
Likelihoods of Weight Loss or:
ACRONYM: Augmented degree corrected,

Community Reticulately Organized Network
Yielding Model

Benjamin Leinwand

Joint work with Vince Lyzinski

1

Outline

• Motivating example, getting used to the ideas and gestalt

• Problems with existing approaches

• H-functions

• ACRONYM

• Parameter Estimation using Likelihood

• Simulation Results

Practice exercise

• Look at the plot on the left

• This is the adjacency matrix of a
simulated network with 1200 nodes

• Black dots represent edges (1’s), white
dots are non-edges (0’s)

• It is symmetric, with each node taking
up both a horizontal and vertical line

Take a moment to try to visualize a
heatmap of high and low probability
areas for the network on the left

Practice exercise

Did your mental model look like the image on the right?
Is anything different than you expected? What else do you see?

Note: diagonal runs from southwest to northeast

Practice exercise

The left network was actually sampled from the probability matrix on the
right, which is a noisier version of the matrix shown on the previous slide

Let’s say we were trying to estimate the underlying
probability matrix for the observed network

How does the image on the bottom right look?

Candidate estimate 1

Noise-free probability matrix True Probability Matrix Observed Network Estimated probability matrix

How about this new image? On the bottom right?

What are those white spots?

Candidate estimate 2

Noise-free probability matrix True Probability Matrix Observed Network Estimated probability matrix

Finally, what about this estimate?

Something has gone wrong. And still white spots!

Candidate estimate 3

Noise-free probability matrix True Probability Matrix Observed Network Estimated probability matrix

Big (self-serving!) reveal

Current approaches seem to run into issues on this example

Estimated using PABMEstimated using DCBM Estimated using ACRONYM

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give the parameter

11

Illustrative example - Threshold

• Consider the toy induced subnetwork shown below

• There are 2 communities, each containing 100 nodes numbered 1 through
100; the image represents the edges between the two communities

• If two nodes in different communities
have numbers whose sum exceeds
100.5, an edge is placed between these
nodes

• This is not generated using a DCBM or
PABM model

Where do other methods go wrong?

• To estimate the edges using a DCBM or PABM, each node u gets a parameter θu and a block parameter β

• There are a total of 5050 edges in the subnetwork

• Node 100 in each community is incident to 100 of the 5050 edges,

• Node 99 in each community is incident to 99 of these 5050 edges, etc.

The estimated edge probability between the nodes labeled
100 in each community is given by:

መ𝜃𝑢
෠β መ𝜃𝑣 =

100 × 100

5050
× 5050 ×

100 × 100

5050

= 1. 9801

• DCBMs were initially conceived for networks with Poisson
edges, where this value would make sense

Problems in the toy estimate

• We want this estimate to be the expected value of a {0, 1} valued edge, that is, a probability

• Looking at the plot on the right, many of the estimates are greater than 1. Assumptions which avoid
generating results like this may not match real observed networks

• We also see convex curved contours in the estimate, even though they don’t appear in the network

Objections

Why do we need another model? And this one’s so complicated!

Menger: “Entities must not be reduced to the point of inadequacy”

We’ve shown failures of other approaches on simulations, real examples next slide

This seems fine for dense networks, but most networks are sparse!

Some networks are dense, and some sparse networks have dense region

Allowing different contour structures may still be beneficial in sparse networks

So many parameters! What about Occam’s razor, you’re probably overfitting!

Potentially, but ACRONYM outperforms other models on link prediction in real
networks using cross-validation (see paper for details)

Real Data Example: Congress on Twitter

PABMDCBM ACRONYMObserved

Congress on
Twitter

• The nodes have been reordered first by recovered community structure (according to ACRONYM) and then
by within-community degree

• Notice that there are regions with different densities, but the network as a whole is only about 9% dense

• 91 of 92 senators in are assigned to community 1, which also includes 25 congresspeople.

• Community 2 contains 174 congresspeople and Senator Bernie Sanders

• Community 3 contains 184 members, all congresspeople

Real Data Example: Mouse Retina

PABMDCBM ACRONYMObserved

Mouse Retina

Zooming in in
the 4th

recovered
community

nodes with the
greatest within

community
degree

Block Dense Weighted Networks with
Augmented Degree Correction
• Previous work describes a model for dense

weighted networks (like structural brain networks)

• Adapting those ideas here:

1. “Communities” are defined based on an order of
preference over nodes, as well as different kinds
of flexible connectivity patterns

2. As the edge values are binary here, flexible
contours appear only in the probability matrix
underpinning the observed network

3. These underlying probability matrices are “dense”

Leinwand, B., & Pipiras, V. (2022). Block dense weighted networks with augmented degree correction. Network Science, 10(3), 301-321. doi:10.1017/nws.2022.23

Positive H-function

A function H: (0, 1) × (0, 1) → (0, 1) is an H-function with positive association
if:

1. H is non-decreasing in both arguments;

2. 𝐻׭ 𝑥,𝑦 <𝑧
dxdy = z, for all z in (0, 1).

