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Dimension Reduction for GP

Situation:
Gaussian Process (GP) is a popular tool for computer experiments which
often contains non-linear relationships.
Many computer simulation models in engineering and scientific domains
involve a large number of input variables and limited sample size for
experiments.

Challenges:
Prediction accuracy: curse of dimensionality.
Computation: optimization in high dimensional variable space, nonconvex,
matrix inversion.

If the underlying system is only varied in a low dimensional input space of
a few essential variables, then reducing the dimension of the input
variables can help:

Alleviate the curse of dimensionality issue.
Computation involved in the estimation should be should be reduced.
Better understand the underlying system.
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Existing Literature: identifying the active input variables

Sensitivity analysis: can only identify the influential variables after fitting
the GP in the original high dimensional space.

Active Subspace: y(x) = Z(B′x) + ϵ, where B is the matrix of size p × d
that projecting the input space from p to d dimension. So B is
full-column-rank and d < p. Sometimes there is a constraint on B:
B′B = Id .

Bayesian approach: Single-Index or Multi-Index GP [Gramacy and Lian,
2012, Tripathy et al., 2016].
Active subspace for kriging[Constantine et al., 2014]: based on the gradient
of the computer model.
Gradient-based kernel dimension reduction [Fukumizu and Leng, 2014] is
used in Liu and Guillas [2017].

Remark: it is challenging to estimate B, either gradients or large number
of simulations are needed.
Functional ANOVA decomposition: Borgonovo et al. [2018] and Sung
et al. [2019].
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GP Models
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Gaussian Process Models

The GP model assumes the following probabilistic distribution for the response
y(x):

y(x) = Z(x) + ϵ, (1)

where

Z(x) ∼ GP(0, τ 2K(·, ·)), and ϵ ∼iid N(0, σ2). (2)

Correlation function=a kernel function K(·, ·, θ), and θ ∈ Rp
+ are the

correlation parameters. Gaussian kernel: exp
(
−

∑p
i=1 θi(x1,i − x2,i)2) or

exp(−θ||x1 − x2||2).
Unknown parameters θ, τ 2, σ2.
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Estimation and Prediction

Data {xi , yi}n
i=1. When σ2 > 0, there should be replications at some

design points xi . Otherwise, σ2 is user specified.

MLE
min

θ∈R+
n log τ 2 + log det(K + ηI) + y ′(K + ηI)−1y

τ 2 ,

where η = σ2/τ 2 is the noise to signal ratio or nugget effect if σ2 = 0.
The MLE of τ 2 is 1

n (y ′(K + ηI)−1y).
Prediction formula:

Ŷ (x) = k(x)(K + ηI)−1y ,

where k(x) = [K(x, x1), . . . , K(x, xn)]′

Lulu Kang, Minshen Xu Optimal Kernel Learning Joint Research Conference, June 2024 8 / 34



Motivation GP Models MKL Problem Learning the Optimal Kernel Low-Dimensional Approximation Example Conclusion References

Estimation and Prediction

Data {xi , yi}n
i=1. When σ2 > 0, there should be replications at some

design points xi . Otherwise, σ2 is user specified.
MLE

min
θ∈R+

n log τ 2 + log det(K + ηI) + y ′(K + ηI)−1y
τ 2 ,

where η = σ2/τ 2 is the noise to signal ratio or nugget effect if σ2 = 0.
The MLE of τ 2 is 1

n (y ′(K + ηI)−1y).

Prediction formula:
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GP model as a regularized RKHS regression

K(·, ·): a positive definite kernel function on Ω ⊂ Rp .

HK : reproducing kernel Hilbert space induced by K .
Given data {xi , yi}n

i=1, for any kernel function K(·, ·) and f ∈ HK , define
the regularized loss function

Qη(f , K , X , y) = Q(f , K , X , y) + η∥f ∥2
HK , (3)

where Q(f , K , X , y) is a user-specified loss function measuring the
goodness-of-fit and η > 0 is the regularization parameter.
The penalized regression problem is to solve the following minimization
problem

min
f ∈HK

Qη(f , K , X , y). (4)
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GP model as a regularized RKHS regression

Since f ∈ HK , f (x) =
∑n

i=1 ciK(x, xi), it is equivalent to

min
c∈Rn

Qη(c, K) = Q(c, K) + ηc⊤Kc, (5)

Quadratic loss Q(f , K) = ∥y − f ∥2
2 leads to optimal c∗ = (K + ηIn)−1y .

