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Practice exercise

• Look at the plot on the left

• This is the adjacency matrix of a 
simulated network with 1200 nodes

• Black dots represent edges (1’s), white 
dots are non-edges (0’s)

• It is symmetric, with each node taking 
up both a horizontal and vertical line

Take a moment to try to visualize a 
heatmap of high and low probability 
areas for the network on the left



Practice exercise

Did your mental model look like the image on the right?                
Is anything different than you expected? What else do you see?

Note: diagonal runs from southwest to northeast 



Practice exercise

The left network was actually sampled from the probability matrix on the 
right, which is a noisier version of the matrix shown on the previous slide



Let’s say we were trying to estimate the underlying 
probability matrix for the observed network

How does the image on the bottom right look?

Candidate estimate 1

Noise-free probability matrix True Probability Matrix Observed Network Estimated probability matrix



How about this new image? On the bottom right?

What are those white spots?

Candidate estimate 2

Noise-free probability matrix True Probability Matrix Observed Network Estimated probability matrix



Finally, what about this estimate?

Something has gone wrong. And still white spots!

Candidate estimate 3

Noise-free probability matrix True Probability Matrix Observed Network Estimated probability matrix



Big (self-serving!) reveal

Current approaches seem to run into issues on this example

Estimated using PABMEstimated using DCBM Estimated using ACRONYM



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give the parameter
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Illustrative example - Threshold

• Consider the toy induced subnetwork shown below

• There are 2 communities, each containing 100 nodes numbered 1 through 
100; the image represents the edges between the two communities 

• If two nodes in different communities 
have numbers whose sum exceeds 
100.5, an edge is placed between these 
nodes 

• This is not generated using a DCBM or 
PABM model



Where do other methods go wrong? 

• To estimate the edges using a DCBM or PABM, each node u gets a parameter θu and a block parameter β 

• There are a total of 5050 edges in the subnetwork

• Node 100 in each community is incident to 100 of the 5050 edges,

•  Node 99 in each community is incident to 99 of these 5050 edges, etc.  

The estimated edge probability between the nodes labeled 
100 in each community is given by:

መ𝜃𝑢
෠β መ𝜃𝑣 =

100 × 100

5050
× 5050 ×

100 × 100

5050

= 1. 9801

• DCBMs were initially conceived for networks with Poisson 
edges, where this value would make sense



Problems in the toy estimate

• We want this estimate to be the expected value of a {0, 1} valued edge, that is, a probability

• Looking at the plot on the right, many of the estimates are greater than 1. Assumptions which avoid 
generating results like this may not match real observed networks

• We also see convex curved contours in the estimate, even though they don’t appear in the network



Objections

Why do we need another model? And this one’s so complicated!

Menger: “Entities must not be reduced to the point of inadequacy”

We’ve shown failures of other approaches on simulations, real examples next slide

This seems fine for dense networks, but most networks are sparse!

Some networks are dense, and some sparse networks have dense region

Allowing different contour structures may still be beneficial in sparse networks

So many parameters! What about Occam’s razor, you’re probably overfitting!

Potentially, but ACRONYM outperforms other models on link prediction in real 
networks using cross-validation  (see paper for details)



Real Data Example: Congress on Twitter

PABMDCBM ACRONYMObserved

Congress on 
Twitter

• The nodes have been reordered first by recovered community structure (according to ACRONYM) and then 
by  within-community degree

• Notice that there are regions with different densities, but the network as a whole is only about 9% dense

• 91 of 92 senators in are assigned to community 1, which also includes 25 congresspeople. 

• Community 2 contains 174 congresspeople and Senator Bernie Sanders

• Community 3 contains 184 members, all congresspeople



Real Data Example: Mouse Retina

PABMDCBM ACRONYMObserved

Mouse Retina

Zooming in in 
the 4th 

recovered 
community 

nodes with the 
greatest within 

community 
degree



Block Dense Weighted Networks with 
Augmented Degree Correction
• Previous work describes a model for dense 

weighted networks (like structural brain networks) 

• Adapting those ideas here:

1. “Communities” are defined based on an order of 
preference over nodes, as well as different kinds 
of flexible connectivity patterns

2. As the edge values are binary here, flexible 
contours appear only in the probability matrix 
underpinning the observed network

3. These underlying probability matrices are “dense” 

Leinwand, B., & Pipiras, V. (2022). Block dense weighted networks with augmented degree correction. Network Science, 10(3), 301-321. doi:10.1017/nws.2022.23



Positive H-function

A function H: (0, 1) × (0, 1) → (0, 1) is an H-function with positive association 
if:

1. H is non-decreasing in both arguments;

2. 𝐻׭ 𝑥,𝑦 <𝑧
dxdy = z, for all z in (0, 1).

