Peer-Reviewed Journal Articles

Students and PDFs trained in the Ideation Lab are in bold font; * refers to the authors who contribute equally; an underline indicates the corresponding author.


A Microfluidic Plasma Separation Device

N. Debnath, L. Live, and M. Poudineh, “A Microfluidic Plasma Separation Device Combined with Surface Plasmon Resonance for Biomarker Detection in Unprocessed Blood,” Under Review.

Probes for On-site Detection of Small Molecules, Proteins, and Ribonucleic Acids

F. Keyvani, H. Zheng, M. R. Kaysir, D. F. Mantaila, F. A. Rahman, J. Quadrilatero, D. Ban, and M. Poudineh, “A Hydrogel Microneedle Assay Combined with Nucleic Acid Probes for On-site Detection of Small Molecules, Proteins, and Ribonucleic Acids,” Under Review.

Bead-Based, Competitive Assay Integrated with Microfluidics

H. Aghamohammadi, K. Thomas, J. Deglint, A. Wong, and Mahla Poudineh, “A Bead-Based, Competitive Assay Integrated with Microfluidics for Multiplexed Toxin Detection,” Under Review.

F. Al Fattah*, H. Abouali*, S. A. Hosseini, J. Yin, A. Abdullah Khan, H. Aghamohammadi, Mahla Poudineh, and D. Ban, “Fluorescently Activated Protein Detection within a Miniaturized Optofluidic Platform for Point-of-Care (POC) Testing,Under Review.

Conductive Hydrogel Microneedle-Based Assay

P. GhavamiNejad*, A. GhavamiNejad*, H. Zheng, K. Dhingra, M. Samarikhalaj, and M. Poudineh, “A Conductive Hydrogel Microneedle-Based Assay for Real-time, Continuous, and Enzyme-less Glucose Measurement in Live Animals,” Advanced Healthcare Materials, 2022, 2202362, 1-11. Featured in Rising Star Series of Advanced Healthcare Materials.

Conductive Hydrogel-Based Microneedle Platform

S. A. Odinotski, K. Dhingra, A. GhavamiNejad, H. Zheng, P. GhavamiNejad, and M. Poudineh, “A Conductive Hydrogel-Based Microneedle Platform for Real-Time pH Measurement in Live Animals,” Small, 2022, 2200201, 1-10.

Hydrogel Microneedle-Assisted Assay

H. Zheng*, A. GhavamiNejad*, P. GhavamiNejad, M. Samarikhalaj, A. Giacca, and M. Poudineh, “A Hydrogel Microneedle-Assisted Assay Integrating Aptamer Probes and Fluorescence Detection for Reagentless Biomarker Quantification,ACS Sensors, 2022, 8, 2388-2399. Featured as supplementary cover art.

Electrochemical Assay for Cervical Cancer Detection

F. Keyvani*, N. Debnath*, M. Ayman Saleh, and M. Poudineh, “An Integrated Microfluidic Electrochemical Assay for Cervical Cancer Detection at Point-of-Care,” Nanoscale, 2022, 14, 6761 - 6770. Featured in Emerging Investigator Series in Nanoscale & Featured on front cover.

H. Aghamohammadi, S. A. Hosseini, S. Srikant, A. Wong, and M. Poudineh, “A Computational and Experimental Model to Study Immunobead-based Assays in Microfluidic Mixing Platforms,” Analytical Chemistry, 2022, 94, 4, 2087–2098.

H. Abouali, S. A. Hosseini, E. Purcell, S. Nagrath, and M. Poudineh, “Recent Advances in Device Engineering and Computational Analysis for Characterization of Cell-Released Cancer Biomarkers,” Cancers, 2022, 14, 288.

N. Moghimi, S. A. Hosseini, M. Poudineh, and M. Kohandel, “Recent Advances on Cancer-on-Chip Models: Development of 3D Tumors and Tumor Microenvironment,” Bioprinting, 2022, 28, e00238.

S. A. Hosseini Farahabadi, M. Entezami, H. Abouali, H. Amarloo, M. Poudineh, and S. Safavi-Naeini, “Sub-Terahertz Silicon-Based On-Chip Absorption Spectroscopy Using Thin-Film Model for Biological Applications,” Scientific Reports, 2022, 12, 17747.


M. Poudineh*, C. L. Maikawa*, E. Yue Ma, J. Pan, D. Mamerow, Y. Han, S. w Baker, A. Beirami, M. Eisenstein, S. Kim, J. Vuckovic, E.A. Appel, and H. T. Soh, "A Fluorescence Sandwich Immunoassay for the Real-Time Continuous Detection of Glucose and Insulin in Live Animals," Nature Biomedical Engineering, 2021, 5, 53–63.

B. L. K. Coles, M. Labib, M. Poudineh, B. T.Innes, J. Belair-Hickey, S. Gomis, Z. Wang, G.  D. Bader, E. H. Sargent, S. O. Kelley, and D. Van der Kooy, “A Microfluidic Platform Enables Comprehensive Gene Expression Profiling of Mouse Retinal Stem Cells,” Lab on a chip, 2021, 21, 4464-4476.


Z. Wang, L. Zhang, M. Labib, H. Chen, M. Wei, M. Poudineh, B.J. Green, B. Duong, J. Das, S. Ahmed, E. H. Sargent, and S.O. Kelley, “Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransducive Differentiation,” ACS Applied Materials and Interfaces, 2019, 11, 41030-41037.


