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Illustrative Example

Semaglutide Effectiveness [2]
® Patients in groups 1 and 2 are respectively given a semaglutide and placebo for 68 weeks.
e We model weight loss in kg via Bayesian linear regression: y; = o + B1X1; + BaX2i + €;.
* x; = I(Group = 1), x, is baseline waist circumference in cm, and € ~ N(0, 02).
* We assess the hypotheses Hg : 81 < 5vs. Hy : 51 > 5.

Hypothesis Testing
* We conclude H, is true if Pr(H¢|data) > ~ for a critical value v € [0.5, 1).

* We choose v and sample sizes ny = 2n and n, = n a priori.
® We use an uninformative normal-inverse-gamma prior for (ﬂo,ﬂ1,ﬁ27o§).



Operating Characteristics for Posterior Analyses

Data Generation Process

* Wo(): (Bo, B1,B2) = (—25.75,5,0.25), x, ~ N(115,14.5%), and ¢ ~ N/(0, 10.072).



Operating Characteristics for Posterior Analyses

Data Generation Process
* Wo(-): (Bo, B, 2) = (—25.75,5,0.25), x, ~ N(115,14.5%), and ¢ ~ N(0,10.07?).
e W,(-): the same as Wy(-) except 81 = {9, 12} with probability 0.5 each.



Operating Characteristics for Posterior Analyses

Data Generation Process
* Wo(-): (Bo, B, 2) = (—25.75,5,0.25), x, ~ N(115,14.5%), and ¢ ~ N(0,10.07?).
e W,(-): the same as Wy(-) except 81 = {9, 12} with probability 0.5 each.

Two Operating Characteristics

e Power is the probability that Pr(H|data) > ~ according to W4 ().



Operating Characteristics for Posterior Analyses

Data Generation Process
* Wo(-): (Bo, B, 2) = (—25.75,5,0.25), x, ~ N(115,14.5%), and ¢ ~ N(0,10.07?).
e W,(-): the same as Wy(-) except 81 = {9, 12} with probability 0.5 each.

Two Operating Characteristics

e Power is the probability that Pr(H|data) > ~ according to W4 ().
* We want power > 1 — 3= 0.8.



Operating Characteristics for Posterior Analyses

Data Generation Process
* Wo(-): (Bo, B, 2) = (—25.75,5,0.25), x, ~ N(115,14.5%), and ¢ ~ N(0,10.07?).
e W,(-): the same as Wy(-) except 81 = {9, 12} with probability 0.5 each.

Two Operating Characteristics

e Power is the probability that Pr(H|data) > ~ according to W4 ().
* We want power > 1 — 3= 0.8.

* The type I error rate is the probability that Pr(H+|data) > -~ according to Wo(-).



Operating Characteristics for Posterior Analyses

Data Generation Process
* Wo(-): (Bo, B, 2) = (—25.75,5,0.25), x, ~ N(115,14.5%), and ¢ ~ N(0,10.07?).
e W,(-): the same as Wy(-) except 81 = {9, 12} with probability 0.5 each.

Two Operating Characteristics

e Power is the probability that Pr(H|data) > ~ according to W4 ().
* We want power > 1 — 3= 0.8.

* The type I error rate is the probability that Pr(H+|data) > -~ according to Wo(-).
* We want the type I error rate < a = 0.05.
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Pseudorandom vs. Sobol’ Sequences

* In d dimensions, we often generate
points {u,}™ , "% y([0, 119).

e Low-discrepancy Sobol’ sequences [3]

arise from integer expansion in base 2.

¢ If we randomize these sequences [4],
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Simulation in Higher Dimensions

The Unit Hypercube
® The illustrative example uses Sobol’
sequences {u,}", from [0, 1].

® These sums over all patients i are low-
dimensional conduits for the data:
2 2
X2iy X1iX2iy €iy X1i€iy X3y €y X2iEj-
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Figure 4: Points from [0, 1]’
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Low-Dimensional Conduits for the Data
* The sufficient statistics are based on normal and chi-squared distributions.
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Mapping [0, 1]’ to Posterior Probabilities

Low-Dimensional Conduits for the Data
* The sufficient statistics are based on normal and chi-squared distributions.
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Mapping [0, 1]’ to Posterior Probabilities

Low-Dimensional Conduits for the Data
* The sufficient statistics are based on normal and chi-squared distributions.
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@ The logit of this function is
approximately linear!
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Computational Savings

Runtime Considerations

e Using sampling distribution segments is most beneficial when the recommended n is large.

e The savings from using Sobol’ sequences depends on the statistical model and simulation

dimension d.

Table 1: Runtime for illustrative example with various exploration methods and sequence types.

Exploration Sequence Seconds | Savings

Segments Sobol’ 4 —
Full Sobol’ 14 250%

Segments | Pseudorandom 31 675%
Full Pseudorandom 118 2850%




Contour Plots to Consider Various (n,~)

Type | Error Rate

0035 ——

Y

0.93 0.94 095 096 0.97
Y

0.93 0.94 095 096 0.97

Figure 9: Plots with Repurposed Sampling Distributions and Optimal Design (Grey)
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General Theoretical Considerations

Approximate Normality of the Posterior
e This is required for the logit of Pr(H1|data(u,, n)) to be linear for large enough n.
® This normality holds under the conditions for the Bernstien-von Mises theorem [5].

* Monotonic transformations of the parameters can improve the normal approximation,
especially when using the Laplace approximation [6] .

Conduits for the Data

* The data must be summarized by conduits that are approximately normally distributed for
large enough n.
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Conclusion

Computational Efficiency

e Our method only thoroughly explores sampling distributions of posterior probabilities at 3
values of n.

Extensions

* We could extend these methods to settings where low-dimensional sufficient statistics do
not exist [7].

* These methods could promote scalable design for sequential Bayesian hypothesis tests.
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