Condition 2 is equivalent to saying:

“if the inputs to H are uniform RVs, so is the output of H”

H-functions are not networks, but can be used in networks as maps from 
nodal orderings to edge orderings

19



Different H-functions, different maps 

• All plots are positive H-functions

• Ordering is easy when both sociability parameters are large (or small)

• Different choices when one is large the other is small
• xy ≤ H(x,y) ≤ 1 – ((1-x)(1-y))

• Different behavior than copulas, still allows for a variety of nodal effects

20



Negative and Simpson H-functions, projection

• A function H: (0, 1) × (0, 1) → (0, 1) is an H-function with negative association if 
H(1-x, 1-y) is an H-function with positive association

• A function H: (0, 1) × (0, 1) → (0, 1) is an H-function with Simpson association if 
H(x, 1-y) or H(1-x, y) is an H-function with positive association

• A function H: (0, 1) × (0, 1) → (0, 1) such that H(x,y) = x or H(x,y) = y is called a 
projection

Positive association             negative association               Simpson association              Projection (onto x)

21



H-functions and networks

• The idea of an H-function in the network setting is to combine a feature 
from one node with a feature from a second node in a way that determines 
whether these nodes are linked

• In different parts of the network, different H-functions may govern edge 
probabilities

• The appropriate H-function depends on the community memberships of 
the two nodes

• These H-functions may differ in direction of association, functional form, 
and balance of community impact



Natural way to construct H-functions of two continuous RVs is take the CDF of the sum

 

Balanced H-functions using CDFs (ρ = 1)
Critics rave:
Closed form!
Error free! 

23

Form of 
F1 & F2



F1 and F2 may have different scale/rate parameters, yielding imbalanced H-functions 

Only the ratio matters, so we can rescale F1 to have parameter 1, and define ρ = 
scale

1

scale
2

  

 

Imbalanced H-functions using CDFs (ρ ≠ 1)

24

Form of 
F1 & F2



Don’t use H-functions as a final estimate

• We need to estimate the H-function that determines how nodes in a 
subnetwork interact

• H-functions have a range of (0,1) 

• Why not use the value of the estimated H-function for a given pair 
of nodes as our estimate of the edge probability?

Because “if the inputs to H are uniform RVs, so is the output of H”

• Let’s see how this causes problems



H-functions are just orderings

1.  H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability



H-functions are just orderings

1.  H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability

2. The expected value of an arbitrary H-function in a subnetwork is ≈.5
- Most networks are much sparser than this in all subnetworks



H-functions are just orderings

1. H-functions have a range of (0,1)
- There may be no edges in that subnetwork with such a high probability

2. The expected value of an arbitrary H-function in a subnetwork is ≈.5
- Most networks are much sparser than this in all subnetworks

3. If the subnetwork within community i is 25% dense, while the 
subnetwork within community j is only 15% dense, for u1,u2 ∈ i and 
v1, v2 ∈ j it could be the case that both

 𝐻 𝑣1, 𝑣2 > 𝐻 𝑢1, 𝑢2       AND     P 𝐴𝑣1,𝑣2
= 1 < P 𝐴𝑢1,𝑢2

= 1

- Ordering isn’t the same as probability, since density matters 



Model needs

• Let u, v be vertices within communities i and j respectively

• Each vertex u has “sociability” parameter Ψ𝑢, uniformly 
distributed over (0,1)
• We allow each node to have a different Ψ𝑢 with respect to each 

community  i ϵ {i}

• Need to choose the right H-function to model the broad 
pattern of interactions between nodes in i and nodes in j
• This includes the form of the contours, but also the relative influence 

of each community on edge probability (balance)

• Need to incorporate noise into the model

• Need to map the H-function to actual probabilities

29



Modeling networks with H-functions

ACRONYM:

