
Experimental design for expensive path planning
simulators via integer programming

1Supported by NSF CSSI Frameworks 2004571, NSF DMS 2210729, 2316012 and DE-SC0024477

Yen-Chun Liu, Simon Mak

Department of Statistical Science

Duke University

2024 JRC at University of Waterloo

2

What are path planning problems?

2

What are path planning problems?

Finding an optimal navigation path that
minimizes a cost function while meeting
specified constraints

e.g. warehouse robotics, rover navigation
tasks

Goal

2

What are path planning problems?

Finding an optimal navigation path that
minimizes a cost function while meeting
specified constraints

e.g. warehouse robotics, rover navigation
tasks

Goal

Amazon robots (source: amazon.com)

A rover navigation task (obstacles
are swamps!) (Wang et al. 2018)

http://amazon.com

2

What are path planning problems?

Finding an optimal navigation path that
minimizes a cost function while meeting
specified constraints

e.g. warehouse robotics, rover navigation
tasks

Goal

Amazon robots (source: amazon.com)

A rover navigation task (obstacles
are swamps!) (Wang et al. 2018)

Discrete path planning problems
• Action spaces are discrete
• More economical; aligns with many

robotics tasks
• e.g. maze-solving problems (up, down,

right, left)

http://amazon.com

3

Traditional methods

3

Traditional methods
• Dijkstra’s algorithm and its variants (Dijkstra, 1976)

• Particle swarm optimization (Kennedy and Eberhart, 1995)

• Rapidly exploring random trees (LaValle and Kuffner, 2001)

3

Traditional methods
• Dijkstra’s algorithm and its variants (Dijkstra, 1976)

• Particle swarm optimization (Kennedy and Eberhart, 1995)

• Rapidly exploring random trees (LaValle and Kuffner, 2001)

… and so on

3

Traditional methods

Problem solved!

• Dijkstra’s algorithm and its variants (Dijkstra, 1976)

• Particle swarm optimization (Kennedy and Eberhart, 1995)

• Rapidly exploring random trees (LaValle and Kuffner, 2001)

… and so on

3

Traditional methods

Problem solved! Wait a sec …

• Dijkstra’s algorithm and its variants (Dijkstra, 1976)

• Particle swarm optimization (Kennedy and Eberhart, 1995)

• Rapidly exploring random trees (LaValle and Kuffner, 2001)

… and so on

• Path planning is now needed for highly sophisticated systems,
e.g., space rover, unmanned aerial vehicle, … etc.

• High-fidelity simulators can be computationally expensive (days)!

4

Experiments can be expensive!

unmanned aerial vehicle
(Narayanan et al. 2024)Rocket propulsion

• Path planning is now needed for highly sophisticated systems,
e.g., space rover, unmanned aerial vehicle, … etc.

• High-fidelity simulators can be computationally expensive (days)!

4

Experiments can be expensive!

unmanned aerial vehicle
(Narayanan et al. 2024)Rocket propulsion

We should be more careful when designing initial runs and
selecting sequential runs.

Especially when the problem is high-dimensional!

Goals:

• Construct optimal space-filling initial designs via integer
programming (IP)

• Propose simple, straightforward IP-based sequential designs for
prediction and optimization that avoids exhaustive search

Action space: descisions to make; different choices of actions 

 

q m

5

In this talk

𝒜 = {x; x ∈ {a1, ⋯, am}q}

Goals:

• Construct optimal space-filling initial designs via integer
programming (IP)

• Propose simple, straightforward IP-based sequential designs for
prediction and optimization that avoids exhaustive search

Action space: descisions to make; different choices of actions 

 

q m

5

In this talk

𝒜 = {x; x ∈ {a1, ⋯, am}q}

both and can be high-dimensional!q m

6

Literature Review

• Maximin designs

• Metaheuristic algortihms (Stokes et al., 2023)

• Orthogonal Arrays (restricted run sizes)

• Latin hypercube designs

• Sliced-LHD (exchangeable algorithms)
(Ba et al., 2015)

7

Popular experimental designs

Example of sliced-LHD (Ba et al., 2015)

• Maximin designs

• Metaheuristic algortihms (Stokes et al., 2023)

• Orthogonal Arrays (restricted run sizes)

• Latin hypercube designs

• Sliced-LHD (exchangeable algorithms)
(Ba et al., 2015)

7

Popular experimental designs

Example of sliced-LHD (Ba et al., 2015)

Simple, fast, but do not guarantee convergence to
global optimum (especially high-dim!!)

