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Background & Motivation

Today’s manufacturing often comes with high degree of automation using

robotics, computer vision and sensor technology - an example of smart

manufacturing in Industry 4.0.

Image-based SPC harnesses the power of smart manufacturing. It replaces

human operators with the following benefits:

accurately captures product specifics - product dimension, surface finish

and spatial patterns

eliminates human subjectivity and ensures consistency

able to keep up with high production rates

avoid labor cost
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Image-Based Quality Control

Images are increasingly used in industrial quality control.

Anomaly detection of rolling processes in the steel industry (Feng and

Qiu 2018).

Surface grading in the ceramic tile industry (López et al. 2008; Koosha

et al. 2017).

Dimension control in the web production industry (Lyu and Chen, 2009).

Inspection of surface uniformity in the liquid crystal display industry

(Jiang et al. 2005).
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Existing Methods

Figure 1: An illustration for the existing image-based SPC. Left: A tile surface.

Middle: A textile fabric sample. Right: Microscopic structures of salt.

There exists a gold standard e.g., the tile image, (Lin, 2007; Megahed

et al., 2012; Koosha et al., 2017; Feng and Qiu, 2018).

Two images cannot be matched pixel-to-pixel (e.g., the textile image) but

satisfy the Markov Field (MF) assumption: stationarity and locality (Bui

and Apley, 2018).

The salt image doesn’t meet the MF assumption.
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Our Contribution

We propose MODERN – Monitoring with Deep Residual Network – a

framework for CNN-based SPC without making restrictive assumptions.

MODERN-Chart

MODERN-Diagnosis

Transfer monitoring – extending pretrained MODERN-Chart to different

production settings.

Minimax asymptotic optimality and its implied managerial interpretation.
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Deep CNN Architecture
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Figure 2: Architecture schematics of inception net with residual connections (

Szegedy et al. 2017, 23.4m parameters).
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Charting Statistics

Let {p̂t = F (Xt; V̂) : t ≥ 1}. The charting statistics is defined by

Et = max {0, λ(p̂t − µIC) + (1− λ)Et−1} ,

where E0 = 0, λ ∈ (0, 1) is a weighting parameter, and µIC is the mean of p̂t

when the process is IC. A signal of upward shift should be sent if

Et > ρ

√
λ

2− λ
σ2
IC,

where ρ > 0 is a parameter chosen to achieve a given ARL0. To estimate µIC

and σ2
IC, let C0 = {XIC

k : k = 1, · · · , nIC}.

µ̂IC =
1

nIC

nIC∑
k=1

F
(
XIC

k ; V̂
)
, σ̂2

IC =
1

nIC − 1

nIC∑
k=1

(
F
(
XIC

k ; V̂
)
− µ̂IC

)2
.
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Control Limit

Augmented bootstrap (AB) algorithm:

Set b = 1 and repeat:

randomly draw with replacement an IC image Xb;

randomly apply an image transformation (rotate by 0, 90, 180, 270 degrees

or flip horizontally or vertically), resulting in X̃b;

compute Eb = max
{
0, λ

(
F

(
X̃b; V̂

)
− µ̂IC

)
+ (1− λ)Eb−1

}
;

b← b+ 1 .

until Eb ≥ ρ
√
(λσ̂2

IC)/(2− λ).

Let RL(r) = b− 1.

Compute ARL(ρ) = 1/R
∑R

r=1 RL(r).
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Diagnosis: Faulty Region Estimation

Figure 3: Examples of OC images.

Altering the neural net’s final layer so that it minimizes the L1 loss:

1

nOC

nOC∑
i=1

L1

(
zi,G

(
XOC

i ;U
))

=
1

nOC

nOC∑
i=1

w′ ∣∣G (XOC
i ;U

)
− zi

∣∣ ,
where zi is the five parameters of the ellipse in XOC

i , and w = (w1, · · · , w5)
′

are pre-specified weights.
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Transfer Monitoring: Applicability Test

Let S0 = {SIC
1 , · · · ,SIC

m0
} and S1 = {SOC

1 , · · · ,SOC
m1

} be the set of IC and OC

images in a new setting.