𝑨𝒖𝒗 = 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝜶 ∗ 𝜱𝟏

𝟏

𝟏 + 𝝈𝟐
𝜱𝟏

−𝟏 𝑯 𝜳𝒖,𝜳𝒗 +
𝝈

𝟏 + 𝝈𝟐
𝜺𝒖𝒗 + 𝜷

Where 0  ≤ α ≤ 1,  β > 0, α + β ≤ 1, 𝜀𝑢𝑣~𝑁(0, 1)

• Each subnetwork induced by a pair of communities has their own parameters 
inducing a unique subnetwork range of probabilities and contour patterns

• Normally distributed error is incorporated in parentheses, Bernoulli error outside

30



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this 

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give 
the parameter
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Let 𝛹𝑢 = .5, 𝛹𝑣 = .8413

Let 𝐻 𝑥, 𝑦

=  𝐹1,2(𝐹1
−1 𝑥 + 𝐹2

−1 𝑦 )

Where 𝐹1 and 𝐹2 are 
standard normal CDFs, so 
𝐹1,2 is the CDF of a 𝑁 0, 2  
RV

Then
𝐻 𝑥, 𝑦  =  𝐹1,2(0 +1)

= .7602



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this 

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give 
the parameter
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𝛷1
−1 𝐻 𝛹𝑢,𝛹𝑣

= 𝛷1
−1 .7602 = 1/ 2

Letting 𝜎 = 1, we have 

1

1+𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 = 

1

2

1

2
=

1

2



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this 

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give 
the parameter
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𝜀𝑢𝑣 is an idiosyncratic 
standard normal RV and

𝜎

1 + 𝜎2
=

1

2

If 𝜀𝑢𝑣 = −.4933

Then 
𝜎

1+𝜎2
𝜀𝑢𝑣 = −.2467

Then 
1

1+𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1+𝜎2
𝜀𝑢𝑣

= .5 − .2467 = .2533



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this 

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give 
the parameter
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In the parenthesis, we add 
2 normal RVs, with 
variances

1

1 + 𝜎2  and
𝜎2

1 + 𝜎2

So their sum is a standard 
normal RV

𝛷1(.2533) = .6



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this 

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give 
the parameter
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Let α be .6, then

.6 * .6 = .36



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this 

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give 
the parameter
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Let β be .05, then the total 
range of probabilities in 
this subnetwork is: 

(.05, .65),

So expected density of .35 

And the probability here is

.36 + .05 = .41



What’s happening in ACRONYM

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

1) Combine node sociabilities using an H-function, output Uniform RV

2) Convert that Uniform RV into “Normal Space” to avoid boundary effects

3) Add error, to get a standard Normal RV

4) Convert back to a uniform value

5) Multiply this value by α, the width of the probability range in this 

subnetwork

6) Add β, the minimal edge weight probability in this subnetwork

7) Draw from a Bernoulli distribution where the calculations to this point give 
the parameter
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Drawing from a 
Bernoulli(.41), we get a 
value of 1

Therefore 𝐴𝑢𝑣 = 1

There is an edge between 
u and v



ACRONYM implications

𝐴𝑢𝑣 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 α ∗ 𝛷1

1

1 + 𝜎2
𝛷1

−1 𝐻 𝛹𝑢,𝛹𝑣 +
𝜎

1 + 𝜎2
𝜀𝑢𝑣 + β

0  ≤ α ≤ 1    β > 0  α + β ≤ 1

• If α = 1 and β = 0, probabilities can run from 0 to 1 

• If α = 0, it’s a stochastic block model, and if all β are also equal, an ER graph
• As α shrinks, the range of probabilities also shrinks 
• As β grows, the minimal probability increases

• All probabilities are constrained to be between 0 and 1

• Contours can look different across the network, as can probability ranges

• Noise can be incorporated differently into each subnetwork 



Pros and cons  

• In a weighted network, edge weights carry fine-grained information
• Pro: The patterns of edge weights can display an order of preferences

• Con: Subnetwork edge weights have arbitrary distributions and must be 
estimated

• In an unweighted network, edges are either 0 or 1
• Con: It is hard to discern an order of preferences from only binary values

• Pro: As each edge is a Bernoulli RV that depends on node and community 
parameters, we can use likelihood-based techniques to estimate parameters



What do we need to estimate?

