

INSTITUTE FOR POLYMER RESEARCH CELEBRATING 27 YEARS OF OFFICIAL INSTITUTE STATUS THIRTY-THIRD ANNUAL SYMPOSIUM ON POLYMER SCIENCE/ENGINEERING 10 May, 2011

High-Performance Semiconducting Polymer Materials for Printed Organic Electronics

Yuning Li

Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN) University of Waterloo

Outline

- Overview

- Motivations for research on organic electronics
- Polymer semiconductors
- Design of high-performance polymer semiconductors
 - Fused ring p-type polymers
 - Donor-acceptor p-type polymers
 - Ambipolar polymer semiconductors for CMOS-like logic circuits

– Summary and future work

Why printed organic electronics?

	Silicon	Organic
Capital	\$billions	\$millions (Low investment)
FAB conditions	Ultra clean-room / High Temp.	Ambient / Low temp (Mild)
Process	Multi-step photolithography	Continuous direct printing (Simple)
Substrate	Rigid glass or metal	Flexible plastics (Robust)
Device size	<< 1m ²	10 ft x roll to roll (Large area)
Cost	\$100's / ft ²	<\$10 / ft ² (Low cost)

RFID tags and smart labels

OLED lighting (GE)

Organic solar cells

E-paper (Plastic Logic)

Consumer electronics (Nokia 888 concept cell phone)

Flexible displays (LG)

Market forecasts to 2027 - a \$330 billion market (Source: IDTechEx)

RESEARCH ACTIVITIES IN MY GROUP

π -Conjugated polymers

Mobility of p-type polymer semiconductors

Is 1 cm²/V.s an upper limit?

Charge Carrier Transport in Polymer Semiconductors

- Polymer semiconductors always comprise disordered amorphous regions
- Weak ver der Waals bonds between polymer chains:
 - > Large intermolecular distance (π : ~3-4 Å)
 - Charge transport through hopping of charges between localized states
 - > Upper limit: ~1 cm²/V.s (G. Horowitz, *Adv. Mater.* 1998, *10*, 365)

Three modes of charge carrier transport at different levels

Intramolecular: Can be very fast (~10³ cm²/V.s); determined by coplanarity

Intermolecular (interchain): Slow (up to ~10 cm²/V.s); determined by overlapping area and distance

Intergranular (interdomian): Very slow (can be ~10⁻⁵ cm²/V.s or lower); determined by crystallinity/morphology

Molecular organization

1. Crystallinity and crystal size

• Smaller π - π distance, edge-on orientation, and larger π - π overlap lead to higher mobility

Improving Intermolecular and Intergranular charge carrier transports

<u>Strategy 1:</u> Use of fused aromatic rings

- Stronger π - π stacking force
- Large π-π overlap
- Increased crystallinity

Thiophene-based polymers with fused ring structures

Pan, H., et al, J. Am. Chem. Soc. 2007, 129, 4112.

Synthesis of PBTT

Li, Y.; Wu, Y.; Liu, P.; Birau, M.; Pan, H.; Ong, B. S. Adv. Mater. 2006, 18, 3029.

Molecular ordering of PBTT revealed by XRD

OTFT performance of PBTT

Li, Y.; Wu, Y.; Liu, P.; Birau, M.; Pan, H.; Ong, B. S. Adv. Mater. 2006, 18, 3029.

- High crystallinity, favored molecular organization and large π-overlap are contributable to the high mobility
- Similar mobility to that of PQT and P3HT even without thermal annealing

Benzo[1,2-b:4,5-b']dithiophene (BDT) building block

- More extended fused ring (larger π-overlap)
- Stronger backbone interaction
- Additional side chains for better solubility

Synthesis of PBBDT

Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. J. Am. Chem. Soc. 2007, 129, 4112.

Molecular organization

Waterloo

TFT performance

UV-vis spectra of PBBDT.

• Must be processed using hot solutions

Exemplary Fused-ring-containing polymers

• Improvements in mobility by using fused rings are limited.

