Abstract

In early lexical development, children must learn to map spoken words onto their respective referents. Since multiple objects are typically present when any word is used, a child is charged with the difficult task of inferring the speaker’s intended referent. Previous research has uncovered various cues children may use in this task, including contextual and social cues. We investigate a previously unexplored cue for inferring speaker intention during word learning: speech disfluencies. Disfluencies (such as “uh” and “um”) occur in highly predictable locations, such as before words that are infrequent and words that have not been previously mentioned. Further, since they occur before such words, they could enable a young word learner to anticipate an upcoming referent. We conducted an eye-tracking study to investigate whether young children can make use of the information contained in disfluencies. Our results demonstrate that young children (ages 2;4 to 2;8) are sensitive to disfluencies. More critically, they show that children appear to use disfluencies predictively as a cue to reference and to speaker intention as the disfluency is occurring. We also examined potential sources of learning about disfluencies in CHILDES (MacWhinney, 2000) and found that disfluencies, though rare, occur regularly and with increasing frequency over time in child-directed and child-produced speech. These results demonstrate that a feature of the speech signal that likely emerges as a by-product of processing demands in adults is attended to relatively early in lexical development and used by young children to infer speaker intention during online comprehension.

Keywords: Language development; lexical development; word learning; pragmatic inference; speech disfluency.

Introduction

Word learning is fundamental to language acquisition, but the successful mapping of auditory events (spoken words) onto referents (objects in the world) is not always transparent. While some labeling contexts are unambiguous (e.g., holding a cookie and saying “cookie”), most contexts involve multi-word utterances and multiple objects in the child’s visual field. Thus, extra-linguistic cues, such as inferring speaker intention, can play a crucial role in word learning. The inability to correctly infer speaker intent, as in autism, can lead to catastrophic failures of communication (Preissler & Carey, 2005).

Previous work has explored various cues available to learners that could aid in determining a speaker’s intended referent (Frank, Goodman, & Tenenbaum, in prep). In addition to these externally available cues, young children appear to make certain assumptions that facilitate rapid lexical development. One assumption of particular relevance is that of mutual exclusivity (Markman, 1990). Experimental evidence suggests that young word learners assume a one-to-one mapping between words and referents, starting as young as 15 months of age (Halberda, 2003; Markman, Wasow, & Hansen, 2003).

Here we investigate a previously unexplored cue for inferring speaker intention: speech disfluencies. Disfluencies (e.g. “uh” and “um”) could be a potentially powerful cue to reference for several reasons. First, disfluencies occur in highly predictable locations—specifically, before unfamiliar or infrequent words, and before words that have not previously been mentioned in the prior discourse. Thus, rather than being noise, disfluencies provide information which is potentially useful for discovering what a speaker intends to refer to. Since disfluencies occur before an object is labeled, they could enable a child to anticipate upcoming referents and therefore enhance the speed of spoken word recognition.

Disfluencies are known to be a reliable property of speech between adults. Fox Tree (1995) estimated that about 6 disfluencies occur per 100 words, excluding pauses (which are not necessarily disfluencies). Shriberg (1996) found that disfluencies occur every 7 to 15 words in conversation between adults, depending upon which corpus (SWBD or AMEX) was used for the analysis. The rate of disfluency varies as a function of several factors: speaker familiarity, utterance length, and speech rate (Shriberg, 1996).

Disfluencies come in a variety of different types, including repetitions, substitutions, insertions, deletions, and speech errors. We focus here on the most common type of disfluency, the filled pause—“uh” and “um” in English (Shriberg, 1996). This type of disfluency is particularly common before infrequent and previously unmentioned words (Arnold & Tanenhaus, 2007). Consider the following example of a filled pause from the Sachs corpus in CHILDES (MacWhinney, 2000):

(1) *CHI: Telephone?
*MOT: No, that wasn’t the telephone, honey. That was the, uh, timer.

