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Backgrounds Multi-fidelity simulation

Multi-fidelity simulation

@ Computer simulations have been widely used in engineering and
scientific research as valuable tools to understand complex systems.

@ The simulation can be either
o High-fidelity simulation: computationally expensive but accurate
o Low-fidelity simulation: computationally cheaper but less accurate

o (intermediate-fidelity simulation)
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Backgrounds Motivated Example

Motivated Example: Jet Engine Turbine Blade

@ Thermal stress in a jet turbine engine blade under steady-state
operating conditions (Carter, 2005; Wright and Han, 2006).

@ The problem can be treated as a static structural computer model
and can be solved numerically via finite element methods.

@ Input: x = (xy, x2) = (pressure, suction)

@ Output: f(x): maximum of the thermal stress profile
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Motivated Example: Jet Engine Turbine Blade

less accurate but cheaper accurate but expensive

mesh size = 0.05 mesh size = 0.025 mesh size = 0.0125

lllustration of finite element simulations at the input setting x = (0.5, 0.45).
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Multi-fidelity simulation

@ Multi-fidelity emulation is a computational technique by integrating
simulations at multiple levels of fidelity

@ to yield an efficient predictive model
e that maximizes the accurcy of model predictions,
o while minimizing the simulation costs.

@ Often called emulator or surrogate model.

@ By strategically integrating these simulations, we can potentially
improve accuracy without sacrificing excessive computational
resources.
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Problem setup

@ Let fi(x) represent the simulation output of the computer code with
input parameters x € Q C RY at fidelity level / =1,..., L.

@ Goal: Emulate f(x).
o Input: X) = {XEI]};’;1 for/=1,...,L.

e Output: yj := (fi(x))xex, for I=1,...,L
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Problem setup

@ Assume nested design, i.e.,

X CX 1C--CA CQ,

and xEI] = xE-I_I] fori=1,...,n.
@ The nested property leads to more efficient inference in various
multi-fidelity emulation approaches (Qian, 2009; Qian et al., 20009;

Haaland and Qian, 2010).

@ (; denote the simulation cost (e.g., in CPU hours) at fidelity level /
withO< GG <G <... < (.
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Backgrounds | Auto-regressive model

Auto-regressive model

@ The canonical approach is auto-regressive (AR) model (Kennedy &
O’Hagan, 2000).

@ AR model assumes additive structure of zero-mean Gaussian
processes (GPs).

f(x) = Z1(x),
fi(x) = p—1fi—1(x) + Z)(x), for 2</<L.

@ Several extensions including Qian et al. (2006), Qian and Wu (2008),
Le Gratiet (2013), Le Gratiet and Garnier (2014), and Perdikaris et al.
(2017).
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RNA emulator

@ AR model may not adequately capture the nonlinear relationships
between low- and high-fidelity data.

@ We propose a Recursive Non-Additive emulator (called RNA
emulator) to overcome this limitation in a recursive fashion:

f(x) = Wi(x),
f(x) = Wi(x, fi—1(x)), 1=2,---,L,

N\ N
(X f— W {y)
N ‘1‘ -
@G
) — )
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Junoh Heo and Chih-Li Sung (MSU) Active learning for a RNA emulator



Recursive Non-Additive (RNA) emulator

RNA emulator

RNA emulator
@ Model the relationship W, using a GP prior, that is,

Wi (x) ~ GP(ay(x), 72d1(x, X)),

Wi(z) ~ GP(oy(2), 77 Ki(2,2)), 1=2,---,L,

where z = (x,y), and Kj(z,2') is a positive definite kernel.

e Consider a constant mean, i.e., a1(x) = a1 and «y(z) = oy for [ > 2.
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Recursive Non-Additive (RNA) emulator

Nonlinear auto-regressive GP

@ Nonlinear auto-regressive GP(NARGP) proposed by Perdikaris et al.
(2017) also adopts the recursive scheme, but they rely on

1. Additive form of the kernel:
Ki(z,2') = &1 (x, X )®p2(fi—1(x), i—1(x)) + ®13(x, X),
2. Monte Carlo integration for the intractable posterior distribution:

p(fi(X)|y1,.--,y1)
/ / (ANyr, fim1(x)p(fi—1(X)]yi—1, fi—2(x)) - - - p(A(X)|y1)d(fi-1(x)) - . . d(Fi(x))-
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RNA emulator

@ RNA emulator adopts the natural form of popular kernel choices:

Ki(z,Z') = &(x,x; 01),

d
KI(sz/):¢(y7y,;gly)H¢(Xj7XJ{;9/j)v [=2,---,L,
j=1

@ With these kernel choices, RNA emulator has the closed form
posterior mean and variance of f;(x) in a recursive fashion.
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 1: The closed-form expressions

