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Practice exercise

Look at the plot on the left

This is the adjacency matrix of a
simulated network with 1200 nodes

Black dots represent edges (1’s), white
dots are non-edges (0’s)

* |t is symmetric, with each node taking
up both a horizontal and vertical line

Take a moment to try to visualize a
heatmap of high and low probability
areas for the network on the left



ce exerclse

Note: diagonal runs from southwest to northeast

Did your mental model look like the image on the right?
Is anything different than you expected? What else do you see?



Practice exercise
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The left network was actually sampled from the probability matrix on the
right, which is a noisier version of the matrix shown on the previous slide




Candidate estimate 1

Let’s say we were trying to estimate the underlying
probability matrix for the observed network

How does the image on the bottom right look?

Noise-free probability matrix  True Probability Matrix
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* . 1.0
Candidate estimate 2

— 1 0.8
0.6

How about this new image? On the bottom right?
0.4
What are those white spots? y
0.0

Noise-free probability matrix True Probability Matrix Observed Network Estimated probability matrix




1.0

Candidate estimate 3

0.8
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Finally, what about this estimate?

0.4

Something has gone wrong. And still white spots!

0.2

0.0

Obs_rved Network ~ Estimated prob

ability matrix
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Big (self-serving!) reveal

Current approaches seem to run into issues on this example

Estimated using DCBM

Estimated using ACRONYM

s

Hierate




What’s happening in ACRONYM

1 o
Ay, = Bernoulli (a * @y <\/ﬁ o1 (H(‘Ifu,‘lfv)) + meuv> + B)

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by a, the width of the probability range in this subnetwork
6) Add (3, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give the parameter



llustrative example - Threshold

* Consider the toy induced subnetwork shown below

* There are 2 communities, each containing 100 nodes numbered 1 through
100; the image represents the edges between the two communities

10« |f two nodes in different communities
have numbers whose sum exceeds
100.5, an edge is placed between these
nodes

* This is not generated using a DCBM or
PABM model
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Where do other methods go wrong?

* To estimate the edges using a DCBM or PABM, each node u gets a parameter 6, and a block parameter 3

* There are a total of 5050 edges in the subnetwork

10 20 30 40 50 60 70 80 90 100

1

* Node 100 in each community is incident to 100 of the 5050 edges,

* Node 99 in each community is incident to 99 of these 5050 edges, etc.
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The estimated edge probability between the nodes labeled
100 in each community is given by:

5 ag. — 100 x 100 5050 100 x 100
uBOy = 5050 5050

= 1.9801

 DCBMs were initially conceived for networks with Poisson
edges, where this value would make sense




Problems in the toy estimate

* We want this estimate to be the expected value of a {0, 1} valued edge, that is, a probability

* Looking at the plot on the right, many of the estimates are greater than 1. Assumptions which avoid
generating results like this may not match real observed networks

We also see convex curved contours in the estimate, even though they don’t appear in the network
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Objections

Why do we need another model? And this one’s so complicated!
Menger: “Entities must not be reduced to the point of inadequacy”
We’ve shown failures of other approaches on simulations, real examples next slide

This seems fine for dense networks, but most networks are sparse!
Some networks are dense, and some sparse networks have dense region
Allowing different contour structures may still be beneficial in sparse networks

So many parameters! What about Occam’s razor, you’re probably overfitting!

Potentially, but ACRONYM outperforms other models on link prediction in real
networks using cross-validation (see paper for details)



Real Data Example: Congress on Twitter

Congresson =
Twitter

Observed DCBM ACRONYM PABM

* The nodes have been reordered first by recovered community structure (according to ACRONYM) and then
by within-community degree

* Notice that there are regions with different densities, but the network as a whole is only about 9% dense

* 91 of 92 senators in are assigned to community 1, which also includes 25 congresspeople.

 Community 2 contains 174 congresspeople and Senator Bernie Sanders

 Community 3 contains 184 members, all congresspeople



Real Data Example: Mouse Retina

rve ACRONYM

et
(B
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Mouse Retina

......