The disfluency occurs before the less frequent word and previously unmentioned object, “timer”. Such disfluencies...
are thought to result from a delay in lexical retrieval (Clark & Fox Tree, 2002; Fox Tree & Clark, 1997). There is evidence that adults use disfluencies online during sentence comprehension. Arnold and colleagues demonstrated that adults can use disfluencies to anticipate that an upcoming referent is likely to be new to the discourse (Arnold et al., 2004; Arnold, Fagnano, & Tanenhaus, 2003) or less frequent (Arnold, Hudson Kam, & Tanenhaus, 2007). In a series of eye-tracking experiments, adults were biased to look at discourse-new or unfamiliar objects when labels were preceded by a disfluency.

In the present study, we explore whether young children can use disfluencies to infer the identity of an upcoming referent.

Experimental Data

Methods

Participants Sixteen parents from the Rochester community volunteered their toddlers. The parents were recruited through mailings, posted flyers, and web ads. The children ranged in age from 2;4 to 2;8 (mean age 2;6), had no reported hearing deficits, and were from monolingual, English-speaking homes. Participants received either $10 or a toy as compensation.

Stimuli The stimuli consisted of 16 pairs of items, each containing one familiar item (e.g., ball) and one novel item (e.g., dax). The 16 familiar items were selected from among the earliest acquired English words in the MacArthur-Bates Communicative Development Inventories (Dale & Fenson, 1996). The novel items were picked to match the familiar items in visual complexity. Each novel item was assigned a novel word. Novel words were matched to the familiar words in syllable length, word onsets, and stress patterns.

Apparatus Eye-tracking was performed using a table-mounted Tobii 1750 eye-tracker with a 17-inch monitor. The stimuli were presented using Psyscope running on a Mac Mini with an Intel Core 2 Duo processor.

Procedure Each child was seated on a parent’s lap with the child’s eyes approximately 23 inches from the Tobii monitor. The parent wore headphones playing music to mask the auditory stimuli and prevent influence on the child’s behavior. The experiment consisted of 16 trials, each preceded by an attention-getter in the center of the screen. For each trial, an object pair was displayed (e.g., a ball and a dax). Whether the novel item appeared on the left or right remained on the screen for 5 seconds.

Results To ensure that children looked reliably at the appropriate object after it was named, we calculated for each trial type (fluent, disfluent) the proportion of time the child looked at the target item during the 2 seconds after the target was named. On trials in which the target was familiar, the mean proportion of looking to the target during this window varied across fluent and disfluent trials, this is the period of time when the disfluency is occurring. The object pair appeared at the beginning of this 2-second window and remained on-screen for 5 seconds.

If young children are able to make use of the information contained in a disfluency to anticipate that an upcoming referent is likely to be novel and/or previously unmentioned, we would expect to see more looks to the novel object during the period of disfluency. Thus, we used looks to the novel object during the 2-second window prior to the onset of the target word as our dependent measure. In the disfluent trials, this is the period of time when the disfluency is occurring. The object pair reappeared and the window of interest began. The first instruction was successful in directing children’s attention to the screen: on 88.4% of trials, children were looking at the screen immediately prior to the onset of the window of interest.

Due to the nature of disfluencies, the disfluent command took longer to execute; consequently, the linguistic material in the window of interest varied across fluent and disfluent trials. To compensate for this difference, the command “Look!” was repeated in all trials. Thus, in all trials, children had been instructed to look at the screen before the object pair reappeared and the window of interest began. The first “Look!” instruction was successful in directing children’s attention to the screen: on 88.4% of trials, children were looking at the screen immediately prior to the onset of the window of interest.

Table 1: Trial type examples.

<table>
<thead>
<tr>
<th></th>
<th>Familiar target</th>
<th>Novel target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluent</td>
<td>I see the ball!</td>
<td>I see the dax!</td>
</tr>
<tr>
<td>Disfluent</td>
<td>I see thee, uh, ball!</td>
<td>I see thee, uh, dax!</td>
</tr>
</tbody>
</table>

During the third critical phase, children were instructed to look at one of the two objects (familiar or novel) with either a fluent or a disfluent command (Table 1). Whether the target object was familiar or novel, and whether the command was fluent or disfluent, was balanced throughout the experiment, such that four trials of each type occurred for each child. The assignment of particular item pairs to each condition was counterbalanced across participants.