Problem: kernel function is fixed, how to find this?

Lulu Kang, Minshen Xu Optimal Kernel Learning Joint Research Conference, June 2024 10 / 34



Motivation GP Models MKL Problem Learning the Optimal Kernel Low-Dimensional Approximation Example Conclusion References

MKL Problem
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Multiple kernel learning (MKL) problem

MKL problem [Gönen and Alpaydın, 2011]: given data, how to find the
optimal kernel function K ∗ from a space of kernel functions K for a
specific kernel learning method, such as GP regression or the SVM?

For GP regression,
Qη(K) = min

K∈K
Qη(K), (6)

where Qη(K) = minf ∈HK Qη(f , K).
Consider the squared-error loss function Q(f , K) = ∥y − f ∥2

2. The
minimization problem to find optimal kernel is

Qη(K) = min
K∈K

{
(y − Kc∗)⊤(y − Kc∗) + µc∗⊤Kc∗}

. (7)
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Discrete nature

A+(Ω): the set of kernel functions such that for any set of design points
in Ω the resulted kernel matrix K is positive definite.

If K is a compact and convex subset of A+(Ω) and Q : Rn → R is
continuous, then the solution of (6) exists (Lemma 2 of Micchelli and
Pontil [2005]).
If G ⊂ A+(Ω) is a compact set of basic kernels, K is the closure of the
convex hall of G, denoted by conv(G), the loss function Q : Rn → R is
continuous and η is positive, then there exists a subset T ⊂ G containing
at most n + 2 basic kernels such that Qη(K) admits a minimizer
K ∈ conv(T ) and Qη(conv(T )) = Qη(K).

General Message
It implies that the optimal kernel K ∗ solving minK∈K Qη(K) is a convex
combination of at most n + 2 basic kernels, when K is a closed convex hull of
the basic kernels. The unqiueness of the solution is achieved if Q is a strict
convex function of Rn.
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Learning the Optimal Kernel
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Optimal Design

Approximate design [Atkinson, 2014, Kiefer, 1974]: a design ξ belongs to
a class Ξ of probability measures on a compact design space X ∈ Rd , and
Ξ includes all discrete measures.

M(ξ): information matrix. Defined as M(ξ) =
∫

X M(x)ξ(d x), where
M(x) is the information matrix at a design point x.
Design criteria, such as D- and I-optimal criteria, are convex in the
information matrix M, are also convex in ξ [Kiefer, 1974].
The optimal design ξ∗ minimizing such a design criterion consists of m
support points {x1, . . . , xm} ⊂ X and the optimal weights λ∗, where
0 < λ∗

i ≤ 1 and
∑m

i=1 λ∗
i = 1. Thus, λ∗

i is the optimal probabilty mass
allocated to each support point x∗

i .
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Design and Kernel

We extend the concept of design to optimal kernel learning.

Design ξ: a probability measure ξ ∈ Ξ.
Ξ is a class of probability measures on the compact set of basic kernels
G ⊂ A+(Ω) including all discrete measures.
K = conv(G).
For any K ∈ K, there exists a ξ ∈ Ξ, such that K =

∫
Gξ(d G), where G

is the notation for any kernel in G, and vice versa.
If G is a countable and compact set, i.e., G = {G1, G2, . . .}, then
K =

∑
i=1 ξiGi , where 0 ≤ ξi ≤ 1 is the probability mass for Gi and∑

ξi = 1.
A kernel function K is then a function of ξ, i.e., K(ξ).
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Optimal Kernel

Finding the optimal kernel ⇐⇒ finding the optimal design ξ∗ with m
support kernels {K1, . . . , Km} selected from G, borrowing the term
support points, and the optimal weights λ∗ corresponding to the support
kernels. Here 0 < λi ≤ 1 for i = 1, . . . , m, and

∑m
i=1 λi = 1.