• Maximin designs

• Metaheuristic algortihms (Stokes et al., 2023)

• Orthogonal Arrays (restricted run sizes)

• Latin hypercube designs

• Sliced-LHD (exchangeable algorithms)
(Ba et al., 2015)

7

Popular experimental designs

Example of sliced-LHD (Ba et al., 2015)

Simple, fast, but do not guarantee convergence to
global optimum (especially high-dim!!)

8

Qualitative Gaussian Processes

• Hamming distance

• Exchangeable kernel

d(xi, xj) =
q

∑
k=1

1(xik ≠ xjk)

kθ (xi, xj) = τ2 exp {−
q

∑
l=1

θl1(xil ≠ xjl)}

Hamming-distance based kernel (Qian et al. 2008)

8

Qualitative Gaussian Processes

• Hamming distance

• Exchangeable kernel

d(xi, xj) =
q

∑
k=1

1(xik ≠ xjk)

kθ (xi, xj) = τ2 exp {−
q

∑
l=1

θl1(xil ≠ xjl)}

Hamming-distance based kernel (Qian et al. 2008)

Latent variable kernel (Zhang et al. 2020)
• Idea: mapping qualitative variables to latent

continuous spaces and applying continuous kernels

• Assumption: there exists latent continuous spaces

for qualitative variables

• Applications: material science, physics-based

simulation

LVGP (Zhang et al. 2020)

9

Sequential design for qualitative variables
Exhaustive search

• Pros: ensured to achieve global optimum

• Concerns: infeasible in high-dim cases or when the decision space is large

9

Sequential design for qualitative variables
Exhaustive search

Treating dummy variables as continuous variables
• Pros: straightforward, fast, easy to implement

• Concerns: dummy variables are not really quantitative variables; can be

problematic

• Pros: ensured to achieve global optimum

• Concerns: infeasible in high-dim cases or when the decision space is large

9

Sequential design for qualitative variables
Exhaustive search

Latent variable Bayesian optimization (Zhang et al. 2020b)
• Pros: flexible, efficient, nice UQ

• Concerns: can be slow in high-dim cases; need sufficient training samples,

latent space assumption might not hold

Treating dummy variables as continuous variables
• Pros: straightforward, fast, easy to implement

• Concerns: dummy variables are not really quantitative variables; can be

problematic

• Pros: ensured to achieve global optimum

• Concerns: infeasible in high-dim cases or when the decision space is large

10

Proposed methods

11

Experimental designs via IP
• Convert inputs to dummy variables  
e.g. Suppsoe action set = {a, b, c, d} and design = (b,c,a,d,a). Then

• Each I(x) must satisfy for all i.

• Hamming distance between designs can be represented as
 

I(b, c, a, d, a) =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1
1 0 0 0

.

m

∑
j=1

I(x)i, j = 1

d(xi, xj) = q − tr{I(xi)I(xj)⊤} .

12

Experimental designs via IP

max
𝒳n

1, subject to q −
q

∑
k=1

(IiI⊤
i′￼)kk

≥ C, ∀1 ≤ i < i′￼≤ n

Ii1m − 1q = 0q, ∀1 ≤ i ≤ n, Ii ∈ {0,1}q × {0,1}m ∀1 ≤ i ≤ n .

Solving a maximin design with minimal Hamming distance C is the
same as solving:

≥

12

Experimental designs via IP

max
𝒳n

1, subject to q −
q

∑
k=1

(IiI⊤
i′￼)kk

≥ C, ∀1 ≤ i < i′￼≤ n

Ii1m − 1q = 0q, ∀1 ≤ i ≤ n, Ii ∈ {0,1}q × {0,1}m ∀1 ≤ i ≤ n .

Solving a maximin design with minimal Hamming distance C is the
same as solving:

≥

• A non-convex integer programming (IP) problem

12

Experimental designs via IP

max
𝒳n

1, subject to q −
q

∑
k=1

(IiI⊤
i′￼)kk

≥ C, ∀1 ≤ i < i′￼≤ n

Ii1m − 1q = 0q, ∀1 ≤ i ≤ n, Ii ∈ {0,1}q × {0,1}m ∀1 ≤ i ≤ n .

Solving a maximin design with minimal Hamming distance C is the
same as solving:

≥

• A non-convex integer programming (IP) problem
• That can be viewed as a classic assignment problem (AP) from

operational research!!