Ooooh! What a nice ball!). The objects disappeared 1,000 ms after the recorded voice ended.

During the third critical phase, children were instructed to look at one of the two objects (familiar or novel) with either a fluent or a disfluent command (Table 1). Whether the target object was familiar or novel, and whether the command was fluent or disfluent, was balanced throughout the experiment, such that four trials of each type occurred for each child. The assignment of particular item pairs to each condition was counterbalanced across participants.
objects as reliably as they mapped familiar words to familiar objects. Taken together, these results show that children consistently arrived at the target object, regardless of the trial type.

Next, we calculated the proportion of looks to the novel object at each time point during the critical phase of the fluent and disfluent trials. Figure 1 shows the resulting timecourse plot for trials in which the target was novel. As predicted by our hypothesis, children looked more towards the novel object during the 2-second window of interest (before the onset of the target word) in the disfluent trials than they did in the fluent ones. This suggests that children were able to make use of the information contained in a disfluency to anticipate an upcoming novel referent. Figure 2 shows the timecourse plot for trials in which the target was the familiar object. In these trials also, children looked more towards the novel object during the window of interest in the disfluent trials than in fluent ones. This suggests that the disfluency set up the expectation of an upcoming novel referent, though that expectation was erroneous in these familiar-object trials. However, both Figures 1 and 2 show that, after the onset of the target word, children correctly identify the target picture.

The timecourse plots suggest that children were sensitive to the presence of the disfluency and were biased to interpret that disfluency as signaling that the upcoming word would refer to the novel/previously unmentioned referent. To test that hypothesis, we compared looks to the novel object across fluent and disfluent trials in the 2-second window of interest before the onset of the target word. During disfluent trials, children looked at the novel object for 1158 ms. During fluent trials, children looked at the novel object for 893 ms. A Wilcoxon signed-rank test found this difference to be highly significant ($p < 0.008$). This result suggests that children are sensitive to disfluencies and use them predictively to infer that an upcoming referent is likely to be novel and/or previously unmentioned.

However, an alternative explanation for this result is that children simply paid more attention overall to the display (both objects) during disfluencies. To further examine whether disfluencies cause preferential looking to the novel object, we compared the average proportion of total looking time to the novel object during the same temporal window of interest. Children looked at the novel object 66% of the time in the disfluent trials, as opposed to 54% of the time in the fluent trials. A Wilcoxon signed-rank test found this difference to be highly significant ($p < 0.005$). Further, the proportion of looking time to the novel object was significantly above chance in the disfluent trials ($p < 0.001$), whereas in the fluent trials, children’s looking to the two objects did not differ from chance ($p > 0.37$). These results demonstrate that disfluencies cause a selective increase in attention to the novel objects, suggesting that children use disfluencies online to create expectations about the speaker’s intended referent.

Figure 1: The proportion of looks to the novel object over time for the critical phase of the trials with novel targets.

Figure 2: The proportion of looks to the novel object over time for the critical phase of trials with familiar targets.
Disfluencies in child-directed and child-produced speech

As discussed above, disfluencies are abundant in speech among adults. The degree to which disfluencies occur in child-directed speech, however, is unclear. Fluency is often said to be a hallmark of infant- and child-directed speech (e.g. Newport, 1977), in part because it is characterized by a slow speech rate and short utterances, both of which correlate with more fluent speech. Young children’s demonstrated sensitivity to disfluencies, then, could indicate that they learn about disfluencies from hearing them in adult speech. In fact, work by Soderstrom and Morgan (2007) demonstrates that young children (1;10) can discriminate between fluent and disfluent adult-directed speech.

Although child-directed speech is undeniably more fluent than adult-directed speech, disfluencies occur in speech to children more than is typically acknowledged. An informal CHILDES (MacWhinney, 2000) search revealed several types of disfluencies involving filled pauses in child-directed speech. Consider the following examples:

(2) *MOT: Should I take the, uh, bologna?