• Communities – Done separately before everything else

• α – width of probability range in subnetwork

• β – minimal probability in subnetwork

• σ – noise to signal ratio

• Functional form of H – We only try normal, concave, convex, linear

• ρ – ratio of impact of second community to first community

• [𝜳] – node sociability parameters

• We don’t really care about the 𝜀 values, but as they are latent variables with assumed 
𝑁(0,1) distributions, estimating 𝜀 can help estimate everything else
• At each step of an iterative algorithm, we estimate the likelihood-maximizing [ Ƹ𝜀𝑢𝑣], but to avoid 

early overfitting, we instead draw a random value Ƽ𝜀𝑢𝑣~𝑁( Ƹ𝜀𝑢𝑣, 1) for each edge at every step



Parameter estimation overview

• We estimate each subnetwork independently of all others
• Better for flexibility, but can’t borrow strength across the network
• We estimate a different Ψ for each node with respect to each community

• We run an iterative algorithm for the 4 H-function functional forms, and 
take the model yielding the best likelihood as our final estimate 

• At each stage, we determine which sets of parameters should be 
collectively updated based on whether the likelihood improves
• When updating multiple parameters, we want broad-based improvements so as to 

avoid too many updates chasing random fluctuations due to sampled [ Ƽ𝜀𝑢𝑣] values

• As [ Ƽ𝜀𝑢𝑣] are random, other parameters may be updated to suit these 
values, but may not yield the maximum observed likelihood, so we need to 
also keep those parameters associated with the best observed likelihood



Iterative algorithm for each subnetwork

1. Initialize all parameters (details omitted here)

Repeat steps 2 – 4 for the specified number of iterations 

2. Calculate the current log-likelihood of current parameters

3. Calculate [ Ƹ𝜀𝑢𝑣] to maximize likelihood, draw Ƽ𝜀𝑢𝑣 ~ N( Ƹ𝜀𝑢𝑣, 1)

4. Update the following 3 parameter sets in a uniformly random order to 
maximize log-likelihood given [ Ƽ𝜀𝑢𝑣]
a.  ෝα, ෠β, ොρ, and ොσ:  All updated together
b. [ ෡𝛹𝑢]:  Either all are updated, or none are
c. [ ෡𝛹𝑣]:  Either all are updated, or none are

5. Using the best performing parameters, calculate [ Ƹ𝜀𝑢𝑣], and re-estimate 
only ොσ using the [ Ƹ𝜀𝑢𝑣] values 



Simulation details

6 communities of 200 nodes each
• First 2 communities have Ψ values 

drawn from different Beta 
distributions

• 3rd and 4th  communities have 
“gaps” in Ψ values

• 5th and 6th communities’ Ψ values 
are drawn from a Uniform 
distribution



Simulation details

• Pairs of communities have 
different association directions, 
functional forms, α, β, ρ 
parameters (These are visible to 
the right)

• The σ values for within 
community edges are set to .3, 
and set to .4 for between 
community edges

True Probability Matrix



ACRONYM Estimate of simulated network
Noise-free probability matrix Estimated probability matrix

Mind the gaps!



Deeper dive on Ψ estimation

Ψ values for each node are estimated 6 times

• Each row shows estimates for Ψ for that row’s 
community in black, with true values in color 

• Bottom row depicts 6 estimates of the Ψ 
values for community 1, with a concave shape

• BLUE indicates ρ = 1

• PINK: the community had somewhat less 
influence than the other community 

• RED: the community has far less influence

• LIGHT GREEN: somewhat more influential 
than the other community

• DARK GREEN: far more influence



Deeper dive on Ψ estimation

Takeaways: 

Easier to estimate Ψ 
for nodes in 
communities 5 and  
6 (uniform) followed 
by communities 3 
and 4 (gaps)

Communities 1 and 
2  (Beta 
distributions) are 
the most difficult

May be due to 
initialization

Overall, pretty good estimates 
except in ER subnetworks (solid 
squares), where the Ψ values don’t 
matter anyway, since α = 0



Future plans

• Error rates for community detection and estimation based on 
different H-functions and parameters

• More general classes of H-functions, including compositions of          
H-functions

• Extension to multiple networks

• Joint parameter estimation using Bayesian approach



Thank You!

Questions?