Solubility decreases as ring size increases

Improving *Intermolecular* and *Intergranular* charge carrier transports

<u>Strategy 2:</u> Intermolecular donor-acceptor interactions

Improving *Intermolecular* and *Intergranular* charge carrier transports

<u>Strategy 2:</u> Intermolecular donor-acceptor interactions

PBTDPP

`S´

-Br

R	Polymn method	Solubility	Yield, %	M _w /M _n
1-Dodecyl (C12)	A,B	Insoluble	Trace	-
1-Hexadecyl (C16)	А	Very poor	Trace	-
	В	Hot CB	62%	2590 (HT-GPC)
1-Octadecyl (C18)	A	Insoluble	Trace	-
	В	Hot CB	63%	2820 (HT-GPC)
2-Hexyldecyl (C16)	А	Good	24%	67,070/28,100
2-Octyldodecyl (C20)	А	Very good	99%	392,770/146,290

Y. Li, et al., unpublished results (2006-2009)

OTFT Performance

• Typical ambipolar transport characteristics

C	C_8H_{17}	1E-5]			
ſ				Polymer	Annealing	Hole mobility,	Electron
T	N C ₆ H ₁₃				temperature, °C	cm ² /V.s	mobility, cm²/V.s
Au	BTDPP-HD						
	SiO₂ n⁺-Si	1E-7 Hole enhancement mode Electron enhancement mode -75 -60 -45 -30 -15 0 15 30 45 60 V _{cs} (Volts)	75	PBTDPP-HD	r. t.	0.024	0.056
-20	(a)	(b)			100	0.017	0.057
-18	s s s s	3 10V V _{GS} 20V V _{GS} 30V V _{GS} 40V V _{GS} 50V V _{GS}	7		140	0.013	0.036
(The second seco	s s			PBTDPP-OD	r. t.	0.006	0.025
-4 -2 0 0 -10	-20 -30 -40 -50 -60				100	0.013	0.010
	V _{DS} (Volts)	V _{DS} (Volts) (d)			140	0.013	0.007

Cyclic Voltammetry

- Reversible oxidative and reductive processes
- Might be good for both hole and electron transports

P-Type DPP-based Polymers

PDBT-co-TT polymer

- Small π - π distance of 3.71 Å: Good for interchain charge transport
- High crystallinity of as-cast films: Strong self-assembly ability
- Crystallinity is not very sensitive to annealing temperature

Cyclic Voltammetry

OTFT performance of PDBT-co-TT

Without annealing

Y. Li, S. P. Singh, P. Sonar, Adv. Mater. 2010, 22, 4862.

PDQT

- Improved crystallinity by annealing
- Larger π - π distance and band gap

Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J. *J. Am. Chem. Soc.* **2011**, *133*, 2198.

OTFT performance of PDQT

Output ($V_{\rm G}$ = 0 V to -70V) and transfer ($V_{\rm D}$ = -70 V) characteristics of OTFTs with DPP-LT thin films without annealing (a, b) and annealed at 100 °C (c, d) (L = 100 µm; W = 1 mm).

	Hole mobility µ _h , cm²/V.s	Current on-to-off I _{ON} /I _{OFF}	Threshold voltage V _T , V
Without annealing	0.89	~107	-3.0
Annealed at 100 °C/10min	0.97	2x10 ⁶	-3.0

• Mobility is not very sensitive to annealing temperature (or crystallinity)

• Suitable for high-throughput roll-to-roll manufacturing

Furan-DPP Polymers

- Furan is more electron-rich than thiophene
- Furan may suppress electron transport behaviour and make the hole transport more pronounced

PDBFBT

• Incorporation of furan broadens band gap and lowers HOMO level

Molecular packing

A mixture of edge-on and face-on orientations

OTFT performance

Output and Transfer characteristics of DA p-type polymer based OTFT (gold S/D; L = 125 μ m; W = 4 mm) on OTS treated n+-Si/SiO₂ substrate (annealed at 200 °C for 15 min)

Li,Y.; Sonar, P.; S. P. Singh, W. Zeng, M. S. Soh, J. Mater. Chem. under revision.

- μ_h = ~**1.54 cm²/V.s** (annealed at 200 °C) I_{on}/I_{off} = ~10⁵⁻⁶

Mobility of p-type polymer semiconductors

- Mobility of 1 cm²/V.s is not an upper limit for polymer semiconductors
- Polymer semiconductors should show higher mobility than small molecules (record mobility: ~20 cm²/V.s for single crystal rubrene)

Design of ambipolar polymer semiconductors for CMOS-like logic circuits

CMOS (Complementary Metal Oxide Semiconductor)

• CMOS is dominating the integrated digital logic circuits

Waterloo Printing CMOS-like circuit with discrete p- and n-channel OTF

• Difficulty in printing closely located p-type and n-type transistors

Ambipolar polymer OTFT

An ambipolar polymer can work as either a p-type semiconductor or an n-type semiconductor

- Simplified printing process
- Improved device yield
- Reduced cost

Ambipolar polymer design

PDPP-TBT ambipolar polymer

• Favored HOMO and LUMO levels for stable hole and electron transport

Molecular organization

3.0

2.5

2.0

1.5 1.0

0.5

Ó

5

20

XRD data obtained from spin-coated PDPP-TBT thin films (~35 nm) on OTS modified SiO_2/Si substrates annealed at different temperatures.

