

Dispersants Used in Industry

- Industry Use
 - to stabilize carbon rich particles from aggregation
 - to prevent oil blockage
- Steric Mechanism
 - Polar core is fixed on particles' surfaces
 - Non-polar chain is well dissolved in oil

Dispersants used as additives

Without dispersantForm depositsCause corrosion

With dispersantNo depositsPrevent corrosion

Intake valve of a Mercedes Benz M102E engine after 60 test hours

www.basf.com/automotive-oil

Dispersant: BAB tri-block copolymer

Polyisobutylene succinic anhydride (PIBSA)

Polyamines

Polyisobutylene succinic anhydride (PIBSA)

DETA (diethylene triamine)	$H_2N-CH_2CH_2-NH-CH_2CH_2-NH_2$
TEPA (tetraethylene pentamine)	$\mathrm{H_2N-}(\mathrm{CH_2CH_2-}\mathrm{NH})_3\mathrm{-}\mathrm{CH_2CH_2-}\mathrm{NH_2}$
PEHA (pentaethylene hexamine)	$\mathrm{H_2N-}(\mathrm{CH_2CH_2-}\mathrm{NH})_4\mathrm{-}\mathrm{CH_2CH_2-}\mathrm{NH_2}$

Outline

- Synthesis of dispersants
- Characterization of dispersants
- Measurement of associative strength of dispersants
- Adsorption of dispersants on carbon black particles
- Conclusions

Synthesis of Dispersants

р	Dispersant
1	PIB-DETA
3	PIB-TEPA
4	PIB-PEHA

Characterization of Dispersant

Building Block	Absorption Ratio Abs(1785 cm ⁻¹)/Abs(1390 cm ⁻¹)	N_{SA}/N_{IB}	
PIBSA	0.79	1:(33)	
Dispersant	Absorption Ratio Abs(1717 cm ⁻¹)/Abs(1390 cm ⁻¹)	N _{succinimide} /N _{IB}	
PIB-DETA	0.87	1:(33.3 <u>+</u> 3.8)	
PIB-TEPA	0.89	1:(32.3 <u>+</u> 4.1)	
PIB-PEHA	0.89	1:(32.5 <u>+</u> 3.1)	

10

Measurement of the Associative Strength of Dispersants

Associative Strength

- Ability of dispersants to self-associate in solution into reverse micelles
- Characterized by the CMC
 - CMC: critical micelle concentration

Measurements of the Associative Strength of Dispersants

- Light scattering
- Fluorescence techniques

Measurement of the Associative Strength of Dispersants by Light Scattering

Measurement of the Associative Strength of Dispersants by Fluorescence

The advantages of chromophore Ruthenium bisbipyridine 5- aminophenanthroline hexafluorophosphate (Ru-bpy):

- confirm existence of dispersant
 aggregates
- probe the polar core of dispersant micelles
- not soluble in apolar solvents
- ideal to study the CMC of dispersants in hexane

Fluorescence Measurement with Ru-bpy

Ru-bpy in PIB-PEHA normalized by pure PIB-PEHA 0.3g/L in the emission spectrum

Fluorescence Measurement with Ru-bpy

Ru-bpy in PIB-PEHA normalized by pure PIB-PEHA 0.3g/L in the emission spectrum

Fluorescence Measurement with Ru-bpy

18

Adsorption Measurements

- Measurement of the amount of adsorbed dispersants on carbon black
- Analysis with di-Langmuir Model

Determination of the Specific Area of Carbon Black (CB) Particles

•Constant volume of aqueous MB solutions with different amount of CB are prepared

- •The concentration of MB in supernatant is measured
- •The specific area of CB is determined from the absorbed amount of MB

Tomlinson, A.; Danks, T. N.; Heyes, D. M.; Taylor, S. E.; Moreton, D. J. *Carbon* **2000**, *38*, 13-28 ²⁰

Determination of the Extinction Coefficient of Methylene Blue

Determination of the Specific Area of Carbon Black (CB) Particles

 C_{eq} : concentration of MB at equilibrium in supernatant n_{ads}/m : mmol of adsorbed MB per gram of carbon black

22

Determination of the Specific Area of Carbon Black (CB) Particles

 A_{CB} measured by MB < A_{CB} measured by N₂ adsorption (1600 M²/g)

- limited accessible surface area
- reduced ability of MB molecules to follow the surface contours

Adsorption Measurements

Measurement of the amount of adsorbed dispersants on carbon black

Analysis with di-Langmuir Model

Calibration of Dispersants Concentration

Adsorption Isotherm

 $\Gamma = \frac{(C_0 - C_{eq})V}{mA} \quad (\mu mol / m^2)$

 Γ : adsorbed amount of dispersant per unit area C_{eq} : concentration of dispersant in supernatant at equilbrium m: CB weight

V: volume of solution C_0 : initial concentration of the dispersant A: specific area of CB

Adsorption Measurements

 Measurement of the amount of adsorbed dispersants on carbon black

Analysis with di-Langmuir Model

Analyzing the Adsorption Isotherm with di-Langmuir Model

$$\Gamma = \frac{\Gamma_1 K_1 C_{eq}}{1 + K_1 C_{eq}} + \frac{\Gamma_2 K_2 C_{eq}}{1 + K_2 C_{eq}} \approx \frac{\Gamma_1 K_1 C_{eq}}{1 + K_1 C_{eq}} + \Gamma_2 K_2 C_{eq}$$

Γ1, Γ2: maximum amount of dispersant adsorbed at saturation *K*1, *K*2: equilibrium constants of the two sites

	$\Gamma_1 \text{ (mol.m-2)}$	K_1 (m ³ .mol ⁻¹)	$\Gamma_2 K_2(m)$
PIB-DETA	1.70×10-7	43	1.13×10-7
PIB-TEPA	6.31×10 ⁻⁸	193	6.91×10-7
PIB-PEHA	3.35×10 ⁻⁸	336	4.82×10-7

Conclusions

• A series of oil-soluble dispersants were synthesized.

- The CMC of the dispersants was determined by using the fluorescence of Ru-bpy. The CMC decreases with increasing p values.
- The adsorption of the dispersants onto carbon black particles was investigated. Dispersants adsorbed on carbon black particles more strongly for larger p values.

Acknowledgements

- Dr. Jean Duhamel
- Dr. Mario Gauthier
- Colleagues from both labs
- Special thanks to Cristina Quinn
- Imperial Oil and NSERC for funding

