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Introduction

Introduction

Rare events data occurs when the outcome of interest occurs
infrequently, and the majority of observed responses are zeros.

A typical example is very imbalanced binary data where the
number of cases is much smaller than the number of controls.

Rare events data beyond binary responses are also common.

About 5% of the 678,013 insurance policies in the French Motor
Third-Party Liability (MTPL) dataset incurred at least one claim.

From 2006-2015, less than 1% of the insured homes in Connecticut
had one or more claims on weather-related damages. 3

In large online recommendation systems, most users do not click on
any offers. For example, in the PANDOR data (Sidana et al., 2018),
less than 4% of the 5,894,430 users made one or more clicks on the
offers shown.

3
https://www.iii.org/fact-statistic/

facts-statistics-homeowners-and-renters-insurance
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Introduction

Numbers of clicks in the PANDOR data
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Introduction

Some questions

For non-binary responses, can we treat all non-zeros as ones to
convert the data into binary rare events data?

Whether the available information in the data is limited by the
number of non-zeros?

Weather all zeros are the same? Are there rare zeros?

Will optimal subsampling designs prefer rare zeros?
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Model setup and full data results

Zero inflated regression

Let DN = {xi, yi}Ni=1 be observed data from the distribution of (X,Y ).
Let the conditional density of Y given X = x be

d(y | x,θ,γ) = p0(z,θ)I(y = 0) + {1 − p0(z,θ)}h(y | v;γ), (1)

where z and v are components of x and are allowed to overlap;

p0(z,θ) generates dominating zeros;

p0(z,θ) =
1

1 + e−g(z,θ)
=

1

1 + e−α−f(z,β)
; (2)

h(y | v;γ) is a density that generates rare observations;

If Ph(Y = 0 | v;γ) > 0, then model (1) has two types of zeros:

the dominating zeros from p0(z,θ)
the rare zeros from h(y | v;γ);

η = (θT,γT)T are unknown parameter vector.
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Model setup and full data results

Assumption on rareness

Assume the true α → ∞ 4 so that

Nnz

N

P−→ 0; (3)

Nnz
P−→ ∞ (4)

as N → ∞, where Nnz is the number of nonzeros in the data.

4Wang (2020); Wang et al. (2021)
Wang, et. al. Big Rare Events Data 7 / 25



Model setup and full data results

Full data estimator

Theorem 2.1

The full data MLE η̂ satisfies that√
Nnz(η̂full − η) → N(0, Vfull), (5)

where Vfull = E[e−f (1 − h0)]Σ
−1
full,

Σfull = E
(
e−f

[
(1 − h0)ġ

⊗2 ḣ0ġ
T

ḣ0ġ
T Mγ(V ) − h0 l̇

⊗2

])
, (6)

and h0 = h(0 | V,γ)d0.

The consistent rate is
√

Nnz instead of
√
N .

Treating non-zeros as ones forces h0 = 0, making modeling
non-zeros unrelated to zeros;

it model zeros and non-zeros separately.
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Zero Reducing Sampling

Subsampling zeros

Algorithm 1 zero reducing sampling

For i = 1, ..., N :
1 if yi = 0,

1 calculate π(xi) and generate ui ∼ U(0, 1);
2 if ui ≤ π(xi), include {xi, yi, π(xi, yi) = π(xi)} in the sample.

2 if yi ̸= 0, include {xi, yi, π(xi, yi) = 1} in the sample;

π(x): sampling probability for the non-zeros.

π(xi, yi) = yi + (1 − yi)π(xi): inclusion probability of (xi, yi).

δi = 1 if the i-th data point is selected and δi = 0 otherwise.
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Zero Reducing Sampling Inverse probability weighting (IPW)

Inverse probability weighting (IPW)

The selected subsample is biased. Consider the IPW estimator

θ̂ipw, γ̂ipw = arg max
θ,γ

N∑
i=1

δi
ℓ(θ,γ;vi, yi)

π(xi, yi)
. (7)

Theorem 3.1

Let r = lim
N→∞

Nnz/N
∗
0 and π(x) = ρφ(x) with E{φ(x)} = 1. Under

some moment assumptions,√
Nnz(η̂ipw − η) → N(0, Vipw). (8)

where Vipw = Vfull + rΣ−1
fullVπΣ

−1
full, and

Vπ = E

{
e−2f

φ(x)

[
(1 − h0)ġ

ḣ0

]⊗2
}
. (9)
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Zero Reducing Sampling Inverse probability weighting (IPW)

Optimal sampling probabilities

The φ(x) that minimizes the variance inflation is

φos(x) =
∥ LΣ−1

full ℓ̇(θ,γ;x, 0)∥
E{∥ LΣ−1

full ℓ̇(θ,γ;x, 0)∥}
. (10)

If  L = I, then φos(x) is A-optimal.

If  L = Σfull, then φos(x) requires the least computational cost.