(3) *MOT: Well are you gonna marry Batman—uh, Robin? Or is Donna going to marry Robin?

(4) *MOT: No, that’s not Fozzie, that's, uh... Fozzie's the bear.

(5) *FAT: Oh, maybe you were trying to figure out how big, uh, how big a toy is.

The above examples from child-directed speech represent a variety of the different types of disfluencies that have been reported to occur in adult-directed speech. Example 2 contains a simple filled pause before an infrequent word, bologna. Example 3 contains a filled pause followed by a substitution for an incorrect word, Batman. Example 4 contains a filled pause (presumably produced while the mother attempts to retrieve an obscure Muppet’s name) followed by an abandonment of the first sentence (sometimes called a “deletion” in the adult literature on disfluencies). Example 5 contains a planning-related filled pause and then repetition. These examples demonstrate that a variety of types of disfluencies occur in speech to young children. These disfluencies serve as a potential source of lexical learning for young children.

Figure 3 shows the frequency of filled-pause disfluencies in speech to children by age in the CHILDES corpus. This figure demonstrates the regularity with which filled pauses occur in speech to young children, and shows that young children hear filled pauses more frequently as they get older (Spearman’s rank correlation, rho = 0.87, p < 0.001). Thus disfluencies are a reliable feature of speech to children.

The experimental results we reported earlier show that children are sensitive to disfluencies in comprehension, and Figure 3 shows that adults produce disfluencies in child-directed speech. Another possibility is that children gain an understanding of disfluencies through producing disfluencies themselves. An informal search uncovered numerous child-produced disfluencies.

(6) *CHI (2;5): This, uh, this...
*MOT: What? Show me.
*CHI: This, uh, this—uh, this.
*MOT: Show me.
*CHI: This. Uh, this! This! This!
*MOT: What is it? What is he looking at?

(7) *CHI (3;0): I want some breakfast? Uh, de, uh, uh, de—I ,de—I get 2 breakfasts out.

(8) *CHI (3;2): I wanna get some candy from—from Scotty for Valentine.

In the above examples, children produced disfluencies in association with presumed lexical retrieval difficulties. These disfluencies may be among the first to appear in young children, who are less likely to produce disfluencies in association with planning delays due to the short length of their utterances. Figure 3 also shows child-produced filled pauses from CHILDES as a function of age (rho = 0.85, p < 0.001). This demonstrates that filled-pause disfluencies are also an increasingly reliable feature of child-produced speech. In fact, child-produced filled pauses are overall more probable than adult-produced filled pauses. It is important to note that the plot reflects group averages and, therefore, it is not clear whether individual children
begin producing filled pauses abruptly or more gradually. Overall, children's rate of production is still much lower than that of adults in adult-directed speech, at about 1 in every 1,000 words by age 3. (Shriberg estimates that adults produce filled pauses at a rate of about 1 every 50 words.) Not surprisingly, the number of filled pauses children produce increases as a function of age. A child’s understanding of disfluencies, likewise, could change as a result of detecting regularities in her own production.

Discussion

Many contemporary theories model word learning as a process of learning the arbitrary association between sounds and meanings (Frank, Goodman, & Tenenbaum, 2008; Siskind, 1996; Yu & Ballard, 2007). The results of our experiment demonstrate that young children's ability to match sounds with meanings is considerably more general: they are able to match disfluencies—typically understood as an artifact of processing—with a speaker's intended referent, a property of communication which is not directly observed. These results raise several important issues.

First, it is unclear whether novelty or discourse status is driving these effects. Adults’ interpretation of disfluencies is affected by both of these factors. In our study, the novel objects were both previously unmentioned and novel. Work in progress attempts to uncover which of these—or both—drives the effect.

