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Background

• The spatial dependence among spatial survival times needs to be properly
accounted with spatial survival models.

• The Markov Chain Monte Carlo (MCMC) methods for Bayesian framework
can be time-consuming when the number of spatial locations is large.

• We investigate the capability of an approximate approach, variational
inference (VI) in terms of computational efficiency and statistical
inference performance.

• We focus on two models, the proportional hazards model and the
cumulative exposure model.
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Data Notations

Suppose there are m distinct locations s1, . . . , sm.
• Let tij be the observed event time for the j th unit in the i th location si , where

i = 1, . . . ,m, j = 1, . . . ,ni .

• Let δij be the corresponding censoring indicator.

• Denote x ij(t) to be the p-dimensional vector of related covariates at time t .

• D =
{

tij , δij ,x ij(t) : t ≤ tij , i = 1, . . . ,m, j = 1, . . . ,ni
}

.
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Spatial Cumulative Exposure Model (CEM)

• The cumulative damage level by a certain time t given time-varying
covariates x(t):

uij(t) =

∫ t

0
exp

[
−x ij(s)>β

]
ds.

• The log[u(Tij)] is assumed to follow a location-scale distribution.

log
[
uij(Tij)

]
= µ+ γi + σεij .

• γi : spatial random parameter; εij follows the standard location-scale
distribution.

• Note that when the covariates are constant, the CEM can be simplified to an
accelerated failure time (AFT) model: log(Tij) = µ+ x>ij β + γi + σεij .
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Spatial Proportional Hazards Model (PH)

• The hazard function of the j th unit in i th location is modeled as

hij(t) = h0(t) exp
[
x ij(t)>β + γi

]
,

• h0(t): the baseline hazard function; β: the coefficient vector for covariates; γi :
the spatial random effect at location si .

• A parametric baseline hazard function h0(t ;θh) is used, where θh is the
parameter vector. E.g., Weibull hazard function h0(t) = atb with θh = (a,b)>.
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The Spatial Random Effect

• Spatial random vector: γ = (γ1, . . . , γm)>

γ ∼ MVN(0,Σ), where Σ = σ2
γΩ.

• σ2
γ : the overall spatial variability.

• Ω =
(
ρi,i ′
)

m×m: the correlation matrix.
• ρi,i ′ : the spatial correlation between the random effect of location si and si ′ .
• The exponential correlation function is used

ρi,i ′ = exp[−d(si , si ′)/ν], ν > 0,

• d(si , si′): the Euclidean distance between locations si and si′ .
• ν: the length scale parameter that describes the rate of decay of correlations.
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Bayesian Framework for Spatial Survival Model

γ ∝ MVN(0, σ2
γΩ),

σ2
γ ∝ IGAM(aσ,bσ),

ν ∝ IGAM(aν ,bν),

βp ∝ 1p.

For spatial CEM:
log
[
uij(Tij)

]
= µ+ γi + σεij ,

µ ∝ 1, σl ∝ 1.
For spatial PH:

hij(t) = h0(t ;θh) exp
[
x ij(t)>β + γi

]
,

θh ∝ 1.

8



Variational Inference

• The key idea of VI is to use a relative simple distribution, variational
distribution: q(θ|η) to approximate the exact posterior p(θ|D).

• Here η is the parameter vector in the variational probability distribution.

• Then a metric that evaluates the distance between two distributions p(θ|D)
and q(θ|η) is optimized to obtain the estimate of η.
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Divergences

KL Divergence

KL [q(θ|η)||p(θ|D)] =

∫
q(θ|η) log

[
q(θ|η)

p(θ|D)

]
dθ

The Evidence Lower Bound (ELBO):

LVI = log[p(D)]− KL(q(θ|η)||p(θ|D)) = Eq(θ|η)

{
log

[
p(θ,D)

q(θ|η)

]}
.

α−Divergence: α→ 1, α−divergence→ KL divergence.

D [q(θ|η)||p(θ|D)] =
1

α− 1
log

[∫
q(θ|η)αp(θ|D)1−αdθ

]
.

The variational Rènyi (VR) bound:

Lα = log[p(D)]− D [q(θ|η)||p(θ|D)] =
1

α− 1
log

{
Eq(θ|η)

[(
p(θ,D)

q(θ|η)

)1−α
]}

.
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α−Divergence Characteristics

Mass Covering ⇒ Zero Forcing
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Variational Parameter Estimation in VI

Require: q(θ|η): the variational distribution.
Require: η0: initial variational parameter vector.

r ← 1 (initialize iteration number);
η ← η0 (initialize variational parameter vector);

1: while not converging do
2: Take h samples from the variational distribution θk ∼ q(θ|ηr−1), k = 1, . . . ,h

and compute a stochastic estimate of L̂α.
3: Take a gradient descent step in Adam algorithm to update ηr ;
4: r ← r + 1
5: end while
6: return η∗ ← ηr
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GPU Lifetime Dataset
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Figure: The physical organization of Titan supercomputer.
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GPU Lifetime Dataset

• We use a subset of the data, which includes the units in row number 0-7 and
column number 1-13.

