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Background

¢ In the modern survival analysis, the geo-graphically referenced time-to-event
data are often collected for analysis.

¢ The spatial dependence among survival times needs to be properly
accounted using spatial survival models.

® The Markov Chain Monte Carlo (MCMC) methods for Bayesian framework
can be time-consuming when the number of spatial locations is large.

e We investigate the capability of an approximate approach, variational
inference (V1) for the inference of spatial survival models.

e We focus on two models, the proportional hazards model and the
cumulative exposure model.



The Motivating Examples
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(a) The Titan GPU Failure Time Data (b) Pine Tree Survival Data



Data Notations

Suppose there are m distinct locations sy, ..., Sm.

* Let t; be the observed event time for the jth unit in the ith location s;, where
i=1,....mj=1,....n;.

* Let §; be the corresponding censoring indicator.
* Denote x;i(t) to be the p-dimensional vector of related covariates at time .

L D:{t,-j,é,-j,x,-j(t):tgt,-j,i:1,...,m,j:1,...,n,-}.



Spatial Cumulative Exposure Model (CEM)

e The cumulative damage level by a certain time ¢ given time-varying
covariates x(t):

t
UU(t) = /O exp [—X,'j(S)Tﬂ} as.
® The log[u(Tj)] is assumed to follow a location-scale distribution.
log [Ui/'( Tij)] = W+ i+ o€jj.

* ~;: spatial random parameter; ¢;; follows the standard location-scale
distribution.

¢ Note that when the covariates are constant, the CEM can be simplified to an
accelerated failure time (AFT) model: log(Tj) = 1 + x}ﬁ + i + o€j.



Proportional Hazards Model (PH) with Spatial Effect

¢ The hazard function of the jth unit in ith location is modeled as
hi(t) = ho(t)exp | x;(0) B+

* ho(t): the baseline hazard function; 3: the coefficient vector for covariates; ~;:
the spatial random effect at location s;.

¢ A parametric baseline hazard function hy(t; 84,) is used, where 6y, is the
parameter vector. E.g., Weibull hazard function ho(t) = at® with 8, = (a,b) .



The Spatial Random Effect

)T

Spatial random vector: v = (v1,...,vm

v ~MVN(0,X), where ¥ = 05Q.

o2: the overall spatial variability.

Q = (pi,ir) - the correlation matrix.
pi.ir- the spatial correlation between the random effect of location s; and s;..
The exponential correlation function is used

pi,ir = exp[—d(sj, si)/v],v >0,

® d(sj, si): the Euclidean distance between locations s; and s;.
® y: the length scale parameter that describes the rate of decay of correlations.
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Bayesian Framework for Spatial Survival Model

v o< MVN(0, 029),
0% o IGAM(a,, bs),
v x IGAM(a,, b,),
Bp x 1p.
For spatial CEM:
log [uji(Tj)] = n+ i+ o,
wocl, oo 1.
For spatial PH:
hy(t) = holt: On) exp | Xy(1) B+ .
Op o< 1.



Variational Inference

* The key idea of VI is to use a relative simple distribution, variational
distribution: q(6|n) to approximate the exact posterior p(6|D).

* Here n is the parameter vector in the variational probability distribution.

¢ Then a metric that evaluates the distance between two distributions p(6|D)
and q(6|n) is optimized to obtain the estimate of 7.



Divergences

KL[q@/n)]Ip(@/D)] = [ q(oln) og [

The Evidence Lower Bound (ELBO):
Ly = 1oglp(D)] — KL(q(60]n)|I(61D)) = Eqtoim) {log [

a@n))

a—Divergence: o« — 1, a—divergence — KL divergence.

1

D[q(6[n)||p(6|D)] =
The variational Rényi (VR) bound: w
Lo = loglp(D)] — DIq(eln) [p(6ID)] = — Iog {Eq(em) [(’m) ] } '

1oz | [ a(@mrpoi)' b
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a—Divergence Characteristics
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Variational Parameter Estimation in VI

Require: g(0|n): the variational distribution.
Require: nq: initial variational parameter vector.

n

r < 1 (initialize iteration number);
1 < ng (initialize variational parameter vector);

: while not converging do
Take h samples from the variational distribution 84 ~ q(0|n,—1),k = 1,...

and compute a stochastic estimate of La.