P̂0 =
{

F
(
SIC
k ; V̂

)
: 1 ≤ k ≤ m0

}
, P̂1 =

{
F
(
SOC
k ; V̂

)
: 1 ≤ k ≤ m1

}
.

P0 =
1

m0

m0∑
k=1

F (SIC
k ; V̂), P1 =

1

m1

m1∑
k=1

F (SOC
k ; V̂),

σ̂2
app =

∑m0

k=1

(
F (SIC

k ; V̂)− P0

)2
+
∑m1

k=1

(
F (SOC

k ; V̂)− P1

)2
m0 +m1 − 2

,

tapp =
P1 − P0√

σ̂2
app

(
1

m0
+ 1

m1

) .
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Transfer Monitoring: Control Limit Redetermination

The applicability test only measures the separability of P̂1 from P̂0. The

distribution of {F (XIC
k ; V̂) : Xk ∈ C0} in the old setting and the distribution

of {F (SIC
k ; V̂) : Sk ∈ S0} in the new setting may be quite different.

Recalculate the control limit using augmented bootstrap with C0 replaced

by S0.

Only need a few hundred images to achieve a commonly used ARL0 values

(tens of thousands would be needed to retrain the neural net sufficiently).
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Asymptotic Properties - Likelihood Estimation

Let f∗(X) be the log-odds of the OC probability given image X, and D and

W be the depth and width of the neural net.

Theorem 1. Assume the following conditions hold: (i) f∗(x) is Lipschitz

continuous; (ii) DW = O(Nd/(2d+4)); and (iii) (DW)2 log(DW) < Ne−1,

where N = nIC + nOC is the training sample size. Then we have

E

∥∥∥∥∥log
(

F (·; V̂)
1− F (·; V̂)

)
− f∗

∥∥∥∥∥
2

L2(ν)

 = O
(
N−2/(2+d) log3/2 N

)
.

Remark. The convergence rate is minimax optimal.
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Asymptotic Properties - Fault Diagnosis

Suppose the relationship between an OC image X and its faulty region is

given by g∗ : Rd → R5.

Theorem 2. Suppose that g∗(x) is Lipschitz continuous. Assume the

conditions in Theorem 1 with N replaced by nOC If we further assume that

there exists a1, a2 > 0 such that for any |c| ≤ a1,∣∣Fz|XOC (g∗(x) + c)− Fz|XOC (g∗(x))
∣∣ ≥ a2|c|, a.s. ,

where Fz|XOC(·) is the cumulative distribution function of z given XOC, then

we have

E
[∥∥∥G (·; Û)− g∗

∥∥∥2
L2(ν)

]
= O

(
n
−1/(2+d)
OC log3/2 nOC

)
.
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Managerial Interpretation

The more training images (both IC and OC) the better.

Upgrading the monitoring equipment (i.e., higher resolution) may not

help.

Should manufacturers never upgrade?

No need to upgrade if labeling fidelity is good enough.

Upgrade if low resolution causes mislabeling.
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Benchmark Dataset - DAGM

Ten classes of textured surfaces (512×512): 1000 IC and 150 OC images

each class (1 – 6), 2000 IC and 300 OC images each class(7 – 10).

Artificially created for an industrial image processing competition.

Figure 4: Four groups of IC/OC images from class 3, 4, 7 and 10 in DAGM are

shown Left-to-right and top-to-bottom.
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Training Details

Data partition: 60% (training), 25% (validation), 15% (testing).

Data Augmentation: Apply all 5 transformation to each OC image.

Apply one of the 5 (randomly) to each IC image. About 2:1 IC/OC ratio.

