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Background

Artificial intelligence (AI) systems have
become increasingly common and the
trend will continue.

To allow for safe, effective, and massive
deployment of AI systems, the reliability
of such systems need to be addressed.

The main goal of this talk is to provide
statistical perspectives on the reliability
of AI systems.

We also review recent developments in
modeling and analysis of AI reliability,
and outline statistical research
challenges in the area for statisticians.
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AI Applications and AI System Framework

Application areas include information technology,
transportation, government, healthcare, finance, and
manufacturing. Examples including self-driving cars,
drones, robots, and chatbots.
Autonomous systems are the main applications. Typical
examples include autonomous vehicles, industrial robotics,
aircraft autopilot systems, and unmanned aircraft.
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The Importance of AI Reliability

Failures of AI systems can lead to economic loss and
even, in extreme cases, lead to loss of life.

For example, a failure in the autopilot system of an
autonomous car can lead to an accident with loss of life.

Thus, reliability is critical, especially for autonomous
systems.

From another point of view, the large-scale deployment of
AI technologies requires public trust.

AI reliability falls within the larger scope of AI safety and AI
assurance.
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AI Incidence Examples

Cases reported on website “AI Incidence Database.”
Among the 126 incidents reported up to date, 72 incidents
are related to reliability events.
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Examples of Algorithms and Failure Causes

We also notice that 29 incidents involve deaths or injuries
among those 72 events.
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AI Reliability Framework – The SMART Framework

Structure of the system: Understanding the system
structure is a fundamental step in the study of AI reliability.

Metrics of reliability: Appropriate metrics need to be
defined for AI reliability so that data can be collected
accordingly and reliability can be tracked over time.

Analysis of failure causes: Conducting failure analysis to
understand how the system fails (i.e., failure modes) and
what factors affect the reliability.

Reliability assessments: Reliability assessments of AI
systems include reliability modeling, estimation, and
prediction.

Test planning: Test planning methods are needed for
efficient reliability data collection.
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System Structures

For AI systems (e.g., autonomous vehicles), we can
conceptually divide the overall system into hardware
systems and software systems.

The core of many AI software systems is machine
learning/deep learning (ML/DL) algorithms and other
rule-based algorithms.

Hardware reliability is well studied and there are mature
methods for testing and assessing hardware reliability.

Compared to hardware reliability, software reliability is
typically more difficult to test.

In addition, there are two other factors to consider as the
AI system structure: hardware-software interaction, and
the interaction of the system to the operating environment.
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Definition of AI Reliability and Metrics

Reliability is the probability that a system performs its
intended functions under expected conditions for a given
period of time.

The appropriate time scale for measuring AI reliability can
be different for different structure levels or AI applications.

Metrics are needed to characterize reliability for AI systems
such as failure rate, event rate, error rate, etc.

The measurement of the reliability of an AI algorithm is
associated with the performance of the AI algorithm (e.g.,
classification accuracy).

Overall, there are many metrics for AI algorithm reliability
available, but in general we lack universal metrics for
algorithm reliability.
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Failure Modes and Affecting Factors

Hardware failures, software failures, or both.
The factors that can affect AI reliability can fall into three
categories: operating environment, data, and model.
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The Roles of Traditional Reliability

Failure-time data: modeled by lifetime distribution.

The likelihood is: L(θ) =
∏n

i=1 f (ti ;θ)δi [1− F (ti ;θ)](1−δi ) .

Degradation data: modeled by general path models
yij = D(tij ;α,γ i) + εij .

The likelihood is:
L(θ|Data) =

∏n
i=1
∫∞
−∞

[∏ni
j=1

1
σ2
ε
φnor

(
zij
)]
× fMVN(γ i ;Σ)dγ i .

Recurrent events data: modeled by NHPP model with

intensity λ(t ;θ) = β
η

(
t
η

)(β−1)
.

The likelihood is:
L(θ) =

∏n
i=1

[∏ni
j=1 λ(tij ;θ)

]
exp [−Λ(τi ;θ)] .
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Examples of Traditional Data
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Disengagement Events in Autonomous Vehicle
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Relationship with Software Reliability

Software reliability is an area of traditional reliability that is
closely related to AI reliability.
In modeling software reliability, usually a software reliability
growth model (SRGM) based on NHPP is built.
Traditional software reliability focuses on software bugs,
but AI failures may not necessarily be caused by bugs.
e.g., a less accurate outcome of a predictive model may
lead to the crash of self-driving cars without any bugs.

Table: List of commonly used parametric forms for SRGM.

