IMPROVING ENTERPRISE INFORMATION MANAGEMENT—TEAM 9

The Process of Refining a Construction ERP

TEAM MEMBERS: Minh Le | Joshua Fiscalini | Salosan Soundhararajah | Kajan Karunakaran
FACULTY ADVISOR: Dr. Stanko Dimitrov

BACKGROUND

- Client is a medium sized construction firm specializing in shoring operations
- Enterprise Resource Management system developed in-house (Microsoft Access)
- Scalability and accuracy of information needs to be greatly improved

PROJECT OBJECTIVE

To Improve the accuracy, accountability, and maintainability of information within the company through the better use of applicable software design practices and management sciences techniques.

METHOD

- Interview and Requirements Gathering
- Low Fidelity Prototyping
- Use Case Analysis
- HCI and MSCI Analysis
- Medium Fidelity Prototyping
- User Testing
- High Fidelity Prototyping
- User Acceptance Test
- System Integration

RESULTS

BACK END DATABASE—SYSTEM DATA MANAGEMENT IMPROVEMENT

- Operational databases ETL from central DW and used by modules
- Central DW only holds data for operational data
- Central DW cannot be accessed directly by personnel
- Archival data is stored in the archive DW

- Eliminated redundant tables and attributes
- Constructed conceptual design model (CDM)
- Constructed logical and physical design model
- Added reference tables and relational design patterns

FRONT END USER INTERFACE—SYSTEM USABILITY IMPROVEMENT

UI Issues:
- Poor Usability
- Tedious Tasks
- Redundant steps

Main Tested Functions:
- Inventory Module
 - Add, Remove, Edit Equipment
- Project Management Module
 - Create/Modify Project info

<table>
<thead>
<tr>
<th>Old Interface</th>
<th>New Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Time for Test Cases</td>
<td>Number of Clicks to Complete Test Cases</td>
</tr>
<tr>
<td>Test Cases 1</td>
<td>Test Cases 2</td>
</tr>
</tbody>
</table>

Legend:
- Proprietary Application
- Off-the-Shelf Application

ENVIRONMENTAL/ECONOMICAL IMPACTS

- Extending the use of the current system reduces purchases of additional electronics—reduces electronic waste
- Improved accuracy in inventory data allows for better informed resource purchasing strategies

BACKGROUND

- Single central data warehouse—Manually accessible by most personnel
- Stores both operational and historical data
- Relational database model is highly unorganized
- Allows user to freely input irrelevant data (garbage data)

SYSTEM DATA MANAGEMENT IMPROVEMENT

- Operational databases ETL from central DW and used by modules
- Central DW only holds data for operational data
- Central DW cannot be accessed directly by personnel
- Archival data is stored in the archive DW

- Eliminated redundant tables and attributes
- Constructed conceptual design model (CDM)
- Constructed logical and physical design model
- Added reference tables and relational design patterns

RESULTS

BACK END DATABASE—SYSTEM DATA MANAGEMENT IMPROVEMENT

- Operational databases ETL from central DW and used by modules
- Central DW only holds data for operational data
- Central DW cannot be accessed directly by personnel
- Archival data is stored in the archive DW

- Eliminated redundant tables and attributes
- Constructed conceptual design model (CDM)
- Constructed logical and physical design model
- Added reference tables and relational design patterns

ENVIRONMENTAL/ECONOMICAL IMPACTS

- Extending the use of the current system reduces purchases of additional electronics—reduces electronic waste
- Improved accuracy in inventory data allows for better informed resource purchasing strategies