φos(x) depends on unknown parameters, so a pilot estimate η̃ is
required.
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Zero Reducing Sampling Conditional Likelihood Estimator

The IPW is not efficient

θ̂ipw, γ̂ipw = arg max
θ,γ

N∑
i=1

δi
ℓ(θ,γ;vi, yi)

π(xi, yi)
. (11)

1 The IPW down-weights more informative data points.

2 A naive unweighted estimator is biased and inconsistent.
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Zero Reducing Sampling Conditional Likelihood Estimator

Likelihood based estimator

The conditional log-likelihood of Y | x, δ = 1 for the subsample is

ℓcle(η) =

N∑
i=1

δi

[
log(1 + e−gih0i)I(yi = 0) − (gi − log hi)I(yi ̸= 0)

− log
{

(1 − h0i)e
−gi + (1 + h0ie

−gi)π(xi)
}]

,

where h0i = h(0 | vi;γ)d0, gi = g(zi,θ), and hi = h(yi | vi;γ).

Here, ℓcle(η) has an explicit expression.

The conditional likelihood estimator is

η̂cle = arg max
η

ℓcle(η). (12)
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Zero Reducing Sampling Conditional Likelihood Estimator

Theoretical analysis of η̂cle

Theorem 3.2

Under some moment assumptions,√
Nnz(η̂cle − η) → N(0, Vcle), (13)

where Vcle = E[e−f (1 − h0)]Σ
−1
cle , Σcle = Σfull −ΣI , and

ΣI = rE

(
e−2f

r{1−h0}e−f

E[{1−h0}e−f ]
+ φ(X)

[
(1 − h0)ġ

ḣ0

]⊗2
)
. (14)

Furthermore,
Vcle ≤ Vipw (15)

The equality holds when r = 0 and in this case Vcle = Vipw = Vfull.
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Zero Reducing Sampling Test for goodness of fit

CLE vs IPW

The CLE has a higher estimation efficiency than the IPW.

The CLE is less sensitive to the choice of φ(x) and the pilot
estimates.

φos(x) is optimal for the IPW estimator, not for the CLE.

An optimal φ(x) for the CLE should be nonrandom binary and
based on an optimal design.

The CLE rely on the correct model assumption; it may not be
consistent to η̂full when the model is mis-specified.

The IPW estimator is always consistent to η̂full, and thus may be
preferred under model mis-specification.

The full data MLE η̂full minimizes the Kullback-Leibler distance
between the mis-specified model class and the true model 5.

5White (1982)
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Zero Reducing Sampling Test for goodness of fit

Test for model correctness

With a correct model, both η̂ipw, and η̂cle estimate the true
parameter.

With model mis-specification, η̂ipw is consistent to η̂full, and η̂cle

estimates something else.

With a correct model,

η̂ipw − η̂cle

.∼ N(0, VT ) (16)

Define the test statistics as

H = (η̂ipw − η̂cle)
TV̂−1

T (η̂ipw − η̂cle)
.∼ χ2

d, (17)

Use η̂cle if H fails to reject and use η̂ipw otherwise, i.e.,

η̂test = I(H ≤ χ2
d,c)η̂cle + I(H > χ2

d,c)η̂ipw. (18)
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Numerical results Simulated data

Simulation setup

Working model: zero-inflated Poisson regression.

g(z;θ) = zTθ. (19)

h(y | v;γ) =
e−µµy

y!
with µ = ev

Tγ . (20)

Covariate X = (ZT, V T)T = Σ1/2U , where elements of U are i.i.d.
with the following distributions.

a standard normal: symmetric with light tails;
b standard exponential: positively skewed;
c t5: symmetric with heavier tails;

Full data sample size: N = 5 × 105.

Percentage of non-zeros is around 0.6%.

Sampling rate as ρ = 0.006, 0.01, 0.02, and 0.04.

A pilot sample of size 200 is used in each repetition of the
simulation.
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Numerical results Simulated data

Methods considered

Sampling probabilities:
1 uni: uniform sampling
2 opt: optimal sampling under L-optimality

Estimation methods:

ipw: inverse probability weighting
lik: conditional likelihood
pre: the estimator base on a pre-test defined in (18).

Wang, et. al. Big Rare Events Data 18 / 25



Numerical results Simulated data

Probabilities (×102) of a zero being selected

uni opt
Case 1 Case 2 Case 3

n 0 0 0 0 0 0 0
600 0.60 0.67 0.60 0.81 0.60 0.81 0.60
1000 1.01 1.11 1.00 1.27 0.97 1.30 0.99
2000 2.01 2.22 2.01 2.34 1.85 2.43 1.94
4000 4.03 4.41 4.00 4.15 3.42 4.50 3.77

0: rare zeros

0: dominating zeros

Note

The probability that maximizes the selection rare zeros is:

π(x) ∝ h(0 | v;γ){1 − p0(z;θ)} (21)

It does not work well on parameter estimation.