Model Λ0(t ; θ) Parameters

Musa-Okumoto θ−1
1 log(1 + θ2θ1t)

θ = (θ1, θ2)′

θ1 > 0, θ2 > 0

Gompertz θ1θ
θt

2
3 − θ1θ3

θ = (θ1, θ2, θ3)′

θ1 > 0, 0 < θ2, θ3 < 1

Weibull θ1[1− exp(−θ2tθ3 )]
θ = (θ1, θ2, θ3)′

θ1 > 0, θ2 > 0, θ3 > 0
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Applications of Traditional Methods in AI

Min et al. (2022) analyzed disengagement event data from
manufacturers Waymo, Cruise, Pony AI and Zoox for the
period from December 1, 2017 to November 30, 2019.
Spline model was used to model the BCIF:
Λ0(t ;θ) = Λ0(t) =

∫ t
0 λ0(s;θ)ds.
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Challenges in Statistical Analysis of AI Reliability

Need a general framework for AI reliability modeling

Out-of-distribution detection

The effect of data quality and algorithm

Adversarial attacks

Model accuracy and uncertainty quantification
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AI Reliability Modeling Framework

A general intensity function for the counting process is
proposed as λ[t ; x(t), z] =

∑k
j=1 λj [t ; x(t)] · pj(z ;βj).

The probability is modeled as pj(z ;βj) =
exp(z ′βj )

1+exp(z ′βj )
.
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Out-of-Distribution Detection

OOD observations are
data that never appear in
the training set.
In classification problems,
many ML tasks assume
the labels in the test set all
appear in the training set.
However, it is possible that
we encounter a new class
in the test dataset.
Xu et al. (2024) developed
an OOD detection method
based on Mahalanobis
distance: M(x i) =

maxj

{
−[f (x i)− µ̂j ]

′Σ̂
−1

[f (x i)− µ̂j ]
}
.
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Modeling the Effect of Data Quality and Algorithm

Lian et al. (2021) used a mixture experimental design to
study the effect of data quality and algorithms.
The performance of AI algorithms is measured by the area
under the receiver operating characteristic curves.

 0.5 
 0.55 

 0.6  0.6 
 0.65 

 0.7 

 0.75 

 0.8 

 0.85 

x2x1

x3

 0.55 

 0.6 

 0.65  0.7  0.7 

 0.75 

 0.8 

x2x1

x3

(a) CNN + Bone Marrow (b) CNN + KEGG

 0.76  0
.7

6  0.8  0
.8

 

 0.82  0
.8

2 

 0.84  0.84  0.86 

 0.88 

 0.88 

 0.9 

 0.9 

 0.92 

 0.92 

 0.94 

 0.96 

x2x1

x3

 0.74 

 0.74 

 0.78 

 0.78 

 0
.7

8 

 0.8 

 0.8 

 0.82 

 0.82 

 0
.8

2 

 0.84 

 0.84 

 0
.8

4 

 0.86 

 0.88 

 0.9 

x2x1

x3

(a) XGBoost + Bone Marrow (b) XGBoost + KEGG

20



Adversarial Attacks

The research on AA focuses on finding adversarial points.
One needs to solve the following optimization problem,
minx∗ ‖x∗ − x‖ s.t. f (x∗) 6= f (x).
Adversarial attacks can lead to misclassification, which can
further lead to reliability issues.
To ensure the accuracy of the AI application, efforts should
be made to prevent or mitigate the impacts of AA.
It is necessary to detect AA and to study how AA affects
the reliability of AI systems.
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Model Accuracy and Uncertainty Quantification

An ML/DL model has to be accurate enough so that the
model can be applied in the field.

Thus model accuracy is a key factor to reliability.

One question that is often asked is how much should trust
on the model accuracy, which leads to the uncertainty
quantification (UQ) problem.

Quantifying the uncertainty of ML models is the key to
understand the reliability of model prediction, especially for
critical AI tasks.

As an example, variational inference can be used to
conduct UQ.

The variation distribution is found through:
θ∗ = arg minθ KL[q(η;θ)‖p(η|X ,y)].
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Accelerated Tests for AI Systems

In traditional reliability analysis, accelerated tests (AT) are
widely used to obtain information in a timely manner for
products that can last for years or even decades.
The widely used methods for accelerations in the
traditional reliability setting are use-rate acceleration, aging
acceleration, and stress acceleration.
The failure of software systems is usually use driven. Thus
testing under high use rate can speed up the test cycles.
To increase the stress on the AI systems, one way is to use
input-data acceleration.
In addition, testing the systems under AA can be viewed as
a form of input-data acceleration.
Operating environment acceleration, which is to test the AI
systems under the OOD situation, can also be considered.

23



AI Reliability Improvements

The ultimate goal of statistical reliability analysis is to
improve designs for reliable AI systems.
The flow chart below shows some steps for AI reliability
improvement.
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Concluding Remarks

We provide statistical perspectives on the reliability
analysis of AI systems.
The objective is to provide general discussion coupled with
concrete illustrations.
We provide a statistical framework and failure analysis for
AI reliability.
One challenge is the limited public availability in reliability
data from AI systems, which is common for all systems
and products because reliability data are usually
proprietary and sensitive.
It is ideal to build data repository for AI reliability datasets.
The paper is published by Quality Engineering, Volume 35,
Pages 56-78, 2023.
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Thank You!
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