Take a gradient descent step in Adam algorithm to update 7;;
r<r+1

end while

return n* < n,

h




GPU Lifetime Dataset
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Figure: The physical organization of Titan supercomputer.




GPU Lifetime Dataset

* We use a subset of the data, which includes the units in row number 0-7 and
column number 1-13.

* The row and column positions of each unit are considered as the location
information.

e The node, slot, and cage information are considered as covariates that can
affect GPU’s lifetime.

e We build a spatial AFT model to study the failures of GPU.

e Three inference methods, Hamiltonian Monte Carlo (HMC), KL-divergence
and a—divergence with o = 0.8 performance are compared.



VI for AFT model with GPU Data

log(Tj) = p+ X,]T,B +7i + oej.

* The variational distribution assumptions of 8 = (87, ", 0y, 02, z/)T is:

B ~ MVN(ug, ¥ 3),where X3 = Diag(a'%),
¥ ~ MVN(py, £4), Where £, = Diag(c?),
o1 ~ N(uo,02), where o; = log(o)
03 x IGAM(c,, d,),

v x IGAM(c,, d,).

e The variational distribution is:

q(0n) = Arvn(Bls. Za) vn (Yt T4 ) (01l 10, 05) ficam(0F|Co, Ay ) ficam(v|Cy, d)).
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The Cox-Snell Residual

* The censored Cox-Snell residual of spatial AFT model is an extension of the
standardized residual, which is defined as

log(tj) — X B — i
6,’j = a_\ .
e With model assumptions, the residuals should approximately follow a Weibull

distribution.
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Methods Comparisons with GPU Data

Table: The negative log likelihood and computing time of a—divergence, KL divergence
and HMC inferences with the GPU data.
a=0.38 KL HMC
NLL 2034.93 2405.40 2040.68
Time (minutes) 7.28 10.07 20.89




The Computing Time Versus Number of Locations
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Figure: The computing time of three inference methods versus the number of locations
with the GPU data.



Pine Tree Survival Data

¢ The survival and growth of trees with different living conditions and the
thinning treatments are of interest.

e During each tree’s lifetime, variables such as total height (TH), diameter at
breast height (DBH), and crown class are recorded every three years up to 7
times.

® The event of interest is the death of a tree. A tree is recorded as censored if it
survives till the 7th follow-up period.

¢ Due to the computational limitation, we randomly select 60 sites from the
original dataset with 13,911 trees.

e A PH model is considered to model the survival rate of pine trees with
explanatory variables.
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VI for the Bayesian PH Model

¢ We assume the following variational distribution assumptions:
B ~ MVN(pg, ¥ ), where ¥ = Diag(c3),
~ ~ MVN(p, Xy),where ¥, = Diag(ozzy),
ay~ N(:u:% 03)7
by ~ N(up, 03),
02 o IGAM(C,, d, ),

v x IGAM(c,, d,),
¢ The variational distribution is:

q(0n) = Avn(Blus, L) s (YIty, Ty ) (@il ta, o3) (bl b, 05) ficam (05 |Co, ) ficam (V] @
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The Cox-Snell Residual

¢ For a PH model with time-dependent covariates, the Cox-Snell residual is
defined as

—~ Tj R
& = Fo(Ty) /O explx; (1) B + Filet,

where Iro(T,-,-) is the estimated cumulative baseline hazard rate by plugging in
aand b.

* If the model is correct, then €; approximately follows exponential distribution
with A = 1 and censoring, which is a special case of Weibull distribution.
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Pine Tree Survival Data Analysis Results
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Figure: Weibull probability plot of residuals for a—divergence, KL divergence and HMC
with the pine tree data.
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Pine Tree Survival Data Analysis Results

Table: The negative log likelihood and computing time of a—divergence, KL divergence
and HMC inferences with pine tree data.

a=08 KL HMC
NLL 12341.71 18985.41 12332.84
Time (hours) 7.97 8.52 16.29
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Conclusions and Future Directions

e Compared to KL divergence, a—divergence encourages a more flexible
variational distribution, thus it has better performance regarding statistical
inference.

¢ Based on these two applications, we find a—divergence with a < 1 has
comparable performance as HMC but with better computational efficiency.

¢ In the future, it will be interesting to study how the statistical inference
performance changes with different « values and how to choose a.
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Questions

Thank you!
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