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Motivation

• Cox model [3] : use partial likelihood (PL) [4].
• Original PL idea is buried : due to computational

challenges, especially in tied data.
• Existing PL computing methods : use approximation.
• Revisit original PL idea : by efficient computation.
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Cox Model
Underlying Continuous Model

• n : the number of observations.
• T̃i ∈ (0,∞) : underlying event time from a continuous

distribution.
• xi = (xi1, . . . , xid)

T : covariate.
• The hazard function (HF) is

dΛ(t;xi) = pr(T̃i ∈ [t, t+ dt)|xi, T̃i ≥ t) = exp(xT
iβ)dΛ0(t).

• Λ(t;xi) =
∫ t
0 dΛ(s;xi) = exp(xT

i β)Λ0(t) : cumulative HF
(CHF).

• dΛ0(t) = λ0(t)dt : baseline HF.
• ζ ∈ (0,∞) : ending time of the study.
• Ci ∈ (0, ζ] : right censoring time.
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Cox Model
Continuous Model with Grouping

• Ties : generated by the grouping of an underlying
continuous random variable.

• ⌈a⌉ : smallest integer which is not smaller than a.
• τ ∈ (0,∞) : grouping parameter.
• Discretization :

T̃ ∗
i = τ⌈T̃i/τ⌉ ∈ ΩG = {τ, 2τ, . . . },

C∗
i = τ⌈Ci/τ⌉ ∈ Ω = {τ, 2τ, . . . , ζ}.

• T ∗
i = min(T̃ ∗

i , C
∗
i ) ∈ Ω : observed time.

• δi = 1(T̃ ∗
i ≤ C∗

i ) =

{
1, if ith subject had an event.
0, if ith subject was censored.
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Cox Model
Continuous Model with Grouping

For t ∈ ΩG, the HF of T̃ ∗
i is

dΛ∗(t;xi) = pr(T̃ ∗
i ∈ [t, t+ dt)|xi, T̃ ∗

i ≥ t)

= 1− exp
(
− exp(xT

i β)dΛ
∗
0(t)

)
.

• Baseline HF : dΛ∗
0(t) =

{
Λ0(t)− Λ0(t− τ), if t ∈ ΩG.

0, if t /∈ ΩG.

• Baseline CHF : Λ∗
0(t) =

∫ t
0 dΛ

∗
0(s) =

∑
s≤t,s∈ΩG

dΛ∗
0(s).

We call the model continuous model with grouping (CMG).
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Partial Likelihood
Original Idea of Partial Likelihood

• Assume CMG.
• Data : {T ∗

i , δi, xi}ni=1.
• {tj}kj=1 : the distinct ordered event times.
• R(tj) : at-risk set at time tj , nj = |R(tj)|.
• D(tj) : event set at time tj , dj = |D(tj)|.
• CMG allows dj > 1.
• pij = pij(β, λj) ≡ dΛ∗(tj ;xi).
• λj ≡ dΛ∗

0(tj).
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Partial Likelihood
Original Idea of Partial Likelihood

The accurate PL :

L(β,Λ) =

k∏
j=1

Lj(β, λj) =

k∏
j=1

Aj(β, λj)

Bj(β, λj)
,

Lj(β, λj) =
pr(item j1, . . . , jdj had event at tj

∣∣nj units survived up to tj)

pr(dj out of nj units had event at tj
∣∣nj units survived up to tj)

.

• Λ = (λ1, . . . , λk)
T.

• j1, . . . , jdj : dj individuals in D(tj).
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Partial Likelihood
Original Idea of Partial Likelihood

Aj(β, λj) =
∏

i∈D(tj)

pij(β, λj)
∏

i∈R(tj)\D(tj)

(1− pij(β, λj)) .

Bj(β, λj) =
∑

A∈Fdj

∏
i∈A

pij
∏

i∈R(tj)\A

(1− pij)

 . (1)

• Fdj : set of all subsets of dj individuals that can be
selected from R(tj).

• (1) is the form of probability mass function (PMF) of a
poisson binomial distribution (PBD).

• PBD : sum of independent Bernoulli random variables.
• Computing PBD by enumeration has high

computational cost.
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Partial Likelihood
Existing Methods

Data without ties :

Lj(β, λj) ≈
exp(xT

j1
β)∑

i∈R(tj)
exp(xT

i β)
.

Data with ties :
1. Breslow correction [1]

Lj(β, λj) ∝
exp

(∑
i∈D(tj)

xT
i β

)
{∑

i∈R(tj)
exp(xT

i β)
}dj

.