Zooming inin
the 4th
recovered
community
nodes with the
greatest within
community
degree




Block Dense Weighted Networks Wlth
Augmented Degree Correction [

* Previous work describes a model for dense
weighted networks (like structural brain networks)

e Adapting those ideas here:

1. “Communities” are defined based on an order of
preference over nodes, as well as different kinds
of flexible connectivity patterns

2. Asthe edge values are binary here, flexible
contours appear only in the probability matrix
underpinning the observed network

3. These underlying probability matrices are “dense”

Leinwand, B., & Pipiras, V. (2022). Block dense weighted networks with augmented degree correction. Network Science, 10(3), 301-321. doi:10.1017/nws.2022.23



Positive H-function

A function H: (0, 1) x (0, 1) = (0, 1) is an H-function with positive association
if:

1. His non-decreasing in both arguments;

2. ffH(x,y)<dedy=Z’ for all zin (0, 1).

Condition 2 is equivalent to saying:
“if the inputs to H are uniform RVs, so is the output of H”

H-functions are not networks, but can be used in networks as maps from
nodal orderings to edge orderings



Different H-functions, different maps

All plots are positive H-functions

Ordering is easy when both sociability parameters are large (or small)

Different choices when one is large the other is small
* xy <H(xy) <1 -((1-x)(1-y))

Different behavior than copulas, still allows for a variety of nodal effects
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Negative and Simpson H-functions, projection

AR

Positive association negative association Simpson association Projection (onto X

* A function H: (0, 1) x (0, 1) = (0, 1) is an H-function with negative association if
H(1-x, 1-y) is an H-function with positive association

* A function H: (0, 1) x (0, 1) =2 (0, 1) is an H-function with Simpson association if
H(x, 1-y) or H(1-x, y) is an H-function with positive association

* A function H: (0, 1) x (0, 1) = (0, 1) such that H(x,y) = x or H(x,y) =y is called a
projection

21



H-functions and networks

* The idea of an H-function in the network setting is to combine a feature
from one node with a feature from a second node in a way that determines
whether these nodes are linked

* |n different parts of the network, different H-functions may govern edge
probabilities

* The appropriate H-function depends on the community memberships of
the two nodes

* These H-functions may differ in direction of association, functional form,
and balance of community impact



Critics rave:

Balanced H-functions using CDFs (p = 1)  cosed orm!

Error free!

Natural way to construct H-functions of two continuous RVs is take the CDF of the sum
- —1 —1
H(z,y) = Fiao(Fy (z) + Fy (y))

Both Normal
Balanced

Form of

Fl&F21

Both Exponential
Balanced

1 - F(Exp(1—x) + Exp(1-yY))
Balanced

Both Uniform
Balanced
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Imbalanced H-functions using CDFs (p # 1)

F,and F, may have different scale/rate parameters, yielding imbalanced H-functions

: : scale
Only the ratio matters, so we can rescale F, to have parameter 1, and define p = scalel
2
Form of Both Normal Both Exponential 1— F(Exp(1 —x) + Exp(1 —y)) Both Uniform
F, &F, 1 Imbalanced . Imbalanced Imbalanced Imbalanced I

=

0 1 I
X
2

4

0.0



Don’t use H-functions as a final estimate

 We need to estimate the H-function that determines how nodes in a
subnetwork interact

e H-functions have a range of (0,1)

 Why not use the value of the estimated H-function for a given pair
of nodes as our estimate of the edge probability?

Because “if the inputs to H are uniform RVs, so is the output of H”

* Let’s see how this causes problems



H-functions are just orderings

1. H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability



H-functions are just orderings

1. H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability

2. The expected value of an arbitrary H-function in a subnetwork is =.5
- Most networks are much sparser than this in all subnetworks



H-functions are just orderings

1. H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability

2. The expected value of an arbitrary H-function in a subnetwork is =.5
- Most networks are much sparser than this in all subnetworks

3. If the subnetwork within community i is 25% dense, while the
subnetwork within community j is only 15% dense, for u,,u, € i and
vV, V, € j it could be the case that both

H(vy,v,) > H(uy,u,)  AND P(Ay,», =1) <P(4y, 4, = 1)

- Ordering isn’t the same as probability, since density matters



Model needs

* Let u, v be vertices within communities i and j respectively

* Each vertex u has “sociability” parameter ¥,;, uniformly
distributed over (0,1)

* We allow each node to have a different ¥,, with respect to each
community i € {i}

* Need to choose the right H-function to model the broad
pattern of interactions between nodes in i and nodes in j

* This includes the form of the contours, but also the relative influence
of each community on edge probability (balance)

* Need to incorporate noise into the model

* Need to map the H-function to actual probabilities

29



Modeling networks with H-functions

ACRONYM:

o
A, = Bernoulli (a x Py ( o1 (H('Pu’lllv)) + em,> + B)
1+ o? V1 + o2

Where 0 ca <1, B>0, a+p<1, Eur~N(0,1)