Condition 2 is equivalent to saying:

“if the inputs to H are uniform RVs, so is the output of H”

H-functions are not networks, but can be used in networks as maps from
nodal orderings to edge orderings

19

Different H-functions, different maps

• All plots are positive H-functions

• Ordering is easy when both sociability parameters are large (or small)

• Different choices when one is large the other is small
• xy ≤ H(x,y) ≤ 1 – ((1-x)(1-y))

• Different behavior than copulas, still allows for a variety of nodal effects

20

Negative and Simpson H-functions, projection

• A function H: (0, 1) × (0, 1) → (0, 1) is an H-function with negative association if
H(1-x, 1-y) is an H-function with positive association

• A function H: (0, 1) × (0, 1) → (0, 1) is an H-function with Simpson association if
H(x, 1-y) or H(1-x, y) is an H-function with positive association

• A function H: (0, 1) × (0, 1) → (0, 1) such that H(x,y) = x or H(x,y) = y is called a
projection

Positive association negative association Simpson association Projection (onto x)

21

H-functions and networks

• The idea of an H-function in the network setting is to combine a feature
from one node with a feature from a second node in a way that determines
whether these nodes are linked

• In different parts of the network, different H-functions may govern edge
probabilities

• The appropriate H-function depends on the community memberships of
the two nodes

• These H-functions may differ in direction of association, functional form,
and balance of community impact

Natural way to construct H-functions of two continuous RVs is take the CDF of the sum

Balanced H-functions using CDFs (ρ = 1)
Critics rave:
Closed form!
Error free!

23

Form of
F1 & F2

F1 and F2 may have different scale/rate parameters, yielding imbalanced H-functions

Only the ratio matters, so we can rescale F1 to have parameter 1, and define ρ =
scale

1

scale
2

Imbalanced H-functions using CDFs (ρ ≠ 1)

24

Form of
F1 & F2

Don’t use H-functions as a final estimate

• We need to estimate the H-function that determines how nodes in a
subnetwork interact

• H-functions have a range of (0,1)

• Why not use the value of the estimated H-function for a given pair
of nodes as our estimate of the edge probability?

Because “if the inputs to H are uniform RVs, so is the output of H”

• Let’s see how this causes problems

H-functions are just orderings

1. H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability

H-functions are just orderings

1. H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability

2. The expected value of an arbitrary H-function in a subnetwork is ≈.5
- Most networks are much sparser than this in all subnetworks

H-functions are just orderings

1. H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability

2. The expected value of an arbitrary H-function in a subnetwork is ≈.5
- Most networks are much sparser than this in all subnetworks

3. If the subnetwork within community i is 25% dense, while the
subnetwork within community j is only 15% dense, for u1,u2 ∈ i and
v1, v2 ∈ j it could be the case that both

 𝐻 𝑣1, 𝑣2 > 𝐻 𝑢1, 𝑢2 AND P 𝐴𝑣1,𝑣2
= 1 < P 𝐴𝑢1,𝑢2

= 1

- Ordering isn’t the same as probability, since density matters

Model needs

• Let u, v be vertices within communities i and j respectively

• Each vertex u has “sociability” parameter Ψ𝑢, uniformly
distributed over (0,1)
• We allow each node to have a different Ψ𝑢 with respect to each

community i ϵ {i}

• Need to choose the right H-function to model the broad
pattern of interactions between nodes in i and nodes in j
• This includes the form of the contours, but also the relative influence

of each community on edge probability (balance)

• Need to incorporate noise into the model

• Need to map the H-function to actual probabilities

29

Modeling networks with H-functions

ACRONYM:

𝑨𝒖𝒗 = 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝜶 ∗ 𝜱𝟏

𝟏

𝟏 + 𝝈𝟐
𝜱𝟏

−𝟏 𝑯 𝜳𝒖,𝜳𝒗 +
𝝈

𝟏 + 𝝈𝟐
𝜺𝒖𝒗 + 𝜷

Where 0 ≤ α ≤ 1, β > 0, α + β ≤ 1, 𝜀𝑢𝑣~𝑁(0, 1)