• The row and column positions of each unit are considered as the location
information.

• The node, slot, and cage information are considered as covariates that can
affect GPU’s lifetime.

• We build a spatial AFT model to study the failures of GPU.

• Three inference methods, Hamiltonian Monte Carlo (HMC), KL-divergence
and α−divergence with α = 0.8 performance are compared.
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VI for AFT model with GPU Data

log(Tij) = µ+ x>ij β + γi + σεij .

• The variational distribution assumptions of θ =
(
β>,γ>, σl , σ

2
γ , ν
)> is:

β ∼ MVN(µβ,Σβ),where Σβ = Diag(σ2
β),

γ ∼ MVN(µγ ,Σγ),where Σγ = Diag(σ2
γ),

σl ∼ N(µσ, σ
2
σ),where σl = log(σ)

σ2
γ ∝ IGAM(cσ,dσ),

ν ∝ IGAM(cν ,dν).

• The variational distribution is:

q(θ|η) = fMVN(β|µβ,Σβ)fMVN(γ|µγ ,Σγ)fN(σl |µσ, σ2
σ)fIGAM(σ2

γ |cσ,dσ)fIGAM(ν|cν ,dν).
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The Cox-Snell Residual

• The censored Cox-Snell residual of spatial AFT model is an extension of the
standardized residual, which is defined as

ε̂ij =
log(tij)− x>ij β̂ − γi

σ̂
.

• With model assumptions, the residuals should approximately follow a Weibull
distribution.
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Residual Plot for GPU Lifetime Data
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(a) α = 0.8 (b) KL (c) HMC

Figure: Weibull probability plot of residuals for α−divergence, KL divergence and HMC
with the GPU data.
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Methods Comparisons with GPU Data

Table: The negative log likelihood and computing time of α−divergence, KL divergence
and HMC inferences with the GPU data.

α = 0.8 KL HMC
NLL 2034.93 2405.40 2040.68

Time (minutes) 7.28 10.07 20.89
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The Computing Time Versus Number of Locations
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Figure: The computing time of three inference methods versus the number of locations
with the GPU data.
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Pine Tree Survival Data

• The survival and growth of trees with different living conditions and the
thinning treatments are of interest.

• During each tree’s lifetime, variables such as total height (TH), diameter at
breast height (DBH), and crown class are recorded every three years up to 7
times.

• The event of interest is the death of a tree. A tree is recorded as censored if it
survives till the 7th follow-up period.

• Due to the computational limitation, we randomly select 60 sites from the
original dataset with 13,911 trees.

• A PH model is considered to model the survival rate of pine trees with
explanatory variables.
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VI for the Bayesian PH Model

• We assume the following variational distribution assumptions:

β ∼ MVN(µβ,Σβ),where Σβ = Diag(σ2
β),

γ ∼ MVN(µγ ,Σγ),where Σγ = Diag(σ2
γ),

al ∼ N(µa, σ
2
a),

bl ∼ N(µb, σ
2
b),

σ2
γ ∝ IGAM(cσ,dσ),

ν ∝ IGAM(cν ,dν),

• The variational distribution is:

q(θ|η) = fMVN(β|µβ,Σβ)fMVN(γ|µγ ,Σγ)fN(al |µa, σ
2
a)fN(bl |µb, σ

2
b)fIGAM(σ2

γ |cσ,dσ)fIGAM(ν|cν ,dν).
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The Cox-Snell Residual

• For a PH model with time-dependent covariates, the Cox-Snell residual is
defined as

ε̂ij = Ĥ0(Tij)

∫ Tij

0
exp[x ij(t)>β̂ + γ̂i ]dt ,

where Ĥ0(Tij) is the estimated cumulative baseline hazard rate by plugging in
â and b̂.
• If the model is correct, then ε̂ij approximately follows exponential distribution

with λ = 1 and censoring, which is a special case of Weibull distribution.
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Pine Tree Survival Data Analysis Results
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Figure: Weibull probability plot of residuals for α−divergence, KL divergence and HMC
with the pine tree data.
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Pine Tree Survival Data Analysis Results

Table: The negative log likelihood and computing time of α−divergence, KL divergence
and HMC inferences with pine tree data.

α = 0.8 KL HMC
NLL 12341.71 18985.41 12332.84

Time (hours) 7.97 8.52 16.29
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Conclusions and Future Directions

• Compared to KL divergence, α−divergence encourages a more flexible
variational distribution, thus it has better performance regarding statistical
inference.

• Based on these two applications, we find α−divergence with α < 1 has
comparable performance as HMC but with better computational efficiency.

• In the future, it will be interesting to study how the statistical inference
performance changes with different α values and how to choose α.
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Questions

Thank you!
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