
Scalable Design with Posterior-Based
Operating Characteristics

Luke Hagar

lmhagar@uwaterloo.ca

2024 Joint Research Conference
June 20, 2024



Associated Work

Hagar, L. and Stevens, N. T. (2024+)
Scalable design with posterior-basedoperating characteristics.
Revision invited at the Journal of the
American Statistical Association

arxiv.org/abs/2312.10814

2 / 16

arxiv.org/abs/2312.10814


Illustrative Example

Semaglutide Effectiveness [2]

• Patients in groups 1 and 2 are respectively given a semaglutide and placebo for 68 weeks.

• We model weight loss in kg via Bayesian linear regression: yi = β0 + β1x1i + β2x2i + εi.
• x1 = I(Group = 1), x2 is baseline waist circumference in cm, and ε ∼ N (0, σ2

ε).
• We assess the hypotheses H0 : β1 ≤ 5 vs. H1 : β1 > 5.

Hypothesis Testing
• We conclude H1 is true if Pr(H1|data) > γ for a critical value γ ∈ [0.5,1).

• We choose γ and sample sizes n1 = 2n and n2 = n a priori.
• We use an uninformative normal-inverse-gamma prior for (β0, β1, β2, σ2

ε).
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Operating Characteristics for Posterior Analyses

Data Generation Process

• Ψ0(·): (β0, β1, β2) = (−25.75,5,0.25), x2 ∼ N (115,14.52), and ε ∼ N (0,10.072).

• Ψ1(·): the same as Ψ0(·) except β1 = {9,12} with probability 0.5 each.

Two Operating Characteristics

• Power is the probability that Pr(H1|data) > γ according to Ψ1(·).
• We want power ≥ 1 − β = 0.8.

• The type I error rate is the probability that Pr(H1|data) > γ according to Ψ0(·).
• We want the type I error rate ≤ α = 0.05.
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Sampling Distributions of Posterior Probabilities

Estimating Sampling Distributions

1 Generate {yi, x1i, x2i}3n
i=1 according to

Ψ1(·) or Ψ0(·).
• Estimate Pr(H1|data).
• Repeat m times.

Sampling Distribution Segments

• We choose (n, γ) to satisfy criteria forboth operating characteristics.
• Can we use only sampling distributionsegments near the β-quantile under H1and the (1 − α)-quantile under H0?

Figure 1: Sampling Distributions of
Pr(H1|data) for n = 20 and γ = 0.95
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Simulation-Based Design

Pseudorandom vs. Sobol’ Sequences
• In d dimensions, we often generate

points {ur}mr=1 i.i.d∼ U([0,1]d).
• Low-discrepancy Sobol’ sequences [3]arise from integer expansion in base 2.
• If we randomize these sequences [4],each point ur ∼ U([0,1]d).
• These dependent points {ur}mr=1 canprompt consistent, precise estimatorsof power and the type I error rate.
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0.00 0.25 0.50 0.75 1.00

Figure 2: 2D Pseudorandom Sequencewith m = 64 Points
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Simulation in Higher Dimensions

The Unit Hypercube
• The illustrative example uses Sobol’sequences {ur}mr=1 from [0,1]7.

• We generate low-dimensional conduitsfor the data.

Dim  5
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Dim  4

0

1

Figure 4: Points from [0,1]7
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Simulation in Higher Dimensions

The Unit Hypercube
• The illustrative example uses Sobol’sequences {ur}mr=1 from [0,1]7.
• These sums over all patients i are low-dimensional conduits for the data:
x2i, x1ix2i, εi, x1iεi, x22i, ε2

i , x2iεi.
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Mapping [0,1]7 to Posterior Probabilities

Low-Dimensional Conduits for the Data
• The sufficient statistics are based on normal and chi-squared distributions.
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Mapping [0,1]7 to Posterior Probabilities

Low-Dimensional Conduits for the Data
• The sufficient statistics are based on normal and chi-squared distributions.
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Mapping [0,1]7 to Posterior Probabilities

Low-Dimensional Conduits for the Data
• The sufficient statistics are based on normal and chi-squared distributions.
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Selecting Sampling Distribution Segments

Algorithm

1 Generate {ur}mr=1 ∈ [0,1]7 for H0 and H1.
• For fixed ur, consider Pr(H1|data(ur,n))as a function of n prompted by the dataconduits.
• Pr(H1|data(ur,n)) generally ↑, ↓, orremains constant with n when β1 >,<, or = 5.
• The logit of this function isapproximately linear!
• We use these linear approximationsto select segments.

Figure 6: Posterior Probabilities with Data Conduits
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Finding (n,γ) that minimizes n

Obtaining Linear Approximations
• Let n(0) be an initial sample size.

• Use {ur}mr=1 to explore the samplingdistributions of Pr(H1|data) under H1and H0.
• If (1 − α)-quantile under H0 >
β-quantile under H1, n(1) < n(0) .

• Otherwise, let n(1) < n(0) .
• Use the same points to explore thesampling distributions of Pr(H1|data)under H1 and H0 for n(1) .

Figure 7: Full Sampling Distribution Exploration
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Finding (n,γ) that minimizes n

Quantile Estimation with Segments
• Explore n-space with the m0 << mpoints whose linear approximationsare closest to the relevant quantiles.

• Let n(2) be the smallest n suchthat the (1 − α)-quantile under
H0 ≤ β-quantile under H1.

• Explore entire sampling distributionsfor n(2) .
• Choose n = n(2) and γ as the
(1 − α)-quantile under H0 for n(2) .

• Sample size recommendations areconsistent.
Figure 8: Sampling Distribution Segments
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Computational Savings

Runtime Considerations
• Using sampling distribution segments is most beneficial when the recommended n is large.

• The savings from using Sobol’ sequences depends on the statistical model and simulationdimension d.

Table 1: Runtime for illustrative example with various exploration methods and sequence types.
Exploration Sequence Seconds Savings
Segments Sobol’ 4 —Full Sobol’ 14 250%Segments Pseudorandom 31 675%Full Pseudorandom 118 2850%
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Contour Plots to Consider Various (n,γ)

Figure 9: Plots with Repurposed Sampling Distributions and Optimal Design (Grey)
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General Theoretical Considerations

Approximate Normality of the Posterior
• This is required for the logit of Pr(H1|data(ur,n)) to be linear for large enough n.

• This normality holds under the conditions for the Bernstien-von Mises theorem [5].
• Monotonic transformations of the parameters can improve the normal approximation,especially when using the Laplace approximation [6] .

Conduits for the Data
• The data must be summarized by conduits that are approximately normally distributed forlarge enough n.
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Conclusion

Computational Efficiency
• Our method only thoroughly explores sampling distributions of posterior probabilities at 3values of n.

Extensions
• We could extend these methods to settings where low-dimensional sufficient statistics donot exist [7].
• These methods could promote scalable design for sequential Bayesian hypothesis tests.
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