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The Heliosphere

Heliosphere: the bubble formed by
the solar wind that encompasses the
solar system

Energetic Neutral Atoms (ENA):
particles formed at the heliosheath
with high energy and no charge

Two different sources of ENAs:
globally distributed flux (GDF)
and the ribbon

Goal: understand the structure and
dynamics of the boundary between
our solar system and interstellar
medium



Interstellar Boundary Explorer (IBEX)

o IBEX satellite launched in 2008 @ Maps the entire sky over a period of

o Contains IBEX-Hi ENA imager six months
@ Background ENAs are possibly

@ Records number of ENAs entering detected by the instrument

apparatus . . .
@ Data is noisy and irregular
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Figure taken from Osthus et al., (2022)
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Simulated data generation
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Computer model output

y(si)|t(si), 0(si), b(si) ~ Poisson (t(s;)[0(s;) + b(si)])
S = (Ion,-, Iat,-)
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An emulator is needed
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Gaussian process emulators

@ Gaussian process: any finite set of observations that is modeled as following a
multivariate normal distribution (Gramacy 2020)

Can be completely specified by its mean p(x) and covariance ¥(x, x") functions
Y (x) ~ MVN(u(x), Z(x, )
A prior over random functions or a posterior over functions given observed values

Common tool in spatial statistics and computer experiments

Naturally good at quantifying uncertainty
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Gaussian processes and large-scale data

o L(y|X) oc [Z(X)|71/? exp{y TZ(X) 1y}
o Computationally intractable to continue increasing design size
e Inverting a covariance matrix of size n x n requires computation of order O(n%)
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Vecchia approximation

o L(Y) =TIy L(Yi|Y1, Ya,..., Yii1) = [Ty L(Yi] Ye(iy)
o g(1)=10; g(i) ={1,2,...,i— 1}
Vecchia:
o L(Y)~ Iy L(Yil Ya(iy)
o h(i)Cc{1,2,...,i=1}; |h(i)|=m<n  How does this help?

e X (X)7!is now a sparse matrix
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Scaled Vecchia approximation (Katzfuss et al., 2022)

@ Distance between inputs depends on some choice of the scaling of inputs
@ Inputs vary in the magnitude of their effect on the response
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Scaled Vecchia approximation (Katzfuss et al., 2022)

Distance between inputs depends on some choice of the scaling of inputs
Inputs vary in the magnitude of their effect on the response

Scaled Vecchia: Pre-scale inputs before determining neighborhoods
Isotropic covariance function can be used when fitting the Gaussian process

Ordering and meighborhood creation pre-scaling Scale after ordering and neighborhood creation
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Emulator output
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Emulator output
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Quantitative emulator results

o Takeaway: the GP emulator is doing
a good job both visually and
- quantitatively, and there is room for
improvement!
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Computer model calibration

Binned Direct - , .
= Simulator{pmfp, ratio, lat, lon, esa) <  error
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Metropolis-Hastings

Kennedy + O’Hagan:
o yR(x) = yM(x,u") + b(x)
o YF(x)=yM(x,u*) + b(x) + ¢

Y, 0 P Yy (Xnps u) })
° M| ~ MVN 7 M (VASR)
[YHJ ([0] |:Z”M(X’7F’ u)” Top(u) + ZSF



Metropolis-Hastings

Kennedy + O’Hagan:
o yR(x) = yM(x,u") + b(x)
o YF(x)=yM(x,u*) + b(x) + ¢

Y, 0 P Yy (Xnps u) })
° M| ~ MVN 7 M (VASR)
[YHJ ([0] |:Z”M(X’7F’ u)” Top(u) + ZSF

Proposed McMC framework with Poisson response:
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Computer model parameter estimation
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Computer model parameter estimation
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Computer model parameter estimation

Parallel Mean Free Path (truth)
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Computer model parameter estimation

Parallel Mean Free Path (truth)
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@ Takeaway: our method works! We can recover the truth at the specified
confidence level!
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Conclusions

@ Gaussian process surrogate models can expand the current set of sky maps to any
combination of parameters with high accuracy

@ Statistical computer model calibration can recover the true computer model
parameters from simulated binned direct event data

@ Computer model has been shown to be incomplete, indicating that our process
needs additional work to account for it
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Next Steps

@ Model discrepancy using a Gaussian process or deep Gaussian process
@ Replace scaled Vecchia approximation for full uncertainty quantification

@ Work with theoretical physicists to inform where the computer model needs
improvement

o Consider other inputs such as ESA (energy level) and time (sun cycle)