* Each subnetwork induced by a pair of communities has their own parameters
inducing a unique subnetwork range of probabilities and contour patterns

* Normally distributed error is incorporated in parentheses, Bernoulli error outside



What’s happening in ACRONYM

1 _q o
Tt (1) + ) +)

1) Combine node sociabilities using an H-function, output Uniform RV

A, = Bernoulli (a * @y <

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects
3) Add error to get a standard Normal RV
4) Convert back to a uniform value

5) Multiply this value by a, the width of the probability range in this
subnetwork

6) Add 3, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

Let¥, = .5 ¥, =.8413
Let H(x,y)

= F,(F{'(x) + F5 1 ()
Where F; and F, are
standard normal CDFs, so
F, , is the CDF of a N(0, 2)
RV

Then
H(x,y) = F;,(0+1)

=.7602
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What’s happening in ACRONYM

1 4 o
ot () + ) +)

1) Combine node sociabilities using an H-function, output Uniform RV

A, = Bernoulli (a * @y <

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects
3) Add error to get a standard Normal RV
4) Convert back to a uniform value

5) Multiply this value by a, the width of the probability range in this
subnetwork

6) Add 3, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

o7t (H(%, %))
= p71(.7602) = 1/4/2

Letting 0 = 1, we have

e o (1R R) =
11 1
V2V2

32



What’s happening in ACRONYM

1 _q o
et B+ s ) ' B)

1) Combine node sociabilities using an H-function, output Uniform RV

A, = Bernoulli (a * @y <

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects
3) Add error to get a standard Normal RV
4) Convert back to a uniform value

5) Multiply this value by a, the width of the probability range in this
subnetwork

6) Add 3, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

Eyp 1S an idiosyncratic
standard normal RV and

o 1
VitoZ 2
If £, = —.4933
Then J%euv = —.2467
Then

=07t (H(¥, %)) +

o

——=¢&
VitoZ W

=.5—.2467 = .2533

33



What’s happening in ACRONYM

1 _q o
T (1) + e ) )

1) Combine node sociabilities using an H-function, output Uniform RV

Ay, = Bernoulli (a * @y (

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects
3) Add error, to get a standard Normal RV
4) Convert back to a uniform value

5) Multiply this value by a, the width of the probability range in this
subnetwork

6) Add 3, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

In the parenthesis, we add
2 normal RVs, with

variances
1 q o’
an
1+ o2 14 02

So their sum is a standard
normal RV

®,(.2533) = .6
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What’s happening in ACRONYM

1 _q o
o (1) + e ) )

1) Combine node sociabilities using an H-function, output Uniform RV

A, = Bernoulli (oc * @y <

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects
3) Add error, to get a standard Normal RV
4) Convert back to a uniform value

5) Multiply this value by a, the width of the probability range in this
subnetwork

6) Add 3, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

Let a be .6, then

.6*.6=.36
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What’s happening in ACRONYM

1 _q o
o (1) + e ) )

1) Combine node sociabilities using an H-function, output Uniform RV

A, = Bernoulli (a * @y <

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects
3) Add error, to get a standard Normal RV
4) Convert back to a uniform value

5) Multiply this value by a, the width of the probability range in this
subnetwork

6) Add 3, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

Let 3 be .05, then the total
range of probabilities in
this subnetwork is:

(.05, .65),
So expected density of .35
And the probability here is

36 +.05=.41
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What’s happening in ACRONYM

1 _q o
o (1) + e ) )

1) Combine node sociabilities using an H-function, output Uniform RV

A, = Bernoulli (a * @y <

Drawing from a

Bernoulli(.41), we get a
2) Convert that Uniform RV into “Normal Space” to avoid boundary effects value of 1

3) Add error, to get a standard Normal RV
Therefore A, =1

4) Convert back to a uniform value

There is an edge between

5) Multiply this value by a, the width of the probability range in this 5
uandv

subnetwork
6) Add 3, the minimal edge weight probability in this subnetwork
7) Draw from a Bernoulli distribution where the calculations to this point give

the parameter
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ACRONYM implications

1 o
Ay, = Bernoulli (oc * @y (m o1 (H(‘Pu,‘lfv)) + meuv> + B)

0 <as<l B3>0 a+p<1
* If a=1and 3 =0, probabilities can run from 0 to 1

* If a =0, it’s a stochastic block model, and if all 8 are also equal, an ER graph
* As a shrinks, the range of probabilities also shrinks
* As 3 grows, the minimal probability increases