Randomly orientated?

(a)

20

2-D XRD data for PDPP-TBT film stacks: (a) and (b) are, respectively, 2-D transmission XRD images obtained with the incident X-ray parallel and normal to the film stacks; (c) and (d) are, respectively, XRD diffractograms of pattern intensities of (a) and (b) obtained by integration of Chi (0-360°) with GADDS software.

Thin film morphology 120 °C (a) (b) R. T. 00nm Jnm 200 °C (d) 180 °C (C) 50nm 200nm 2<u>00nm</u>

AFM phase images of PDPP-TBT thin films at: (a) room temperature, (b) annealed at 120° C, (c) annealed at 180° C, (d) annealed at 200° C on OTS treated p⁺-Si/SiO₂ substrates. An inset zoom-in image in (c) shows clearly that each nanofiber is comprised of stacked nanorods.

Crystalline fibrils grow as annealing temperature increases
Intertwined networks facilitate interdomain charge transport

OTFT performance of PDPP-TBT ambipolar polymer

Output characteristics (V_{DS} vs I_{DS}) of IMRE 1st Gen Ambipolar polymer based OTFT device annealed at 200 ° C on OTS treated p+-Si/SiO₂ substrate.

Sonar, P; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A. Adv. Mater. 2010, online

Characteristic behavior of an ambipolar OTFT

OTFT performance of PDPP-TBT ambipolar polymer

Transfer characteristics (V_{GS} - I_{DS}) OTFT device annealed at 200 $^{\circ}$ C operated in hole (left) and electron (right) enhancement mode.

OTFT performance of PDPP-TBT ambipolar polymer

Charge carrier mobility for PDPP-TBT Ambipolar polymer based OTFT

Serial #	Annealing	Charge carrier mobility (cm ² /V.s)			
	temperature, °C	Electron mobility (µ _e)	Hole mobility (µ _h)		
1	Room temperature	0.037	0.064		
2	80	0.16	0.20		
3	120	0.26	0.22		
4	160	0.28	0.22		
5	200	0.40	0.35		

Sonar, P; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A. Adv. Mater. 2010, 22, 5409.

- Very well balanced, high electron and hole mobilities
- Excellent solubility/processability

Comparison with other ambipolar polymers

$$\label{eq:multiple} \begin{split} \mu_e &= 0.2 \ \text{cm}^2 \ \text{/V.s} \\ \mu_h &= 0.5 \ \text{cm}^2 \ \text{/V.s} \\ \text{Au contacts} \\ \text{Vacuum deposition} \end{split}$$

Singh, et al, Adv. Mater. 2005, 17, 2315.

 $\label{eq:multiple} \begin{array}{l} \mu_e = 0.09 \ \text{cm}^2 \,/\text{V.s} \\ \mu_h = 0.1 \ \text{cm}^2 \,/\text{V.s} \\ \text{Ba contacts} \\ \text{Solution processed} \end{array}$

Bürgi, et al, Adv. Mater. 2008, 20, 2217.

 $\mu_{e} = 0.04 \text{ cm}^{2} / \text{V.s}$ $\mu_{h} = 0.003 \text{ cm}^{2} / \text{V.s}$ Au contacts
Solution processed
Kim, *et*, *al*, *Adv. Mater.* 2010, *22*, 478.

PDPP-TBT ambipolar polymer

- $\mu_{\rm e}$ = 0.40 cm² /V.s;
- $\mu_h = 0.35 \text{ cm}^2 / \text{V.s}$
- Au contact
- Solution processed

Summary and Future Work

- Fused ring aromatic structures such as thienothiophene (TT) and benzodithiophene (BDT) could improve the charge carrier mobility up to 0.4 cm²/V.s due to increased π-π overlap and crystallinity.
- DPP-based polymers having intermolecular D-A interactions coupled with fused ring structures improved mobility up to 0.89 cm²/V.s and 1.54 cm²/V.s for respective annealing-free and annealed polymer thin films.
- By using appropriate design principles, ambipolar polymers with very balanced, high electron (0.40 cm²/V.s) and hole mobility (0.35 cm²/V.s) were developed, which are useful as one-component semiconductors for printed CMOS-like logic circuits.
- Currently working with Prof. Hany Aziz and Prof. William Wang in Electrical Engineering on printing OTFT arrays for OLED display applications.
- Aiming for polymers with high mobilities (~5-10 cm²/V.s) for wider applications.

Acknowledgements

UNIVERSITY OF

53

Thank you!