Second, what children understand about disfluencies is an open question. Clark and colleagues have suggested that speech disfluencies signal to the listener that a speaker is having difficulties producing speech (Clark & Fox Tree, 2002). Furthermore, there is some evidence that adults respond to disfluencies in part because they understand that the disfluency is driven by the speaker’s processing difficulties. For example, Arnold, Hudson Kam, and Tanenhaus (2007) demonstrated that adult listeners do not use disfluencies predictively to infer an upcoming referent if they are told the speaker has a type of brain damage that causes disfluent speech.

It is possible that children, too, engage in this type of causal reasoning. Children may be aware that disfluencies are the result of processing (specifically, lexical access) difficulties, and therefore look for a referent that is likely to have caused difficulties. While this reasoning almost certainly does not happen consciously, children may nonetheless have learned that disfluencies occur because of speaker difficulty, and that speaker difficulty often arises with novel referents. If so, we might expect children (like adults: Arnold, Hudson Kam, & Tanenhaus, 2007) to alter their interpretations of disfluencies when they can be attributed to an external cause.

However, children could potentially show the patterns demonstrated here without any understanding of the linguistic processing mechanisms involved. Disfluencies might simply be associatively linked through experience to novel referents. That is, disfluencies could be treated just words that mean “look at the novel referent”. This theory does not assume any intermediate stages of processing or conceptual reasoning, as the association between a disfluency and a meaning could be direct and quick. Further, it accords with both language-specific and domain-general statistical learning theories which posit that learners are able to generically pick up on the correlational structures in the world. Such an account would predict that children could not alter their interpretation of disfluencies based on whether they were perceived as internally or externally driven.

Both accounts are plausible, given what is known about infants’ and young children’s capabilities. Infants and children are known to be capable statistical learners (e.g., Fiser & Aslin, 2001; Saffran, Aslin, & Newport, 1996), which could enable them to detect correlations between disfluencies and referent novelty in the environment. Young children are also able to engage in pragmatic inference (e.g., Behne, Carpenter, & Tomasello, 2005) and even very young children are able to infer the intentions and difficulties of others (Warneken & Tomasello, 2006). Therefore, it is possible that children have access to this type of reasoning during on-line sentence processing.

If children learn about disfluencies from their environment, does their environment provide them with enough data to detect these relationships? We demonstrated in our corpus analyses that while disfluencies are relatively rare in child-directed speech, they are not entirely absent. Since disfluencies are prosodically salient, the fact that they occur at all—even if they occur infrequently—may provide young children with enough evidence of the information they contain. Filled pauses are especially prosodically salient. Prosodic information is available to infants extremely early—even before lexical boundary information—such that by the time a child reaches the age at which she is learning words, she has had an ample amount of time to notice the occurrence of disfluencies in speech. Further, acoustic analyses by Soderstrom and colleagues (in press) find that disfluencies in speech to infants and children are longer and higher in pitch, making them even more prosodically salient than those that occur in speech to adults. Importantly, children may also be able to learn how to use disfluencies by attending to speech among adults.

While statistical learning is one potential mechanism by which children could learn to use disfluencies in processing, it is also possible that they learn to use them in comprehension through their own productions. The results of the CHILDES search above showed that even young children produce disfluencies. Thus it is possible that children gain the understanding that disfluencies signal processing difficulty as a result of producing disfluencies themselves.

Together, the results of this study indicate that young children (1) have learned that disfluencies contain information, (2) attend to disfluencies in speech, and (3) can make use of the information contained in disfluencies online during comprehension in order to infer speaker intention.
Acknowledgments

The first author was supported by a Graduate Research Fellowship from the National Science Foundation. The research was supported by a grant from the National Institutes of Health (HD-37082). We thank Johnny Wen and Steven T. Piantadosi for help with analyses; Suzanne Horwitz, C. Michael Lindsey, Kristen Graziano, Fahria Omar, Emily Richards, Lee Kehoe, Lindsay Woods, and Rosemary Ziemnik for their help recruiting and scheduling subjects; and Jennifer Arnold, Michael Tanenhaus, Mohinish Shukla, Casey Lew-Williams, Jesse Snedeker, Anne Pier Salverda, Michael C. Frank, and Meredith Brown for comments and suggestions.

References