M. Poudineh, E. H. Sargent, K. Pantel, and S. O. Kelley, “Profiling Circulating Tumour Cells and Other Biomarkers of Invasive Cancers,” Nature Biomedical Engineering, Invited Review, 2018, 2.

M. Labib, R. M. Mohamadi, M. Poudineh, S. Ahmed, I. Ivanov, C. Huang, M. Moosavi, E. H. Sargent, and S. O. Kelley, “Single Cell mRNA Cytometry via Sequence-Specific Nanoparticle Clustering and Trapping,” Nature Chemistry, 2018, 10, 489-495.

M. Poudineh, Z. Wang, M. Labib, M. Ahmadi, L. Zhang, J. Das, S. Ahmed, S. Angers, and S. O. Kelley, “Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction,” Nano Letters, 2018, 18, 7188-7193.

L. Kermanshah, M. Poudineh, S. Ahmed, L. N. Nguyen, S. Srikant, R. Makonnen, S. O. Kelley, “Dynamic CTC Phenotypes in Metastatic Prostate Cancer Models Visualized Using Magnetic Ranking Cytometry”, Lab on a Chip, 2018,18, 2055-2064.

G. Wang, J. Das, S. Ahmed, C. Nemr, L. Zhang, M. Poudineh, E. H. Sargent, and S. O. Kelley, “Curvature-Mediated Surface Accessibility Enables Ultrasensitive Electrochemical Human Methyltransferase Analysis,” ACS Sensors, 2018, 3, 1765–1772.


M. Poudineh, P. M. Aldridge, S. Ahmed, B. J. Green, L. Kermanshah, V. Nguyen, C. Tu, R. M. Mohamadi, R. K. Nam, A. Hansen, S. S. Sridhar, A. Finelli, N. E. Fleshner, A. M. Joshua, E. H. Sargent, and S. O. Kelley, “Tracking the Dynamics of Circulating Tumor Cell Phenotypes Using Nanoparticle-mediated Magnetic Ranking,” Nature Nanotechnology, 2017, 12, 274-282.

M. Poudineh, M. Labib, S. Ahmed, L. N. Matthew Nguyen, L. Kermanshah, R. M. Mohamadi, E. H. Sargent, and S. O. Kelley, “Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Two-Dimensional Sorting Device,” Angewantde Chemie, 2017, 56, 163-168.

M. Poudineh, E. H. Sargent, and S. O. Kelley, “Amplified Micro-Magnetic Field Gradients Enable High-Resolution Profiling of Rare Cell Subpopulations,” ACS Applied Material and Interface, 2017, 9, 25683−2569.

Before 2017

Y. G. Zhou, R. M. Mohamadi, M. Poudineh, L. Kermanshah, S. Ahmed, T. S. Safaei, J. Stojcic, R. K. Nam, E. H. Sargent, and S. O. Kelley, “Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles,” Small, 2016, 12, 727-732.

A. T. Sage, J. D. Besant, L. Mahmoudian, M. Poudineh, X. Bai, R. Zamel, M. Hsin, E. H. Sargent, M. Cypel, M. Liu, S. Keshavjee, and S. O. Kelley, “Fractal Circuit Sensors Enable Rapid Quantification of Biomarkers for Donor Lung Assessment for Transplantation,” Science Advances, 2015, 1, e1500417.

M. Poudineh, R. Mohamadi, A. Sage, L. Mahmoudian, E. H. Sargent, and S. O. Kelley, “Three-Dimensional, Sharp-Tipped Electrodes Concentrate Applied Fields to Enable Direct Electrical Release of Intact Biomarkers from Cells,” Lab on a Chip, 2014, 14, 1785-1790.

Y. Wan, Y. Zhou, M. Poudineh, T. S. Safaei, R. M. Mohamadi, E. H. Sargent, and S. O. Kelley, “Highly Specific Electrochemical Analysis of Cancer Cells using Multi-Nanoparticle Labeling,” Angewandte Chemie, 2014, 53, 13361-13365.

Y. Zhou, Y. Wan, A. Sage, M. Poudineh, and S. O. Kelley, “Effect of Microelectrode Structure on Electrocatalysis at Nucleic Acid-Modified Sensors,” Langmuir, 2014, 30, 14322-14328.

B. Lam, R. D. Holmes, J. Das, M. Poudineh, A. Sage, E. H. Sargent, and S. O. Kelley, “Optimized Templates for Bottom-Up Growth of High-Performance Integrated Biomolecular   Detectors,” Lab on a Chip, 2013, 13, 2569-2575.

M. Poudineh, Z. Sanaee, A. Gholizadeh, S. Soleimani-Amiri, and S. Mohajerzadeh, “Highly Ordered Sub 50 nm Silicon Nanowire Formation Using a High Precision Top-Down Process,” IEEE Transactions on Nanotechnology, 2013, 12, 712-718.

Z. Sanaee, M. Poudineh, M. Abdolahad, and S. Mohajerzadeh, “High Aspect Ratio Micro- and Nano-Machining of Silicon Using Time-multiplexed Reactive Ion Etching,” Journal of micromachining and microengineering, 2011, 21, 125012.