2. Efron correction [5]

Lj(β, λj) ∝
exp

(∑
i∈D(tj)

xT
i β

)
∏dj−1

ℓ=0

{∑
i∈R(tj)

exp(xT
i β)− ℓA (β, tj)

} . (2)
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Partial Likelihood
Estimation Based on Poisson Binomial Distribution

• Existing methods use approximations to both Aj(β, λj)
and Bj(β, λj).

• Discrete Fourier transform of the characteristic
function (DFT-CF) method [6] can efficiently compute
Bj(β, λj) : PMF of PBD.

• However, pijs depend on Λ.
• Λ̂e = (λ̂e1, . . . , λ̂ek)

T from (2) substitutes Λ.
Propose accurate PL based on PBD :

L(β, Λ̂e) =
k∏

j=1

Aj(β, λ̂ej)

Bj(β, λ̂ej)
.
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Partial Likelihood
Estimation Based on Poisson Binomial Distribution

PBD Estimation Procedure
Data : {T ∗

i , δi, xi}ni=1.
1 Get Λ̂e from (2).
2 Get β̂pb = argmaxβ̃ L(β̃,Λ = Λ̂e).

3 For j = 1, · · · , k, get λ̂pb,j = argmaxλ̃j
Aj(β = β̂pb, λ̃j).

Return : β̂pb and Λ̂pb(t) =
∑k

j=1 λ̂pb,j1(tj ≤ t).
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Statistical Properties

• Under some conditions, consistency and asymptotic
normality for β̂pb are satisfied under CMG.

• These conditions include supj∈{1,··· ,k} dj = OP(1) :
non-diverging ties as n → ∞.

• Under some conditions, consistency and asymptotic
normality for β̂pb are satisfied under continuous data
without ties.
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Simulation Studies
Simulation Settings

• T̃i has Weibull baseline HF : λ0(t) = γtγ−1/ηγ .
• Ci = max{C̃i, ζ}, C̃i has Weibull HF : λc(t) = γct

γc−1/ηγcc .
• xi ∼ N(0, σ2

x).
• Ties are generated under CMG.
• ζ = 1, η = ηc = 1.31 and γ = γc = 1.5.
• τ ∈ {0.001, 0.01, 0.1, 0.2, 0.25, 0.5}, β ∈ {1, 1.5},
n ∈ {50, 100, 200, 500, 1000}, and σx ∈ {1, 1.5, 2}.

• Repeat the simulations B = 10000 times for all the
simulation cases.

• Compare PBD estimator β̂pb, Breslow estimator β̂b,
and Efron estimator β̂e by the root mean square error
(RMSE) and absolute bias (|Bias|).
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Simulation Studies
Simulation Results : β = 1.5 and xi ∼ N(0, 22)
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• Breslow (red) vs Efron (green) vs PBD (blue).
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Real Applications
Motivation of Real Applications

• In simulation, large τ or large σx increases |Bias| and
RMSE of β̂b and β̂e.

• By Le Cam [2], large value of

1

k

k∑
j=1

1

nj

∑
i∈R(tj)

p2ij (3)

makes approximated PL used in β̂b and β̂e less
accurate, resulting in their bad performances.

• This can be caused by large τ (since pij = OP(τ)) or
large σx.

• We expect large τ or large (3) increases RMSE of β̂b and
β̂e in real datasets, showing superiority of β̂pb.
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Real Applications
Real Applications Settings

• {ti, δi, xi}ni=1 : observed data.
• t∗i = ⌈ti/τ⌉τ for τ ∈ {0.01, 0.02, · · · , 0.25}.
• For each τ , fit β̂b, β̂e, and β̂pb with {t∗i , δi, xi}ni=1.
• β is unknown, use β̂pb as benchmark : theoretically

accurate and has strong performance in simulation.
For each τ , record the followings :

1 Sum of Squared Hazards (SSH) : 1
k

∑k
j=1

1
nj

∑
i∈R(tj)

p̂2ij .
2 Estimation Discrepancy (ED) :

maxl∈{1,··· ,d}

{
exp

(
|β̂l − β̂pb,l|

)
− 1

}
.

• p̂ij : pij evaluated at {β̂pb, λ̂pb,j} and β̂ : β̂b or β̂e.
• If τ or SSH increases, we expect larger ED, showing

superiority of β̂pb.
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Real Applications
Ovarian Cancer Survival Study

• Many ties compared to small sample size : n = 26.
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• Breslow (red) vs Efron (green).
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Conclusion
Summary and Future Work

• Accurate computation using DFT-CF : exact partial
likelihood method for the Cox model based on PBD.

• Asymptotics : for both grouped data with ties and
continuous data without ties.

• RMSE reduction by less |Bias| : useful for data with
many ties or high variation among covariate.

• Future research : accurate PL for competing risk cox
model using a Poisson multinomial distribution (PMD).

• Lin et al. [7] : efficient calculation for PMD.
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