The optimal kernel then can be expressed by K(ξ∗) =
∑m

i=1 λ∗
i Ki .

Recall previous result from MKL problem, m ≤ min{n + 2, |G|}.
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General Equivalence Theorem (1)

The effort invested in connecting the two is worthwhile because the theories
and algorithms for solving optimal design can also be adapted to for optimal
kernel learning.

Definition (Directional Direvative w.r.t. Design)
Given a compact set of kernel functions G ⊂ A+(Ω), let ξ and ξ′ be two
probability measures in Ξ on G, including all discrete measures. As a function
of ξ, the directional derivative of Qη(ξ) in the direction of ξ′ is

ϕ(ξ′, ξ) := ▽ξ′ Qη(ξ) = lim
α→0+

Qη((1 − α)ξ + αξ′) − Qη(ξ)
α

. (8)
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General Equivalence Theorem (2)
Proposition
The directional derivative of Qη(ξ) in the direction of ξ′ is given as,

ϕ(ξ′, ξ) = ∂Qη(ξ)
∂α

∣∣∣∣
α=0

= −ηy⊤((Kξ + ηIn)−1(Kξ′ − Kξ)(Kξ + ηIn)−1)y , (9)

where Kξ and Kξ′ are the n × n kernel matrix computed by evaluating K(ξ)
and K(ξ′) on X = {xi}n

i=1.

Theorem (General Equivalence Theorem)
Assume the same definition of Ξ, G, K, and Qη(·) as above. The following
conditions of a design ξ ∈ Ξ are equivalent:
(1) The design ξ∗ ∈ Ξ minimizes Qη(ξ);
(2) ϕ(ξ′, ξ∗) ≥ 0 holds for any ξ′ ∈ Ξ;
(3) ϕ(G , ξ∗) ≥ 0 holds for any G ∈ G, and the inequality become equality if G

is a support kernel of ξ∗. Here, the derivative ϕ(G , ξ) is a simplified
notation for ϕ(ξG , ξ), and ξG is a probability measure assigning unit
probability to the single kernel G in G
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Algorithm 1 Forward Stepwise Optimal Kernel Learning

The General Equivalence Theorem provides insight on how to select the
support kernels sequentially.
In each iteration, we check the sign of ϕ(G , ξr ) for any G that has not
been selected into the current design ξr . If it is non-negative for all G ,
then ξr reaches the optimal. But if ϕ(G , ξr ) < 0 for some G , it indicates
that G is a potential support kernel and should be added into the design.
To achieve the maximum reduction of the loss function Qη(ξr ), we add
the kernel Kr+1 = arg minG ϕ(G , ξr ) < 0 into the current set of support
kernels for ξr .

Algorithm 1
Algorithm 1 is a Fedorov-Wynn type of algorithm that iteratively forward
select a basic kernel into the design as a support kernel and update the weights
using Algorithm 2 to the optimal weights.
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Algorithm 2 Optimal-Weight Procedure

Corollary (Conditions of Optimal Weights)
Restrict the set of basic kernel G to be a finite set, G = {K1, . . . , KM} and Ξ is
the class of discrete measure on G. For any ξ ∈ Ξ, the corresponding weight
vector λ = [λ1, . . . , λM ]⊤ with 0 ≤ λi ≤ 1 becomes the only variable that
decides Qη(ξ). The following two conditions on the optimal design ξ∗ and its
weight vector λ∗ are equivalent.

1. The weight vector λ∗ minimizes Qη(ξ);
2. For all Ki with λ∗

i > 0, ϕ(Ki , ξ∗) = 0; for all Ki with λ∗
i = 0,

ϕ(Ki , ξ∗) ≥ 0.

Algorithm 2
Based on the Corollary, we can develop Algorithm 2 that returns the optimal
weights for a set of support kernels. It is a type of multiplicative algorithm.