Wang, et. al. Big Rare Events Data 19 / 25



MSE (×102) for estimating η with the correct model

Case 1: full data estimator MSE is 1.288
n uni-ipw uni-lik uni-pre opt-ipw opt-lik opt-pre

600 3.050 2.154 2.300 2.333 2.170 2.190
1000 2.362 1.901 1.948 1.963 1.893 1.897
2000 1.855 1.649 1.665 1.625 1.600 1.601
4000 1.538 1.456 1.463 1.422 1.416 1.418

Case 2: full data estimator MSE is 1.131
n uni-ipw uni-lik uni-pre opt-ipw opt-lik opt-pre

600 9.620 2.706 8.035 2.981 2.413 2.463
1000 6.380 2.283 5.079 2.541 2.113 2.155
2000 3.931 1.921 2.941 1.782 1.642 1.648
4000 2.380 1.566 1.919 1.436 1.412 1.413

Case 3: full data estimator MSE is 0.953
n uni-ipw uni-lik uni-pre opt-ipw opt-lik opt-pre

600 4.378 1.978 3.342 1.636 1.528 1.539
1000 3.107 1.712 2.494 1.365 1.297 1.297
2000 2.030 1.408 1.717 1.168 1.130 1.144
4000 1.552 1.236 1.352 1.065 1.057 1.057



Numerical results Simulated data

Wrong model

The link function for generating the dominating zeros is the probit link
instead of the logit link, i.e.,

g(z;θ) = log Φ(zTθ) − log{1 − Φ(zTθ)}, (22)

where Φ is the standard normal distribution function.
And the non-zero generating distribution has an additional quadratic
term. Specifically,

h(y | v;γ) =
e−µµy

y!
with µ = ev

Tγ+γqv24 . (23)

When the working model is wrong, the parameter η lose its
meaning in this model class.

The full data estimator η̂full minimize the Kullback-Leibler
distance between the working model and the true data generating
model 6.

6White (1982)
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MSE (×102) for approximating η̂full with a wrong model

Case 5: full data estimator MSE is 0.0
n uni-ipw uni-lik uni-pre opt-ipw opt-lik opt-pre

600 19.577 24.992 24.092 3.966 8.391 6.186
1000 11.361 19.116 15.583 2.581 5.931 4.190
2000 5.504 12.620 8.900 1.203 3.151 1.866
4000 2.535 7.288 4.394 0.530 1.537 0.739

Case 6: full data estimator MSE is 0.0
n uni-ipw uni-lik uni-pre opt-ipw opt-lik opt-pre

600 210.753 342.757 225.248 36.608 99.894 64.126
1000 107.914 265.119 124.876 26.827 76.177 46.264
2000 46.076 177.040 62.609 16.722 52.910 28.790
4000 19.286 110.633 29.460 8.969 33.945 15.823

Case 7: full data estimator MSE is 0.0
n uni-ipw uni-lik uni-pre opt-ipw opt-lik opt-pre

600 30.408 36.657 34.024 3.963 12.592 7.998
1000 17.542 28.729 21.718 2.440 8.804 4.409
2000 8.317 19.408 12.623 1.073 4.429 1.782
4000 4.054 12.362 7.683 0.572 2.336 0.850



Numerical results PANDOR data

The PANDOR dataset

It contains information and clicks of users on Purch’s high-tech
websites over the ads showed to them for one month.

The data available here 7 contains 48,602,664 events for 5,894,431
users, and the raw data file is over 160GB.

Among the 5,894,431 users, about 4% of them clicked on the ads
one or more times.

We model the number of clicks using the working model in 19
and 20 with

Z0 the intercept
Z1 the number of pages viewed by the user
Z2 the average number of keywords in the offers to the user
V0 the intercept
V1 the number of offers to the user

7
https://archive.ics.uci.edu/dataset/460/pandor
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Numerical results PANDOR data

MSE (×104) for approximate η̂full

uni opt
ρ ipw lik pre ipw lik pre ρ

0.044 1.333 91.461 1.333 0.205 84.397 0.205 0.040
0.089 0.722 45.194 0.722 0.089 23.802 0.089 0.076
0.177 0.267 17.129 0.267 0.042 5.059 0.042 0.142
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Numerical results PANDOR data

Prediction on testing data

Prediction mean squared error (PMSE)

full data PMSE: 0.1083
uni opt

ρ ipw lik pre ipw lik pre ρ

0.0443 0.1087 0.1397 0.1087 0.1083 0.1294 0.1083 0.0397
0.0886 0.1084 0.1316 0.1084 0.1083 0.1140 0.1083 0.0758
0.1771 0.1083 0.1236 0.1083 0.1083 0.1098 0.1083 0.1419

Prediction AUC

full data AUC: 0.6703
uni opt

ρ ipw lik pre ipw lik pre ρ

0.0443 0.6694 0.6694 0.6694 0.6699 0.6576 0.6699 0.0397
0.0886 0.6699 0.6694 0.6699 0.6700 0.6585 0.6700 0.0758
0.1771 0.6699 0.6591 0.6699 0.6701 0.6585 0.6701 0.1419
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Numerical results PANDOR data

Thank you!
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Numerical results PANDOR data
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