 All probabilities are constrained to be between O and 1
e Contours can look different across the network, as can probability ranges
* Noise can be incorporated differently into each subnetwork



Pros and cons

* In a weighted network, edge weights carry fine-grained information
* Pro: The patterns of edge weights can display an order of preferences

* Con: Subnetwork edge weights have arbitrary distributions and must be
estimated

* In an unweighted network, edges are either O or 1
* Con: Itis hard to discern an order of preferences from only binary values

* Pro: As each edge is a Bernoulli RV that depends on node and community
parameters, we can use likelihood-based techniques to estimate parameters



What do we need to estimate?

« Communities — Done separately before everything else

* o — width of probability range in subnetwork

* B — minimal probability in subnetwork

* 0 —noise to signal ratio

* Functional form of H— We only try normal, concave, convex, linear
e p —ratio of impact of second community to first community

* [¥]-node sociability parameters

 We don’t really care about the € values, but as they are latent variables with assumed
N(0,1) distributions, estimating € can help estimate everything else

* At each step of an iterative alforithm, we estimate the likelihood-maximizing [£,, ], but to avoid
early overfitting, we instead draw a random value &,,,~N(€,,,, 1) for each edge at every step



Parameter estimation overview

* We estimate each subnetwork independently of all others
» Better for flexibility, but can’t borrow strength across the network
* We estimate a different W for each node with respect to each community

* We run an iterative algorithm for the 4 H-function functional forms, and
take the model yielding the best likelihood as our final estimate

* At each stage, we determine which sets of parameters should be
collectively updated based on whether the likelihood improves

* When updating multiple parameters, we want broad-based improvements so as to
avoid too many updates chasing random fluctuations due to sampled [€,,,,] values

* As [€,,] are random, other parameters may be updated to suit these
values, but may not yield the maximum observed likelihood, so we need to
also keep those parameters associated with the best observed likelihood



iterative algorithm for each subnetwork

1. Initialize all parameters (details omitted here)
Repeat steps 2 — 4 for the specified number of iterations
2. Calculate the current log-likelihood of current parameters

3. Calculate [€,,,] to maximize likelihood, draw &,,, ~ N(&,,,, 1)

4. Update the following 3 parameter sets in a uniformly random order to
maximize log-likelihood given [&,,,]
a. q,B,p,andd: All updated together
b. [@u]: Either all are updated, or none are
c. [%,]: Either all are updated, or none are

5. Using the best performing parameters, calculate [£,,,], and re-estimate
only G using the [£,,,] values



Simulation details

6 communities of 200 nodes each = | commenty
* First 2 communities have W values » | 7?2
drawn from different Beta c| = ¢
distributions o | ®me
e 3 and 4t communities have
“gaps” in W values S -
e 5t and 6™ communities’ ¥ values N
are drawn from a Uniform o 7
distribution -
o

0 50 100 150 200



Simulation details

True Probability Matrix

e Pairs of communities have
different association directions,

functional forms, a, B, p I N
parameters (These are visible to 08
the right) g
* The o values for within .

community edges are set to .3,
and set to .4 for between
community edges

0.2

0.0




Mind the gaps!

ACRONYM Estimate of simulated network

Noise-free probability matrix

7}

Estimated probability matrix

; Y. o-a‘e




Deeper dive on W estimation

Y values for each node are estimated 6 times

Each row shows estimates for W for that row’s
community in black, with true values in color

Bottom row depicts 6 estimates of the W
values for community 1, with a concave shape

BLUE indicatesp=1

the community had somewhat less
influence than the other community

RED: the community has far less influence

somewhat more influential
than the other community

DARK GREEN: far more influence



Deeper dive on W estimation

Overall, pretty good estimates
except in ER subnetworks (solid
squares), where the W values don’t
matter anyway, since a =0

Takeaways:

Easier to estimate W
for nodes in
communities 5 and
6 (uniform) followed
by communities 3
and 4 (gaps)

Communities 1 and
2 (Beta
distributions) are
the most difficult

May be due to
initialization



Future plans

* Error rates for community detection and estimation based on
different H-functions and parameters

* More general classes of H-functions, including compositions of
H-functions

e Extension to multiple networks

* Joint parameter estimation using Bayesian approach



Thank Youl!

Questions?