@ Under the squared exponential kernel, the posterior mean and
variance can be obtained as follows (Kyzyurova et al., 2018; Ming
and Guillas, 2021):

ui (%) - = E[fi(X)ly1, -, yi]

(% — x“)z 1 WY = (0)?
_oz/-I—Zr,Hexp< p ()exp _09LV+2—<7;“31()Q
1

a*2 (x
14251
ly

o7 (x) : = V)Y, -,y = 77 — (1] (%) — o)*+

¢ 4 (5 = X2 + (x5 — X))
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b
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)
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 2: Interpolation property

The RNA emulator exhibits interpolation property.

@ The closed form expressions can be derived under a Matérn kernel
with the smoothness parameter v = 1.5 and v = 2.5 as well.

@ Adopt the moment matching method to approximate the posterior
distribution.

@ R package called RNAmf is available.
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RNA emulator
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0.75 1.00

An illustration of the posterior distribution with an example from Perdikaris et al.
(2017), where n; = 13, ny = 8, fi(x) = sin(87x), and h(x) = (x — v2)F2(x).
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After emulating...
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Auto-regressive RNA

=== Emulator was highfidelity low—fidelity

However, the emulator still holds the uncertainty in some region!
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Active Learning

@ Active learning

@ is also known as sequential design,

e sequentially searches for and acquires new data points at optimal
location by a given criterion,

@ aims to achieve enhanced accuracy while managing the limited
resources.

@ Well-established for single-fidelity GP emulators, but research for
multi-fidelity computer simulations is scarce and more challenging.
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Active Learning for RNA emulator

@ In multi-fidelity simulation, active learning requires
e identifying optimal input locations,
o identifying fidelity levels,

@ accounting for the respective simulation costs simultaneously.

@ Three active learning strategies for RNA emulator will be introduced.

@ The nested structure assumption implies that we need to run f,(xLI,]H)

with 00 = xI'] | for all 1 < /< I to run the simulation
(]
ﬁ* (xn,*—f—l)‘
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Active Learning MacKay

@ Select the next point that maximizes the posterior predictive variance
(MacKay, 1992).

@ To account for the simulation cost C;, choose the next point XE,I/]H at
level | by maximizing ALM criterion:

. *2
) = argmax ZP)
le{1,...,L};xeQ ZJ 1 C

@ The closed-form expression facilitates the computation of ALM
criterion.
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Active Learning MacKay

AW AN

0.00 0.25 0.50 0.75 100 000 0.5 0.50 075 1.00
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Active Learning Cohn

@ Select an input location that maximizes the variance reduction across
the entire input space after running this selected simulation (Cohn,

1993).
@ Choose the next point x,+1 at fidelity level / by maximizing the ALC
criterion:
* Ac?(l
(r, xLI*]H) argmax M
! le{1,...,L};xeQ ZJ 1C
where Ad?(1,x) = [ {072(&) — 572(&; 1,x)} d€ is the average

reduction in variance (of the highest-fidelity emulator) with a choice
of the fidelity level / and the input location x.
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arning Cohn

& low-fidelity %= high—fidelity == prediction ## new point level — high-fidelity — low—fidelity predictive variance
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Two-step approach: ALMC

@ Inspired by Le Gratiet and Cannamela (2015), consider the
combination of ALM and ALC.

@ First, the optimal input location is selected by maximizing the
posterior predictive variance of the highest fidelity emulator:

x* = argmax o}2(x).
xeQ

@ Then, the ALC criterion determines the fidelity level with the
identified input location:

Ac?(], x*
I* = argmax 705( X
ettty i1 G

)

which aims to maximize the ratio between the variance reduction and
the associated simulation cost.
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Two-step approach: ALMC

= low—fidelity 2= high—fidelity == prediction % new point level — high—fidelity — low—fidelity predictive variance

Junoh Heo and Chih-Li Sung (MSU) Active learning for a RNA emulator



Numerical Studies and Revisit Motivated Example

Numerical studies: Emulation performance

@ 6 different functions with 2 or 3 levels of fidelity.

@ Compare proposed emulator RNAmf with Cokriging (Le Gratiet and
Garnier, 2014) and NARGP (Perdikaris et al., 2017).

@ 100 repetitions with nyet = 1000 random test input locations
generated by space-filling designs.