First Note on 𝜀

• Usually, we view ε as idiosyncratic values relevant to only this particular network, 
so we don’t really care about their values

• However, as latent variables with assumed 𝑁(0,1) distributions, estimating ε can 
aid in estimating the meaningful parameters

• At each step of an iterative algorithm, we can estimate the likelihood-maximizing 
[ Ƹ𝜀𝑢𝑣], but using this value tends to perform worse by overfitting to early 
parameter estimates, driving ොσ to 0

• Instead, at each step, we draw a random value Ƽ𝜀𝑢𝑣~𝑁( Ƹ𝜀𝑢𝑣, 1)



Second Note on 𝜀

• As we assume 𝜀𝑢𝑣 ~ 𝑁(0,1), treating ෡𝐻ෝ𝜌
෡𝛹𝑢, ෡𝛹𝑣  and ො𝜎2 as fixed but ε as random then:  

• Therefore, our final estimates are given by 

𝐄𝜀
෠𝑃𝑢𝑣 =ෝ∝ 𝛷

𝛷−1 ෡𝐻ෝ𝜌
෡𝛹𝑢, ෡𝛹𝑣

1 + 𝟐 ො𝜎2
+ መ𝛽

Which has extra shrinkage, but during the estimation process, we don’t maximize 
likelihood using this expectation, but instead using the [ Ƽ𝜀𝑢𝑣] values



Likelihood set up

• For an observed network with adjacency matrix A = [Auv], the log-
likelihood for an estimated probability matrix P = [Puv] is given by

• The network’s edges are Bernoulli RVs with probability

where ρ dictates the balance of the first argument and the second 
argument



Communities and sociabilities

• Top left: the first and second 
entries of the u vectors for each 
node, colored by community 
membership

• Bottom left: the first and 
second entries of the u vectors 
for each node, colored by their 
Ψ values

• Top right: the third and fourth 
entries of the u vectors for each 
node, colored by community 
membership.

• Bottom right: the third and 
fourth entries of the u vectors 
for each node, colored by their 
Ψ values.

Mind the gaps!



Calculating [ Ƹ𝜀𝑢𝑣]

• For every edge where Auv = 1, the estimate simplifies to

• For every edge where Auv = 0,
𝜀 appears in 

the numerators 
and 

denominators



Community detection challenges

• Communities are defined by a similar 
ordering of preferences over other nodes, 
not homophily

• The network may contain positive and 
negative associations

• Existing methods based on e.g. modularity 
don’t appear to work well here

• The first eigenvector is often correlated with 
degree, not community

• Fortunately, the structure of ACRONYM 
guides us toward an approach based on 
normalizing each row of A



Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●) 

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix 
and look for the elbow. Call the value of this elbow  ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this 
matrix onto the surface of a hypersphere. Call the projection of the vth row  uv 

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering
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Community detection algorithm
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Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●) 

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix 
and look for the elbow. Call the value of this elbow  ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this 
matrix onto the surface of a hypersphere. Call the projection of the vth row  uv 

4. Compute the cosine distances between rows, 1- cos (uv , uw)
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Projections
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Cosine distance is not a true distance, but 
takes on a value between 0 and 2, with 
vectors pointing in the same direction 
getting a value of 0, and nodes pointing in 
opposite directions getting a value of 2



Community detection algorithm

1. Row-normalize the A matrix by taking Nuv = (𝑨𝒖● −𝑨𝒖●)/sd(𝑨𝒖●) 

2. Plot the absolute values of the real parts of the eigenvalues of the non-symmetric N matrix 
and look for the elbow. Call the value of this elbow  ሚ𝑑

3. Take the 𝑛 × ሚ𝑑 matrix made up of the first ሚ𝑑 eigenvectors of N, and project each row of this 
matrix onto the surface of a hypersphere. Call the projection of the vth row  uv 

4. Compute the cosine distances between rows, 1- cos (uv , uw)

5. Cluster the nodes based on these cosine distances using hierarchical clustering

In different contexts, we have 
seen different linkage criteria 
succeed. The network on the right 
would seem to do well using 
single-linkage clustering



Mouse retina community detection

ACRONYM finds different and fewer communities than the other approaches, but 
the results still appear to follow the physical structure

ACRONYM
randnet Spectral 

Clustering
randnet Spherical 
Spectral Clustering

nett Spectral 
Clustering
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