{i} dX$$
$$= \int_{0}^{X} \left(P_{ii}^{n-1} \sum_{k=1}^{N} P_{ik} \right) F_{i} dX = \int_{0}^{X} \left\{ P_{ii}^{n-1} (1 - P_{ii}) \right\} F_{i} dX$$

Probability of having *n* consecutive units of monomer species *i* during polymerization

Microscopic approach - Differences between Ray & HMP

• Acc. Number average Sequence Length

$$\frac{\int_{0}^{X} \frac{1}{(1-P_{ii})} F_{i} dX}{\int_{0}^{X} F_{i} dX} \quad \mathbf{Ray} \quad \int_{0}^{X} F_{i} dX \quad \mathbf{HMP}$$

Acc. Weight average Sequence Length

$$\frac{\int_{0}^{X} \frac{1+P_{ii}}{(1-P_{ii})^{2}} F_{i} dX}{\int_{0}^{X} \frac{1}{1-P_{ii}} F_{i} dX} \quad \mathbf{Ray} \quad \frac{\int_{0}^{X} \frac{1+P_{ii}}{1-P_{ii}} F_{i} dX}{\int_{0}^{X} F_{i} dX} \quad \mathbf{HMP}$$

Microscopic approach - Differences between Ray & HMP

Cumulative average sequence lengths of Sty in Styrene-Acrylonitrile *co*-polymer T = 60°C, $[AIBN]_0 = 0.05$ M, $f_{Sty0} = 0.6$ (Fig. 5), and $f_{Sty0} = 0.7$ (Fig. 6) (Number avg. sequence length experimental data from Garcia-Rubio *et al.*, 1985)

Microscopic approach - Differences between Ray & HMP

Cumulative average sequence lengths of Sty in Styrene-Acrylonitrile *co*-polymer T = 60°C, $[AIBN]_0 = 0.05$ M, $f_{Sty0} = 0.8$ (Fig. 7), and $f_{Sty0} = 0.9$ (Fig. 8) (Number avg. sequence length experimental data from Garcia-Rubio *et al.*, 1985)

Microscopic approach - Dyad/triad fractions

- Dyad fractions
 - -*M*₁*M*₁-
 - $-M_1M_2$ -
- Triad fractions

Indistinguishable

26/31

 $-M_{2}M_{1}$ -

 $-M_{2}M_{2}$ -

Microscopic approach - Triad fraction calculation

 $\sqrt{2}$

$$A_{iiii} = P_{ii}^{2} = \left(\frac{r_{ij}f_{i}}{f_{j} + r_{ij}f_{i}}\right)$$

$$A_{iij} = A_{jii} = P_{ii}P_{ij} = P_{ii}(1 - P_{ii}) = \frac{r_{ij}f_{i}f_{j}}{(f_{j} + r_{ij}f_{i})^{2}}$$
Triad fractions centered on monomer species *i* monomer species *i*

$$A_{jij} = P_{ij}^2 = \left(\frac{f_j}{f_j + r_{ij}f_i}\right)$$

 $\sum (fractions \ centered \ on \ monomer \ i)$ = $A_{iii} + A_{iij} + A_{jii} + A_{jij}$ = $P_{ii}^2 + 2P_{ii}P_{ij} + P_{ij}^2 = (P_{ii} + P_{ij})^2 = 1$

Microscopic approach - Triad fraction calculation

Figure 9.

Figure 10.

Triad fraction calculation of Styrene-Acrylonitrile *co*-polymer T = 60°C, Sty-centered (Fig. 9), and AN-centered (Fig. 10) (Experimental data from Hill *et al.*, 1982)

Microscopic approach - Triad fraction calculation

Figure 11. Triad fraction calculation of Methyl methacrylate-Methyl acrylate *co*-polymer T = 50°C, MA-centered (Experimental data from Kim and Harwood, 2002)

Summary

- Even with a limited number of monomers, a very large number of combinations
- Complicated multi-component system
- Lack of experimental data

Many Thanks to...

- Prof. T. A. Duever
- Prof. A. Penlidis
- BASF SE

Questions?

Copolymerization characteristics - 2nd order Markov (penultimate) model

 $M_1M_1^{\bullet} + M_1 \xrightarrow{k_{p111}} M_1M_1^{\bullet}$ $r_1 = \frac{k_{p111}}{k_{p112}} \quad r_1' = \frac{k_{p211}}{k_{p212}}$ $M_1M_1 + M_2 \xrightarrow{k_{p112}} M_1M_2$ $M_1M_2 + M_1 \xrightarrow{k_{p121}} M_2M_1$ $M_1M_2^{\bullet} + M_2 \xrightarrow{k_{p122}} M_2M_2^{\bullet}$ $r_2 = \frac{k_{p222}}{k_{p221}} \quad r_2' = \frac{k_{p122}}{k_{p121}}$ $M_2M_1 + M_1 \xrightarrow{k_{p211}} M_1M_1$ $M_2M_1 + M_2 \xrightarrow{k_{n212}} M_1M_2$ $s_1 = \frac{k_{p211}}{k_{p111}} \quad s_2 = \frac{k_{p122}}{k_{p222}}$ $M_2M_2^{\bullet} + M_1 \xrightarrow{k_{p221}} M_2M_1^{\bullet}$ $M_2M_2^{\bullet} + M_2 \xrightarrow{k_{p222}} M_2M_2^{\bullet}$

Microscopic approach - Average Sequence Length (Ray)

Cumulative number average sequence length

Microscopic approach - Average Sequence Length (Ray)

Cumulative weight average sequence length

Microscopic approach - Average Sequence Length (HMP)

Cumulative number average sequence length

Microscopic approach Average Sequence Length (HMP)

Cumulative weight average sequence length

Microscopic approach - Triad fractions

No. of Monomer Species	Distinguishable triads	Total possible triads
1 (homo-)	1	1
2 (co-)	6	8
3 (ter-)	18	27
4 (tetra-)	40	64
5 (penta-)	75	125
6 (hexa-)	126	216
7 (hepta-)	196	343
19	3610	6859
20	4200	8000