12

Experimental designs via IP

max
𝒳n

1, subject to q −
q

∑
k=1

(IiI⊤
i′￼)kk

≥ C, ∀1 ≤ i < i′￼≤ n

Ii1m − 1q = 0q, ∀1 ≤ i ≤ n, Ii ∈ {0,1}q × {0,1}m ∀1 ≤ i ≤ n .

Solving a maximin design with minimal Hamming distance C is the
same as solving:

≥

• A non-convex integer programming (IP) problem
• That can be viewed as a classic assignment problem (AP) from

operational research!!

Advantages
1. Guaranteed convergence to global optimum (IP+AP)

2. Can be solved by state-of-art IP optimizers (Gurobi)

3. Providing optimization gaps (not available in heuristic algorithms)

13

How to select initial threshold C?

By Gilbert-Varshamov bound, a lower bound threshold of DPP
designs of size and action space can be estimated by

S(m, q, n)
n (m, q)

S(m, q, n) = arg max
s∈{1,2,⋯,q}

mq /
s−1

∑
j=0

(q
j)(q − 1) j ≥ n .

The Gilbert–Varshamov bound (Gilbert, 1952; Varshamov, 1957)
Let denote the maximum size of path planning designs wtih action
space and minimum pairwise Hamming distance . Then,

Nm(q, s)
(m, q) s

Nm(q, s) ⩾
mq

∑s−1
j=0 (q

j)(q − 1) j

.

Proposition (Initial threshold C)

14

Constructing initial designs D(m, q, n)

Use existing maximin design , where
 as warmstarts

D(m0, q0, n0)
m0 ≤ m, q0 ≤ q, n0 ≤ n

optional

14

Constructing initial designs D(m, q, n)

Search for a design with minimal pairwise distance C = S(m,q,n)

Use existing maximin design , where
 as warmstarts

D(m0, q0, n0)
m0 ≤ m, q0 ≤ q, n0 ≤ n

optional

14

Constructing initial designs D(m, q, n)

Search for a design with minimal pairwise distance C = S(m,q,n)

Search for a design with minimal pairwise distance = C

C = C+1

Use existing maximin design , where
 as warmstarts

D(m0, q0, n0)
m0 ≤ m, q0 ≤ q, n0 ≤ n

optional

14

Constructing initial designs D(m, q, n)

Search for a design with minimal pairwise distance C = S(m,q,n)

Search for a design with minimal pairwise distance = C

C = C+1

If design exists

Use existing maximin design , where
 as warmstarts

D(m0, q0, n0)
m0 ≤ m, q0 ≤ q, n0 ≤ n

optional

14

Constructing initial designs D(m, q, n)

Search for a design with minimal pairwise distance C = S(m,q,n)

Return design

if design not exists or C+1 = q-1

Search for a design with minimal pairwise distance = C

C = C+1

If design exists

Use existing maximin design , where
 as warmstarts

D(m0, q0, n0)
m0 ≤ m, q0 ≤ q, n0 ≤ n

optional

15

Sequential Prediction

Active learning Mackay (ALM; MacKay, 1992) for prediction

𝑥𝑛𝑒𝑤

f(𝑥𝑛𝑒𝑤)

Explore the unknown!

xnew = arg max
x

σ2
n(x)

Goal: optimizing prediction performance

16

IP-based ALM for qualitative kernel

max
x

σ2
n(x) = max

x
τ2{K(x, x) − K(x, 𝒳n)K−1

nn K(𝒳n, x)}

= min
I(x)

K(x, 𝒳n)K−1
nn K(𝒳n, x)

= min
I(x)

n

∑
i=1

n

∑
j=1

exp [−
q

∑
k=1

{I(x)I(Xi)⊤}kk
θk](K−1

nn)ijexp [−
q

∑
k=1

{I(x)I(Xj)⊤}kk
θk]

= min
I(x)

n

∑
i=1

n

∑
j=1

exp (−
q

∑
k=1

[I(x){I(Xi) + I(Xj)}
⊤]

kk
θk)(K−1

nn)ij

I(x)1m − 1q = 0q and I(x) ∈ {0,1}q × {0,1}m .

Let be the observed data and be the set of lengthscale
parameters.

