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The Heliosphere

Heliosphere: the bubble formed by
the solar wind that encompasses the
solar system

Energetic Neutral Atoms (ENA):
particles formed at the heliosheath
with high energy and no charge

Two di↵erent sources of ENAs:
globally distributed flux (GDF)
and the ribbon

Goal: understand the structure and
dynamics of the boundary between
our solar system and interstellar
medium
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Interstellar Boundary Explorer (IBEX)

IBEX satellite launched in 2008

Contains IBEX-Hi ENA imager

Records number of ENAs entering
apparatus

Maps the entire sky over a period of
six months

Background ENAs are possibly
detected by the instrument

Data is noisy and irregular



IBEX data

Figure taken from Osthus et al., (2022)



What is our goal?



What is our goal?



Simulated data generation



Computer model output

y(s i )|t(s i ), ✓(s i ), b(s i ) ⇠ Poisson (t(s i )[✓(s i ) + b(s i )])
s i = (loni , lati )
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An emulator is needed



Gaussian process emulators

Gaussian process: any finite set of observations that is modeled as following a
multivariate normal distribution (Gramacy 2020)

Can be completely specified by its mean µ(x) and covariance ⌃(x , x 0) functions

Y (x) ⇠ MVN(µ(x),⌃(x , x 0))

A prior over random functions or a posterior over functions given observed values

Common tool in spatial statistics and computer experiments

Naturally good at quantifying uncertainty
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Gaussian processes and large-scale data

L(y |X ) / |⌃(X )|�1/2 exp{yT⌃(X )�1y}
Computationally intractable to continue increasing design size
Inverting a covariance matrix of size n ⇥ n requires computation of order O(n3)



Vecchia approximation

L(Y ) =
Qn

i=1 L(Yi |Y1,Y2, . . . ,Yi�1) =
Qn

i=1 L(Yi |Yg(i))

g(1) = ;; g(i) = {1, 2, . . . , i � 1}

Vecchia:

L(Y ) ⇡
Qn

i=1 L(Yi |Yh(i))

h(i) ⇢ {1, 2, . . . , i � 1}; |h(i)| = m ⌧ n How does this help?

⌃(X )�1 is now a sparse matrix

(i , j)th element is 0 if yi , yj are
conditionally independent

Further, Cholesky decomposition
⌃(X )�1 = UU

T is even more sparse



Vecchia approximation

L(Y ) =
Qn

i=1 L(Yi |Y1,Y2, . . . ,Yi�1) =
Qn

i=1 L(Yi |Yg(i))

g(1) = ;; g(i) = {1, 2, . . . , i � 1}
Vecchia:

L(Y ) ⇡
Qn

i=1 L(Yi |Yh(i))

h(i) ⇢ {1, 2, . . . , i � 1}; |h(i)| = m ⌧ n

How does this help?

⌃(X )�1 is now a sparse matrix

(i , j)th element is 0 if yi , yj are
conditionally independent

Further, Cholesky decomposition
⌃(X )�1 = UU

T is even more sparse



Vecchia approximation

L(Y ) =
Qn

i=1 L(Yi |Y1,Y2, . . . ,Yi�1) =
Qn

i=1 L(Yi |Yg(i))

g(1) = ;; g(i) = {1, 2, . . . , i � 1}
Vecchia:

L(Y ) ⇡
Qn

i=1 L(Yi |Yh(i))

h(i) ⇢ {1, 2, . . . , i � 1}; |h(i)| = m ⌧ n

How does this help?

⌃(X )�1 is now a sparse matrix

(i , j)th element is 0 if yi , yj are
conditionally independent

Further, Cholesky decomposition
⌃(X )�1 = UU

T is even more sparse



Vecchia approximation

L(Y ) =
Qn

i=1 L(Yi |Y1,Y2, . . . ,Yi�1) =
Qn

i=1 L(Yi |Yg(i))

g(1) = ;; g(i) = {1, 2, . . . , i � 1}
Vecchia:

L(Y ) ⇡
Qn

i=1 L(Yi |Yh(i))

h(i) ⇢ {1, 2, . . . , i � 1}; |h(i)| = m ⌧ n How does this help?

⌃(X )�1 is now a sparse matrix

(i , j)th element is 0 if yi , yj are
conditionally independent

Further, Cholesky decomposition
⌃(X )�1 = UU

T is even more sparse



Scaled Vecchia approximation (Katzfuss et al., 2022)

Distance between inputs depends on some choice of the scaling of inputs
Inputs vary in the magnitude of their e↵ect on the response

Scaled Vecchia: Pre-scale inputs before determining neighborhoods
Isotropic covariance function can be used when fitting the Gaussian process
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Quantitative emulator results

Takeaway: the GP emulator is doing
a good job both visually and
quantitatively, and there is room for
improvement!
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Metropolis-Hastings

Kennedy + O’Hagan:

y
R(x) = y

M(x , u⇤) + b(x)

Y
F (x) = y

M(x , u⇤) + b(x) + ✏

YnM
YnF

�
⇠ MVN

✓
0
0

�
,


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⌃nM (XnF , u)
T ⌃nF (u) + ⌃b

nF

�◆

Proposed McMC framework with Poisson response:
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Computer model parameter estimation

Takeaway: our method works! We can recover the truth at the specified
confidence level!
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Conclusions

Gaussian process surrogate models can expand the current set of sky maps to any
combination of parameters with high accuracy

Statistical computer model calibration can recover the true computer model
parameters from simulated binned direct event data

Computer model has been shown to be incomplete, indicating that our process
needs additional work to account for it
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Next Steps

Model discrepancy using a Gaussian process or deep Gaussian process

Replace scaled Vecchia approximation for full uncertainty quantification

Work with theoretical physicists to inform where the computer model needs
improvement

Consider other inputs such as ESA (energy level) and time (sun cycle)
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