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Finding an optimal navigation path that 
minimizes a cost function while meeting 
specified constraints

e.g. warehouse robotics, rover navigation 
tasks

Goal

Amazon robots (source: amazon.com)

A rover navigation task (obstacles 
are swamps!) (Wang et al. 2018)

Discrete path planning problems
• Action spaces are discrete
• More economical; aligns with many 

robotics tasks
• e.g. maze-solving problems (up, down, 

right, left)

http://amazon.com
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Traditional methods

Problem solved! Wait a sec …

• Dijkstra’s algorithm and its variants (Dijkstra, 1976)


• Particle swarm optimization (Kennedy and Eberhart, 1995)


• Rapidly exploring random trees (LaValle and Kuffner, 2001)

… and so on



• Path planning is now needed for highly sophisticated systems,  
e.g., space rover, unmanned aerial vehicle, … etc.


• High-fidelity simulators can be computationally expensive (days)!
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Experiments can be expensive!

unmanned aerial vehicle 
(Narayanan et al. 2024)Rocket propulsion

We should be more careful when designing initial runs and 
selecting sequential runs.


Especially when the problem is high-dimensional!



Goals:

• Construct optimal space-filling initial designs via integer 
programming (IP)

• Propose simple, straightforward IP-based sequential designs for 
prediction and optimization that avoids exhaustive search

Action space:  descisions to make;  different choices of actions 

 

q m
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Literature Review



• Maximin designs
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• Orthogonal Arrays (restricted run sizes)
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• Sliced-LHD (exchangeable algorithms) 
(Ba et al., 2015)
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Qualitative Gaussian Processes
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• Hamming distance





• Exchangeable kernel


d(xi, xj) =
q

∑
k=1

1(xik ≠ xjk)

kθ (xi, xj) = τ2 exp {−
q

∑
l=1

θl1(xil ≠ xjl)}

Hamming-distance based kernel (Qian et al. 2008)

Latent variable kernel (Zhang et al. 2020)
• Idea: mapping qualitative variables to latent 

continuous spaces and applying continuous kernels

• Assumption: there exists latent continuous spaces 

for qualitative variables

• Applications: material science, physics-based 

simulation

LVGP (Zhang et al. 2020)
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Sequential design for qualitative variables
Exhaustive search

Latent variable Bayesian optimization (Zhang et al. 2020b)
• Pros: flexible, efficient, nice UQ

• Concerns: can be slow in high-dim cases; need sufficient training samples,  

latent space assumption might not hold


Treating dummy variables as continuous variables
• Pros: straightforward, fast, easy to implement

• Concerns: dummy variables are not really quantitative variables; can be 

problematic


• Pros: ensured to achieve global optimum

• Concerns: infeasible in high-dim cases or when the decision space is large
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Proposed methods
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Experimental designs via IP
• Convert inputs to dummy variables  
e.g. Suppsoe action set = {a, b, c, d} and design = (b,c,a,d,a). Then               

• Each I(x) must satisfy                         for all i.

• Hamming distance between designs can be represented as
 

I(b, c, a, d, a) =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1
1 0 0 0

.

m

∑
j=1

I(x)i, j = 1

d(xi, xj) = q − tr{I(xi)I(xj)⊤} .
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Experimental designs via IP
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1,  subject to q −
q
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(IiI⊤
i′￼)kk

≥ C, ∀1 ≤ i < i′￼≤ n

Ii1m − 1q = 0q, ∀1 ≤ i ≤ n, Ii ∈ {0,1}q × {0,1}m ∀1 ≤ i ≤ n .

Solving a maximin design with minimal Hamming distance  C is the 
same as solving:
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Experimental designs via IP

max
𝒳n

1,  subject to q −
q

∑
k=1

(IiI⊤
i′￼)kk

≥ C, ∀1 ≤ i < i′￼≤ n

Ii1m − 1q = 0q, ∀1 ≤ i ≤ n, Ii ∈ {0,1}q × {0,1}m ∀1 ≤ i ≤ n .

Solving a maximin design with minimal Hamming distance  C is the 
same as solving:

≥

• A non-convex integer programming (IP) problem 
• That can be viewed as a classic assignment problem (AP) from 

operational research!!

Advantages
1. Guaranteed convergence to global optimum (IP+AP)

2. Can be solved by state-of-art IP optimizers (Gurobi)

3. Providing optimization gaps (not available in heuristic algorithms)
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How to select initial threshold C?

By Gilbert-Varshamov bound, a lower bound threshold  of DPP 
designs of size  and action space  can be estimated by

S(m, q, n)
n (m, q)

S(m, q, n) = arg max
s∈{1,2,⋯,q}

mq /
s−1

∑
j=0

(q
j)(q − 1) j ≥ n .