𝒳n = (X1, X2, ⋯, Xn) {θk}q
k=1

subject to

16

IP-based ALM for qualitative kernel

max
x

σ2
n(x) = max

x
τ2{K(x, x) − K(x, 𝒳n)K−1

nn K(𝒳n, x)}

= min
I(x)

K(x, 𝒳n)K−1
nn K(𝒳n, x)

= min
I(x)

n

∑
i=1

n

∑
j=1

exp [−
q

∑
k=1

{I(x)I(Xi)⊤}kk
θk](K−1

nn)ijexp [−
q

∑
k=1

{I(x)I(Xj)⊤}kk
θk]

= min
I(x)

n

∑
i=1

n

∑
j=1

exp (−
q

∑
k=1

[I(x){I(Xi) + I(Xj)}
⊤]

kk
θk)(K−1

nn)ij

I(x)1m − 1q = 0q and I(x) ∈ {0,1}q × {0,1}m .

Let be the observed data and be the set of lengthscale
parameters.

𝒳n = (X1, X2, ⋯, Xn) {θk}q
k=1

subject to

A mixed integer programming problem (MIP)!

Able to achieve global optimum without exhaustive search!

17

Sequential Optimization

Upper confidence bound (UCB)

max
I(x)

μn{I(x)} + λσn{I(x)}
Exploration - exploitation

μn{I(x)} = ̂μn +
n

∑
i=1

n

∑
j−1

exp [−
q

∑
k=1

{I(x)I(Xi)⊤}kk
θk](K−1

nn)ij(yn, j − ̂μn)

σ2
n{I(x)} = ̂τ2 1 − exp (−

q

∑
k=1

[I(x){I(Xi) + I(Xj)}
⊤]

kk
θk)(K−1

nn)ij

Posterior mean:

Posterior variance:

Goal: finding x* = arg max f(x)

17

Sequential Optimization

Upper confidence bound (UCB)

max
I(x)

μn{I(x)} + λσn{I(x)}
Exploration - exploitation

μn{I(x)} = ̂μn +
n

∑
i=1

n

∑
j−1

exp [−
q

∑
k=1

{I(x)I(Xi)⊤}kk
θk](K−1

nn)ij(yn, j − ̂μn)

σ2
n{I(x)} = ̂τ2 1 − exp (−

q

∑
k=1

[I(x){I(Xi) + I(Xj)}
⊤]

kk
θk)(K−1

nn)ij

Posterior mean:

Posterior variance:

Goal: finding x* = arg max f(x)

A mixed integer programming problem (MIP)!

Able to achieve global optimum without exhaustive search!

18

Numerical Results

19

Maximin designs

solid lines: IP optimizer (Gurobi)
dashed lines: metaheuristic algorithm (differential evolution) by Stokes et al. (2023)

M
in

im
al

 p
ai

rw
is

e
st

an
da

rd
iz

ed
 H

am
m

in
g

di
st

an
ce

Maximin distance achieved by proposed IP optimizer (Gurobi) v.s. metaheuristics
algorithms (Stokes et al. ,2023) when design size is 50.

20

Simulation - Maze problems
Goal:

Predict the number of steps needed to reach the goal after
taking q steps.

Action space :
• Number of actions (m) = 5 (left, right, up, down, stay)
• Step lengths (q) = 7 or 12

(mq = 57, 512)

A 6x6 maze optimal path Cost values at each grid

21

Sequential optimization

Maximin initial designs were obtained by IP optimizers

22

Sequential prediction
Evaluation criteria: RRMSE

RRMSE =
N−1 ∑n+N

i=n+1 (̂yi − yi)

(n − 1)−1 ∑n
i=1 (yi − ȳn)2

.

22

Sequential prediction
Evaluation criteria: RRMSE

RRMSE =
N−1 ∑n+N

i=n+1 (̂yi − yi)

(n − 1)−1 ∑n
i=1 (yi − ȳn)2

.

• RR: random initial design + random sequential design

• Others: use maximin initial design found by IP optimizer

23

Rover navigation task

Swamps

(can pass through with
greatly reduced speed)

Goal:
Reaching the goal in limited steps and minimizing the time
trapped in the swamps

Action space :
• Number of actions (m) = 9: 

4 angles 2 lengths + 1 (stay)

• Step lengths (q) = 8

(mq = 98)

(0, π /6, π /4, π /2) × (0.1, 0.2)

24

Sequential optimization

Optimal paths found by IP-based UCB

25

Thank you!

Any questions?