• Each subnetwork induced by a pair of communities has their own parameters
inducing a unique subnetwork range of probabilities and contour patterns

• Normally distributed error is incorporated in parentheses, Bernoulli error outside

30

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

31

Let 𝛹𝑢 = .5, 𝛹𝑣 = .8413

Let 𝐻 𝑥, 𝑦

= 𝐹1,2(𝐹1
−1 𝑥 + 𝐹2

−1 𝑦)

Where 𝐹1 and 𝐹2 are
standard normal CDFs, so
𝐹1,2 is the CDF of a 𝑁 0, 2
RV

Then
𝐻 𝑥, 𝑦 = 𝐹1,2(0 +1)

= .7602

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

32

𝛷1
−1 𝐻 𝛹𝑢,𝛹𝑣

= 𝛷1
−1 .7602 = 1/ 2

Letting 𝜎 = 1, we have

1

1+𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 =

1

2

1

2
=

1

2

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

33

𝜀𝑢𝑣 is an idiosyncratic
standard normal RV and

𝜎

1 + 𝜎2
=

1

2

If 𝜀𝑢𝑣 = −.4933

Then
𝜎

1+𝜎2
𝜀𝑢𝑣 = −.2467

Then
1

1+𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1+𝜎2
𝜀𝑢𝑣

= .5 − .2467 = .2533

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

34

In the parenthesis, we add
2 normal RVs, with
variances

1

1 + 𝜎2 and
𝜎2

1 + 𝜎2

So their sum is a standard
normal RV

𝛷1(.2533) = .6

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

35

Let α be .6, then

.6 * .6 = .36

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

36

Let β be .05, then the total
range of probabilities in
this subnetwork is:

(.05, .65),

So expected density of .35

And the probability here is

.36 + .05 = .41

What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give
the parameter

37

Drawing from a
Bernoulli(.41), we get a
value of 1

Therefore 𝐴𝑢𝑣 = 1

There is an edge between
u and v

ACRONYM implications

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

0 ≤ α ≤ 1 β > 0 α + β ≤ 1

• If α = 1 and β = 0, probabilities can run from 0 to 1

• If α = 0, it’s a stochastic block model, and if all β are also equal, an ER graph
• As α shrinks, the range of probabilities also shrinks
• As β grows, the minimal probability increases

• All probabilities are constrained to be between 0 and 1

• Contours can look different across the network, as can probability ranges

• Noise can be incorporated differently into each subnetwork

Pros and cons

• In a weighted network, edge weights carry fine-grained information
• Pro: The patterns of edge weights can display an order of preferences

• Con: Subnetwork edge weights have arbitrary distributions and must be
estimated

• In an unweighted network, edges are either 0 or 1
• Con: It is hard to discern an order of preferences from only binary values

• Pro: As each edge is a Bernoulli RV that depends on node and community
parameters, we can use likelihood-based techniques to estimate parameters

What do we need to estimate?

• Communities – Done separately before everything else

• α – width of probability range in subnetwork

• β – minimal probability in subnetwork

• σ – noise to signal ratio

• Functional form of H – We only try normal, concave, convex, linear

• ρ – ratio of impact of second community to first community

• [𝜳] – node sociability parameters

• We don’t really care about the 𝜀 values, but as they are latent variables with assumed
𝑁(0,1) distributions, estimating 𝜀 can help estimate everything else
• At each step of an iterative algorithm, we estimate the likelihood-maximizing [Ƹ𝜀𝑢𝑣], but to avoid

early overfitting, we instead draw a random value Ƽ𝜀𝑢𝑣~𝑁(Ƹ𝜀𝑢𝑣, 1) for each edge at every step

Parameter estimation overview

• We estimate each subnetwork independently of all others
• Better for flexibility, but can’t borrow strength across the network
• We estimate a different Ψ for each node with respect to each community

• We run an iterative algorithm for the 4 H-function functional forms, and
take the model yielding the best likelihood as our final estimate

• At each stage, we determine which sets of parameters should be
collectively updated based on whether the likelihood improves
• When updating multiple parameters, we want broad-based improvements so as to

avoid too many updates chasing random fluctuations due to sampled [Ƽ𝜀𝑢𝑣] values

• As [Ƽ𝜀𝑢𝑣] are random, other parameters may be updated to suit these
values, but may not yield the maximum observed likelihood, so we need to
also keep those parameters associated with the best observed likelihood