The Gilbert–Varshamov bound (Gilbert, 1952; Varshamov, 1957)
Let  denote the maximum size of path planning designs wtih action 
space  and minimum pairwise Hamming distance . Then,  

Nm(q, s)
(m, q) s

Nm(q, s) ⩾
mq

∑s−1
j=0 (q

j)(q − 1) j

.

Proposition (Initial threshold C)
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Constructing initial designs D(m, q, n)

Use existing maximin design , where 
 as warmstarts

D(m0, q0, n0)
m0 ≤ m, q0 ≤ q, n0 ≤ n

optional
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Constructing initial designs D(m, q, n)

Search for a design with minimal pairwise distance C = S(m,q,n)

Return design

if design not exists or C+1 = q-1

Search for a design with minimal pairwise distance =  C

C = C+1

If design exists

Use existing maximin design , where 
 as warmstarts

D(m0, q0, n0)
m0 ≤ m, q0 ≤ q, n0 ≤ n

optional
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Sequential Prediction

Active learning Mackay (ALM; MacKay, 1992) for prediction

𝑥𝑛𝑒𝑤

f(𝑥𝑛𝑒𝑤)

Explore the unknown!

xnew = arg max
x

σ2
n(x)

Goal: optimizing prediction performance 
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IP-based ALM for qualitative kernel

max
x

σ2
n(x) = max

x
τ2{K(x, x) − K(x, 𝒳n)K−1

nn K(𝒳n, x)}

= min
I(x)

K(x, 𝒳n)K−1
nn K(𝒳n, x)

= min
I(x)

n

∑
i=1

n

∑
j=1

exp [−
q

∑
k=1

{I(x)I(Xi)⊤}kk
θk](K−1

nn )ijexp [−
q

∑
k=1

{I(x)I(Xj)⊤}kk
θk]

= min
I(x)

n

∑
i=1

n

∑
j=1

exp (−
q

∑
k=1

[I(x){I(Xi) + I(Xj)}
⊤]

kk
θk)(K−1

nn )ij

I(x)1m − 1q = 0q and I(x) ∈ {0,1}q × {0,1}m .

Let  be the observed data and  be the set of lengthscale 
parameters.

𝒳n = (X1, X2, ⋯, Xn) {θk}q
k=1

subject to
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A mixed integer programming problem (MIP)!

Able to achieve global optimum without exhaustive search!
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Sequential Optimization

Upper confidence bound (UCB)

max
I(x)

μn{I(x)} + λσn{I(x)}
Exploration - exploitation

μn{I(x)} = ̂μn +
n

∑
i=1

n

∑
j−1

exp [−
q

∑
k=1

{I(x)I(Xi)⊤}kk
θk](K−1

nn )ij(yn, j − ̂μn)

σ2
n{I(x)} = ̂τ2 1 − exp (−

q

∑
k=1

[I(x){I(Xi) + I(Xj)}
⊤]

kk
θk)(K−1

nn )ij

Posterior mean:

Posterior variance:

Goal: finding x* = arg max f(x)
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Numerical Results
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Maximin designs

solid lines: IP optimizer (Gurobi)
dashed lines: metaheuristic algorithm (differential evolution) by Stokes et al. (2023)
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Maximin distance achieved by proposed IP optimizer (Gurobi) v.s. metaheuristics 
algorithms (Stokes et al. ,2023) when design size is 50.
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Simulation - Maze problems
Goal:  

Predict the number of steps needed to reach the goal after 
taking q steps.

Action space : 
• Number of actions (m) = 5 (left, right, up, down, stay)
• Step lengths (q) = 7 or 12

(mq = 57, 512)

A 6x6 maze optimal path Cost values at each grid
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Sequential optimization

Maximin initial designs were obtained by IP optimizers
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Sequential prediction
Evaluation criteria: RRMSE

RRMSE =
N−1 ∑n+N

i=n+1 ( ̂yi − yi)

(n − 1)−1 ∑n
i=1 (yi − ȳn)2

.
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Sequential prediction
Evaluation criteria: RRMSE

RRMSE =
N−1 ∑n+N

i=n+1 ( ̂yi − yi)

(n − 1)−1 ∑n
i=1 (yi − ȳn)2

.

• RR: random initial design + random sequential design

• Others: use maximin initial design found by IP optimizer
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Rover navigation task

Swamps

(can pass through with 
greatly reduced speed)

Goal:  
Reaching the goal in limited steps and minimizing the time 
trapped in the swamps

Action space : 
• Number of actions (m) = 9: 

4 angles  2 lengths  + 1 (stay)

• Step lengths (q) = 8

(mq = 98)

(0, π /6, π /4, π /2) × (0.1, 0.2)
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Sequential optimization

Optimal paths found by IP-based UCB
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Thank you! 

Any questions?