Lulu Kang, Minshen Xu Optimal Kernel Learning Joint Research Conference, June 2024 21 / 34



Motivation GP Models MKL Problem Learning the Optimal Kernel Low-Dimensional Approximation Example Conclusion References

Convergence

Theorem
Assume the optimal weight procedure in Algorithm 2 converges to the optimal
solution. Given the compact set of basic kernels G ⊂ A+(Ω) and let
K = conv(G), the design constructed by Algorithm 1 (without the optional
delete step at the end) converges to ξ∗ that minimizes Qη(ξ), i.e.,

lim
r→∞

Qη(ξr ) = Qη(ξ).
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Low-Dimensional Approximation
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Construct G of lower dimension variables

Lower Dimension Kernel Space: Kj is the kernel function on xj ; Kij is the
kernel function on (xi , xj); Kijk is the kernel function on (xi , xj , xk);...
All kernels are radial basis functions, i.e., isotropic.
For each Kj or Kij , we can specify the possible correlation parameter
θl ∈ [θmin, θmax].
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Functional ANOVA

Consider the ANOVA (upto the second order) decomposition [Sung et al.,
2017] of GP:

Z(x) ≈
p∑

j=1

Mj∑
m=1

βm
j Z m

j (xj) +
p−1∑
j=1

p∑
k=j+1

Mjk∑
m=1

βm
jk Z m

jk (xj , xk) + ϵ.

which is equivalent to approximate the kernel Z(x) by

K(·, ·) ≈
p∑

j=1

Mj∑
m=1

λm
j K m

j (·, ·) +
p−1∑
j=1

p∑
k=j+1

Mjk∑
m=1

λm
jkK m

jk (·, ·).

Lulu Kang, Minshen Xu Optimal Kernel Learning Joint Research Conference, June 2024 25 / 34



Motivation GP Models MKL Problem Learning the Optimal Kernel Low-Dimensional Approximation Example Conclusion References

Algorithm 3: Forward+Backward Construction + Heredity Principle

1. Construct one-dim basic kernel functions. Use Algorithm 1 to construct
the optimal kernel.

2. Backward checking: remove the kernels whose weights are less than a
user-specified threshold, say 0.05; update the weights.

3. Identify the active dimensions whose corresponding kernels are selected.
Based on weak or strong heredity principle, construct the two-dim basic
kernel functions. Use Algorithm 1 to construct the optimal kernel.

4. Repeat the above steps for higher dimensions kernels until convergence
condition is reached.

Parallel computing is incorporated.
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Example
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Michalewicz function
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(a) the surface of Michalewicz function for
p = 2

(b) the predicted surface of Michalewicz
function for p = 2
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Michalewicz function

Table: Performance of high dimensional Michalewicz function, n = 300, p = 6,
d = 10, 20, 60

dimension n method rmse sd fp fn

10

300

lagp 0.9413 / /
mlegp 0.9110 2.6 0.78
MRFA 0.1568 1.2 0
optK 0.0382 0 0

20

lagp 0.9556 / /
mlegp 0.9452 11.86 0.24
MRFA 0.1740 4.38 0
optK 0.0593 0 0

60

lagp 1.5056 / /
mlegp 0.9565 53.68 0.02
MRFA 0.2034 12.22 0
optK 0.1292 0 0
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Michalewicz function

Table: Performance of high dimensional Michalewicz function, n = 500, p = 6,
d = 10, 20, 60

dimension n method rmse sd fp fn

10

500

lagp 0.9128 / /
mlegp 0.8778 1.95 0.75
MRFA 0.0574 1.4 0
optK 0.0200 0 0

20

lagp 0.9151 / /
mlegp 0.9318 12.35 0.05
MRFA 0.0652 5.5 0
optK 0.0197 0 0

60

lagp 1.5053 / /
mlegp 0.9237 54 0
MRFA 0.0828 13.55 0
optK 0.0202 0 0
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Figure: boxplot for 60-dimensional Michalewicz function
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Conclusion
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Conclusion

1. Existing literature: there are finite number of atom kernels from a
compact and convex kernel space to form the optimal convex combination
of kernel minimizing the regularized loss function.

2. Inspired by optimal design, we propose the construction algorithm to
construct the optimal convex combination of kernels.

3. Combined with heredity principle, we construct low-dim kernel function as
candidates and select them stage-wise.

4. Future directions: convex combination algorithms can be applied to nodes
selection in deep neural networks.

5. Thanks & Questions?
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