Iterative algorithm for each subnetwork

1. Initialize all parameters (details omitted here)

Repeat steps 2 – 4 for the specified number of iterations

2. Calculate the current log-likelihood of current parameters

3. Calculate [Ƹ𝜀𝑢𝑣] to maximize likelihood, draw Ƽ𝜀𝑢𝑣 ~ N(Ƹ𝜀𝑢𝑣, 1)

4. Update the following 3 parameter sets in a uniformly random order to
maximize log-likelihood given [Ƽ𝜀𝑢𝑣]
a. ෝα, ෠β, ොρ, and ොσ: All updated together
b. [෡𝛹𝑢]: Either all are updated, or none are
c. [෡𝛹𝑣]: Either all are updated, or none are

5. Using the best performing parameters, calculate [Ƹ𝜀𝑢𝑣], and re-estimate
only ොσ using the [Ƹ𝜀𝑢𝑣] values

Simulation details

6 communities of 200 nodes each
• First 2 communities have Ψ values

drawn from different Beta
distributions

• 3rd and 4th communities have
“gaps” in Ψ values

• 5th and 6th communities’ Ψ values
are drawn from a Uniform
distribution

Simulation details

• Pairs of communities have
different association directions,
functional forms, α, β, ρ
parameters (These are visible to
the right)

• The σ values for within
community edges are set to .3,
and set to .4 for between
community edges

True Probability Matrix

ACRONYM Estimate of simulated network
Noise-free probability matrix Estimated probability matrix

Mind the gaps!

Deeper dive on Ψ estimation

Ψ values for each node are estimated 6 times

• Each row shows estimates for Ψ for that row’s
community in black, with true values in color

• Bottom row depicts 6 estimates of the Ψ
values for community 1, with a concave shape

• BLUE indicates ρ = 1

• PINK: the community had somewhat less
influence than the other community

• RED: the community has far less influence

• LIGHT GREEN: somewhat more influential
than the other community

• DARK GREEN: far more influence

Deeper dive on Ψ estimation

Takeaways:

Easier to estimate Ψ
for nodes in
communities 5 and
6 (uniform) followed
by communities 3
and 4 (gaps)

Communities 1 and
2 (Beta
distributions) are
the most difficult

May be due to
initialization

Overall, pretty good estimates
except in ER subnetworks (solid
squares), where the Ψ values don’t
matter anyway, since α = 0

Future plans

• Error rates for community detection and estimation based on
different H-functions and parameters

• More general classes of H-functions, including compositions of
H-functions

• Extension to multiple networks

• Joint parameter estimation using Bayesian approach

Thank You!

Questions?

First Note on 𝜀

• Usually, we view ε as idiosyncratic values relevant to only this particular network,
so we don’t really care about their values

• However, as latent variables with assumed 𝑁(0,1) distributions, estimating ε can
aid in estimating the meaningful parameters

• At each step of an iterative algorithm, we can estimate the likelihood-maximizing
[Ƹ𝜀𝑢𝑣], but using this value tends to perform worse by overfitting to early
parameter estimates, driving ොσ to 0

• Instead, at each step, we draw a random value Ƽ𝜀𝑢𝑣~𝑁(Ƹ𝜀𝑢𝑣, 1)

Second Note on 𝜀

• As we assume 𝜀𝑢𝑣 ~ 𝑁(0,1), treating ෡𝐻ෝ𝜌
෡𝛹𝑢, ෡𝛹𝑣 and ො𝜎2 as fixed but ε as random then:

• Therefore, our final estimates are given by

𝐄𝜀
෠𝑃𝑢𝑣 =ෝ∝ 𝛷

𝛷−1 ෡𝐻ෝ𝜌
෡𝛹𝑢, ෡𝛹𝑣

1 + 𝟐 ො𝜎2
+ መ𝛽

Which has extra shrinkage, but during the estimation process, we don’t maximize
likelihood using this expectation, but instead using the [Ƽ𝜀𝑢𝑣] values

Likelihood set up

• For an observed network with adjacency matrix A = [Auv], the log-
likelihood for an estimated probability matrix P = [Puv] is given by

• The network’s edges are Bernoulli RVs with probability

where ρ dictates the balance of the first argument and the second
argument

Communities and sociabilities

• Top left: the first and second
entries of the u vectors for each
node, colored by community
membership

• Bottom left: the first and
second entries of the u vectors
for each node, colored by their
Ψ values

• Top right: the third and fourth
entries of the u vectors for each
node, colored by community
membership.

• Bottom right: the third and
fourth entries of the u vectors
for each node, colored by their
Ψ values.

Mind the gaps!