First Note on &€

* Usually, we view € as idiosyncratic values relevant to only this particular network,
so we don’t really care about their values

* However, as latent variables with assumed N(0,1) distributions, estimating € can
aid in estimating the meaningful parameters

* At each step of an iterative algorithm, we can estimate the likelihood-maximizing
[£,,,], but using this value tends to perform worse by overfitting to early
parameter estimates, driving 6 to O

* Instead, at each step, we draw a random value &,,~N(€,,, 1)



Second Note on €

* As we assume &,, ~ N(0,1), treating I%(@’w ff’,,) and 6% as fixed but € as random then:

@~ (H;(W,, ')
V14262

1 "~ o~ O &
E. |® — & Y(H;(¥,,¥,)) + - )]:d}
|2 (e ot +

* Therefore, our final estimates are given by

1 (Hp(P ‘171;))) A

+ f
V1 + 262

E.[B,] =& @ (

Which has extra shrinkage, but during the estimation process, we don’t maximize
likelihood using this expectation, but instead using the [€,,,,] values



Likelihood set up

* For an observed network with adjacency matrix A=[A, ], the log-
likelihood for an estimated probability matrix P=[P,,] is given by

Y AwlogPu,+(1—A,)log(1—Py)

{u<v}

* The network’s edges are Bernoulli RVs with probability

1 0}
P,=o|® & '(H,(¥,.¥,)) + g))Jr
(2 (e o)+ i) )+

where p dictates the balance of the first argument and the second
argument



Mind the gaps!

Communities and sociabilities

Top left: the first and second
entries of the u vectors for each
node, colored by community
membership

Bottom left: the first and
second entries of the u vectors
for each node, colored by their
Y values

Top right: the third and fourth
entries of the u vectors for each
node, colored by community
membership.

Bottom right: the third and
fourth entries of the u vectors
for each node, colored by their
W values.




Calculating [€,,,]

* For every edge where A,, = 1, the estimate simplifies to

_ 9\ 2
o~ 1 ~1 (g (W @ o€ o
——D " (H;(¥,. ¥,
3 =argmin | € — a¢(vl+32 ( p( " 1))_I_\/lJrc"fz>\/1+E‘r2
Uy —
€ ~ 1 (O (Y W o€ R
a0 (e EER) 455 ) 4B
£ appears in
* For every edge where A,, =0, the numerators
and
_ _ 2 .
=N ~ o~ ~ ~ denominators
a0 | = (Hp(‘H, W) + 2= —
V14672 V1462 ) \/1+052

€,y = argmin | €+




Community detection challenges

* Communities are defined by a similar
ordering of preferences over other nodes,
not homophily

* The network may contain positive and
negative associations

* Existing methods based on e.g. modularity
don’t appear to work well here

* The first eigenvector is often correlated with
degree, not community

* Fortunately, the structure of ACRONYM
guides us toward an approach based on
normalizing each row of A



Community detection algorithm

Row-normalize the A matrix by taking N, = (A,,¢ —A,¢)/5d(A,,e)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow d

3. Take the n X d matrix made up of the first d eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vt" row Uy,

Compute the cosine distances between rows, 1- cos (ty Uy
5. Cluster the nodes based on these cosine distances using hierarchical clustering

/ 4
y /
7 4
P / / y
/ 4 7
y , 4 A
/ / 7 PN
J % / y %,
/ 7 7 A Ay
/ / y y ,

y / Vi %,
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e = 1N 2 I~ .
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Community detection algorithm

Row-normalize the A matrix by taking N, = (A,,¢ —A,¢)/5d(A,,e)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow d

3. Take the n X d matrix made up of the first d eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vt" row Uy,

Compute the cosine distances between rows, 1- cos (ty Uy

5. Cluster the nodes based on these cosine distances using hierarchical clustering

k‘k‘k
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e = 1N 2 I~ .
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Community detection algorithm

Row-normalize the A matrix by taking N,, = (A, —A,¢)/5d(4,¢)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow d

3. Take the n X d matrix made up of the first d eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vt" row Uy,

Compute the cosine distances between rows, 1- cos (ty Uy
5. Cluster the nodes based on these cosine distances using hierarchical clustering



2"d dimension

Community detection algorithm

Row-normalize the A matrix by taking N,, = (A, —A,¢)/5d(4,¢)

and look for the elbow. Call the value of this elbow d

Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix

Take the n X d matrix made up of the first d eigenvectors of N, and project each row of this

matrix onto the surface of a hypersphere. Call the projection of the vth row uy

Compute the cosine distances between rows, 1- cos (ty Uy

1t dimension

Eigenvectors

4th dimension

3rd dimension

2"d dimension

Projections

1t dimension

4th dimension

Cluster the nodes based on these cosine distances using hierarchical clustering

31 dimension




Community detection algorithm

Row-normalize the A matrix by taking N,, = (A, —A,¢)/5d(4,¢)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow d