@ Evaluate the prediction performance based on two criteria: the
root-mean-square error (RMSE) and continuous rank probability score
(CRPS) (Gneiting and Raftery, 2007)
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Numerical studies: Emulation performance

@ Two-level Perdikaris function (Perdikaris et al., 2017),

fi(x) = sin(87x)
{ hlx) = (x — va)R(x) o X S 01

@ Two-level Park function (Park, 1991; Xiong et al., 2013),

fi(x) = f(x) + 20U £ (x) — 2x1 + 32 + xZ + 0.5

4
R(x) =3 {\/m 1} —+ (x1 + 3xa) exp (1 + sin(x3)) for x € [0, 1],

Perdikaris ‘ Branin | Park | Borehole ‘ Currin ‘ Franke
d 1 2 4 8 2 2
ny 13 20 40 60 20 20
o 8 15 20 30 10 15
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Numerical studies: RMSE

Perdikaris Branin Park
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Numerical studies: CRPS

Perdikaris Branin Park
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Numerical studies: Computational time
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Computational time of six synthetic examples across 100 repetitions.
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Numerical studies: Active learning performance

@ Perdikaris function (1-dim, nonlinear).

@ Compare three proposed strategies ALM, ALC, and ALVMC, with a
cokriging-based sequential design (CoKriging-CV) (Le Gratiet and
Cannamela, 2015) and a sequential design maximizing the rate of
stepwise uncertainty reduction using the AR model (MR-SUR) (Stroh
et al., 2022).

@ Simulation costs of low- and high-fidelity simulators are C; = 1 and
G=3

@ Total simulation budget of Ciyta1 = 80.

@ 10 repetitions with different seeds.
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Numerical studies: Active learning performance
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RMSE and CRPS for the Perdikaris function with respect to the simulation cost.
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Numerical studies: Active learning performance
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Final RMSE (left) and proportion of AL acquisitions choosing low-fidelity data
(right).
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Revisit motivated example

lllustration of low-fidelity (left, mesh size=0.05) and high-fidelity (right, mesh
size=0.0125) finite element simulations at the input setting x = (0.5, 0.45).

@ Input: x = (x1,x2) = (pressure, suction) € Q = [0.25,0.75]?

@ Output: f(x): maximum of the thermal stress profile

Junoh Heo and Chih-Li Sung (MSU) Active learning for a RNA emulator



Numerical Studies and Revisit Motivated Example

Revisit motivated example

@ Perform the finite element simulations with n; = 20 and ny, = 10.

@ The simulation time of the finite element simulations, which are
respectively C; = 2.25 and C; = 6.85 (seconds) will be used for
active learning.

@ 10 repetitions with nyegy = 100 random test input locations generated
by a space-filling design.

@ We perform finite element simulations using the Partial Differential
Equation Toolbox in MATLAB.
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Blade: Emulation performance

Blade data Blade data Blade data
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RMSE, CRPS, and computation time across 10 repetitions in the turbine blade
application.
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Blade: Active learning performance
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RMSE and CRPS for the Park function with respect to the cost.
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Blade: Active learning performance
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Conclusion

@ We propose a new model (RNA emulator) and three corresponding
active learning strategies (ALM, ALC, and ALMC).

@ RNA emulator provides the closed-form expressions for both the
posterior mean and variance under the common kernel choices.

@ Active learnings are facilitated by these closed form expressions.

@ Numerical studies and real application show the effectiveness of our
approach.

@ R package RNAmf is available on CRAN.
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Code (CRAN)

RNAmf: Recursive Non-Additive Emulator for Multi-Fidelity Data

Performs RNA emulation and active learning proposed by Heo and Sung (2023+) <arXi

309.11772> for multi-fidelity computer experiments. The RNA emulator s particularly useful when the

simulations with different fidelity level are correlated. The in the model are estimated by maximum likelihood estimation.
Version: 010

Imports: plgp, stats, Ihs, doParallel, foreach

Suggests: Knitr, rmarkdown

Published: 2023-12-06

Author: Junoh Heo [aut, cre], Chih-Li Sung [aut]

Maintainer: Junoh Heo <heojunoh at msu.edu>

License: MIT + file LICENSE

NeedsCompilation: no
CRAN checks:  RNAmf results

Documentation:

Reference manual: RNAmf.pdf

Downloads:

Package source:  RNAmf

Otargz
‘Windows binaries: r-devel: not available, r-release: RNAmf 0.1.0.zip, r-oldrel: not available
macOS binaries:  r-release (arm64): RNAmS 7, r-oldrel (arm64): RNAm 27, r-release (x86_64): RNA!

z, r-oldrel (x86_64): not available
Linking:

Please use the canonical form nttps: //Cra. R-project .org/package=Ruant to link to this page.
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