Calculating [Ƹ𝜀𝑢𝑣]

• For every edge where Auv = 1, the estimate simplifies to

• For every edge where Auv = 0,
𝜀 appears in

the numerators
and

denominators

Community detection challenges

• Communities are defined by a similar
ordering of preferences over other nodes,
not homophily

• The network may contain positive and
negative associations

• Existing methods based on e.g. modularity
don’t appear to work well here

• The first eigenvector is often correlated with
degree, not community

• Fortunately, the structure of ACRONYM
guides us toward an approach based on
normalizing each row of A

Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vth row uv

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering

Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vth row uv

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering

Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vth row uv

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering

Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vth row uv

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering
Eigenvectors Projections

2
n

d
 d

im
e

n
si

o
n

4
th

 d
im

e
n

si
o

n

2
n

d
 d

im
e

n
si

o
n

4
th

 d
im

e
n

si
o

n

1st dimension 3rd dimension 1st dimension 3rd dimension

Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vth row uv

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering
Projections

2
n

d
 d

im
e

n
si

o
n

4
th

 d
im

e
n

si
o

n

1st dimension 3rd dimension

Cosine distance is not a true distance, but
takes on a value between 0 and 2, with
vectors pointing in the same direction
getting a value of 0, and nodes pointing in
opposite directions getting a value of 2

Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●)

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix
and look for the elbow. Call the value of this elbow ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this
matrix onto the surface of a hypersphere. Call the projection of the vth row uv

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering

In different contexts, we have
seen different linkage criteria
succeed. The network on the right
would seem to do well using
single-linkage clustering

Mouse retina community detection

ACRONYM finds different and fewer communities than the other approaches, but
the results still appear to follow the physical structure

ACRONYM
randnet Spectral

Clustering
randnet Spherical
Spectral Clustering

nett Spectral
Clustering

	Slide 1: Likelihoods of Weight Loss or: ACRONYM: Augmented degree corrected, Community Reticulately Organized Network Yielding Model
	Slide 2
	Slide 3: Outline
	Slide 4: Practice exercise
	Slide 5: Practice exercise
	Slide 6: Practice exercise
	Slide 7: Candidate estimate 1
	Slide 8: Candidate estimate 2
	Slide 9: Candidate estimate 3
	Slide 10: Big (self-serving!) reveal
	Slide 11: What’s happening in ACRONYM
	Slide 12: Illustrative example - Threshold
	Slide 13: Where do other methods go wrong?
	Slide 14: Problems in the toy estimate
	Slide 15: Objections
	Slide 16: Real Data Example: Congress on Twitter
	Slide 17: Real Data Example: Mouse Retina
	Slide 18: Block Dense Weighted Networks with Augmented Degree Correction
	Slide 19: Positive H-function
	Slide 20: Different H-functions, different maps
	Slide 21: Negative and Simpson H-functions, projection
	Slide 22: H-functions and networks
	Slide 23: Balanced H-functions using CDFs (ρ = 1)
	Slide 24: Imbalanced H-functions using CDFs (ρ ≠ 1)
	Slide 25: Don’t use H-functions as a final estimate
	Slide 26: H-functions are just orderings
	Slide 27: H-functions are just orderings
	Slide 28: H-functions are just orderings
	Slide 29: Model needs
	Slide 30: Modeling networks with H-functions
	Slide 31: What’s happening in ACRONYM
	Slide 32: What’s happening in ACRONYM
	Slide 33: What’s happening in ACRONYM
	Slide 34: What’s happening in ACRONYM
	Slide 35: What’s happening in ACRONYM
	Slide 36: What’s happening in ACRONYM
	Slide 37: What’s happening in ACRONYM
	Slide 38: ACRONYM implications
	Slide 39: Pros and cons
	Slide 40: What do we need to estimate?
	Slide 41: Parameter estimation overview
	Slide 42: Iterative algorithm for each subnetwork
	Slide 43: Simulation details
	Slide 44: Simulation details
	Slide 45: ACRONYM Estimate of simulated network
	Slide 46: Deeper dive on cap psi estimation
	Slide 47: Deeper dive on cap psi estimation
	Slide 48: Future plans
	Slide 49: Thank You!
	Slide 50: First Note on script epsilon
	Slide 51: Second Note on script epsilon
	Slide 52: Likelihood set up
	Slide 53: Communities and sociabilities
	Slide 54: Calculating [script epsilon hat sub u v]
	Slide 55: Community detection challenges
	Slide 56: Community detection algorithm
	Slide 57: Community detection algorithm
	Slide 58: Community detection algorithm
	Slide 59: Community detection algorithm
	Slide 60: Community detection algorithm
	Slide 61: Community detection algorithm
	Slide 62: Mouse retina community detection
	Slide 63
	Slide 64
	Slide 65