Batch size: 16. Learning rate follows a triangular cyclical schedule:

αj =

αL + (αU − αL)
j−l·C

C , l · C < j ≤ (l + 1)C

αU − (αU − αL)
j−(l+1)·C

C , (l + 1)C < j ≤ (l + 2)C
, l = 0, 2, 4, · · · ,

where αL = 0.001, αU = 0.01, and C = 2000.

Transfer learning the diagnosis neural net G (·;U) using V̂ in the

initialization.
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Stopping Criterion

Figure 5: The training progression of F (·;V) (left) and G (·;U) (right).

Sorensen-Dice similarity coefficient (SDSC) used as the validation metric when

training G (·;U):

SDSC =
2×Area(EstimatedRegion ∩ TrueRegion)

Area(EstimatedRegion) + Area(TrueRegion)
.
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DAGM Testing Performance I

The change point is at t = 21.

Class ARL1 sdARL1 Prop.Early Prop.On SDSC sdSDSC

1 20.64 0.2533 0.02 0.98 0.8293 0.0280

2 20.96 0.0400 0.01 0.99 0.7157 0.0270

3 21.00 0.0000 0.00 1.00 0.7974 0.0131

4 20.82 0.1218 0.03 0.97 0.7696 0.0348

5 21.00 0.0000 0.00 1.00 0.8719 0.0135

6 21.00 0.0000 0.00 1.00 0.6548 0.0425

7 20.45 0.2618 0.06 0.94 0.8820 0.0133

8 21.01 0.0100 0.00 0.99 0.6036 0.0336

9 20.88 0.1104 0.02 0.98 0.8352 0.0101

10 20.88 0.0844 0.02 0.98 0.7072 0.0159

Table 1: Column sdARL and sdSDSC are standard errors based on 100 repeated

simulations.
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DAGM Testing Performance II

Figure 6: The blue and red ellipses are the true and estimated faulty regions,

respectively. Each image corresponds to the median SDSC value in its class.
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Compare with MF Method

Simulate images by the following auto-regressive (AR) model:

X(i, j) = ϕ1X(i− 1, j) + ϕ2X(i, j − 1) + ε(i, j), 1 ≤ i, j ≤ n,

When the production process is IC, we set ϕ1 = 0.65, ϕ2 = 0.35 and

σ = 0.1.

Type-1 defect: ϕ1 = 0.65, ϕ2 = 0.35 and σ = 10−6.

Type-2 defect: ϕ1 = ϕ2 = 0 and σ = 0.1.

The change point occurs at t = 21.

The ARL0 is set equal to 200.
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Applicability to AR Images

Figure 7: The histogram of the applicability test in which F (·; V̂) is applied to 500 IC

images and the two types of OC images (500 each type) generated by the AR model.
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Comparison Result

Table 2: Comparison with the MF method using AR images.

Fault Type Method ARL1 sdARL1 Prop.On SDSC sdSDSC

1
MODERN 21.00 0.0000 1.00 0.6286 0.0084

MF 153.75 6.7987 0.01 0.0000 0.0000

2
MODERN 21.00 0.0000 1.00 0.6208 0.0057

MF 150.58 6.3956 0.00 0.5762 0.0097
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Application to Manufacturing of Electric Commutators

Electric commutators are key components of electric motors. Our sample

includes 14 IC images and 1 OC image of commutators.

10 IC images are used for estimating the IC parameters and control limit.

The monitoring phase shows the three IC images first for t ≤ 3 and then

the OC image for t > 3.

ARL0 is set equal to 25.

One of the 14 IC images The OC image

Figure 8: Representative images in the electric commutator manufacturing.

Y. Kang (FSB at Miami) Image Monitoring June 18, 2024 23 / 27



Commutator Manufacturing: Monitoring and Diagnosis
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Figure 9: Comparison with the MF method in the electric commutator

manufacturing data.
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Summary

Proposed a CNN-based framework, MODERN, for image monitoring and

diagnosis (no need of a gold standard or the MF assumptions).

Suggested transfer monitoring for assessing applicability and reducing

sample size requirement.

Established minimax optimality and its managerial interpretation.
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