3. Take the n X d matrix made up of the first d eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vt" row Uy,

Compute the cosine distances between rows, 1- cos (Uy Uy

5. Cluster the nodes based on these cosine distances using hierarchical clustering
Projections

Cosine distance is not a true distance, but

%S

0

opposite directions getting a value of 2

c %
takes on a value between 0 and 2, with -g G &; _§ ﬁ%@g . i
vectors pointing in the same direction o | & S| %;089 o o
getting a value of 0, and nodes pointing in _% _% §% : i;c%é

X & :

15t dimension 31 dimension



Community detection algorithm

Row-normalize the A matrix by taking N,, = (A, —A,¢)/5d(4,¢)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow d

3. Take the n X d matrix made up of the first d eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vt" row Uy,

Compute the cosine distances between rows, 1- cos (ty Uy
5. Cluster the nodes based on these cosine distances using hierarchical clustering

In different contexts, we have
seen different linkage criteria
succeed. The network on the right
would seem to do well using
single-linkage clustering




Mouse retina community detection
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ACRONYM finds different and fewer communities than the other approaches, but
the results still appear to follow the physical structure




tral clustering (randnet)

Probability model Communities|Edges with valid esti-| —/(A|-) on edges with| MSE from P* on edges

mated probabilities |valid estimated proba-|with valid estimated
bilities probabilities

P* 6 (true) 719,400 420,582 0

P 6 (true) 719,400 410,569 00553

ACRONYM P 6 (true) 719,400 416,945 00222

DCBM 6 (true) 719,400 481,696 .04088

PABM 6 (true) 707,183 414,249 00381

PABM (Truncated at .999) 6 (true) 719,400 423,321 00386

DCBM with spectral clustering with|5 718,518 467,841 02996

regularization (nett)

DCBM with regularized spectral clus-|5 718,960 468,640 03027

tering (randnet)

DCBM with regularized spherical spec-|5 719,399 469,444 03162

tral clustering (randnet)

DCBM with spectral clustering with|16 719,277 433,656 00882

regularization (nett)

DCBM with regularized spectral clus-|16 719,285 434,501 .00933

tering (randnet)

DCBM with regularized spherical spec-|16 719,302 435,680 01016

Table 1. Table describing different models fit to the simulated dataset. The first 2 rows are generated along with the observed
network. Our estimate P recovers the true communities. For the DCBM and PABM models in the next 2 rows, the true communities
are assumed known, while the remaining rows use alternative methods of community detection. The third column counts the number
of potential edges each model estimates to have probabilities which lie in [0, 1], out of a total of 719,400 potential edges. The fourth
column measures the negative log-likelihood only where the probability estimates are valid, that is, on each model’s valid potential
edges. The fifth column measures the average entrywise squared distance from P* of these models, again only where the probability

estimates are valid.




Probability model Communities| Potential edges with|Negative log-likelihood on po-

valid probabilities tential edges with valid prob-
abilities only

ACRONYM P 3 112,575 24,159

ACRONYM 10 Fold CV P NA 112,575 24,097

DCBM 3 112,328 25,925

PABM 3 112,257 24,061

PABM Truncated at .999 3 112,575 24.344

DCBM with nett spectral clus-|7 112,135 25,044

tering (with regularization)

DCBM with randnet regular-|7 112,136 25,197

ized spectral clustering

DCBM with randnet regular-|7 112,209 25,074

ized spherical spectral clustering

Table 2. Table displaying the performance of different models fit to the Congressional Twitter dataset.




Probability model

Communities

Potential edges with

Negative log-likelihood on po-

valid probabilities tential edges with valid prob-
abilities only

ACRONYM P 4 578,350 142,346
ACRONYM 3 Fold CV P 5,.5.4 578,350 148,237
DCBM 4 569,519 169,878
PABM 4 567,673 147,535
PABM truncated 4 578,350 154,991
nett spectral clustering (with|9 568,453 160,350
regularization)

randnet regularized spectral |9 568,561 159,783
clustering

randnet regularized spheri-|9 569,506 157,694

cal spectral clustering

Table 3. Table displaying the performance of different models fit to the Mouse Retina dataset.
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