
A novice compendium to statistical GPU computing in R

Marco Y.S. Shum
mysshum@uwaterloo.ca
20170624

This is a short introductory compendium of notes on GPU (graphical processor unit) acceleration of statistical applications
using R. The main purpose here is to expose the reader at a high level to the topic enough for him/her to explore it further.
Except for the section involving C code, this guide assumes as a minimum that the reader is comfortable working with basic
functionalities of R such as installing packages, loading a library, calling a function and performing basic algebra (such as
using %*% for matrix multiplication).

This guide can be largely divided into two parts. The first part provides a high level introduction as well as a very brief survey
of some applications of GPU computing in statistics. This is primarily meant to inspire the reader on ways the algorithms in
their statistical procedures may be similarly (or otherwise creatively) implemented to leverage the advantages from a GPU.
In the second part, a subset of GPU packages available on CRAN review. We introduce some common functionalities from
the gputools package that provide GPU versions of useful functions found in the base package: these will be useful for
users who wish to quickly prototype with functionalities such as lm, dist and cor. At a slightly lower level, we benchmark
the performance of some packages on matrix multiplication and inversion. Finally, we touch upon the use of CUDA code (a
flavour of the C language developed by NVIDIA to interface with GPUs.) The point here is to give those experienced with C

the essential steps to write CUDA code and interface it with R so that more control over the code on the GPU can be had.

Connecting to a MFCF GPU machines

At the University of Waterloo, the MFCF group provides access to GPU computing resources. The server gpu01 houses
four NVIDIA Tesla K80 GPUs (information about this chipset may be found here,

https://en.wikipedia.org/wiki/Nvidia_Tesla#Specifications_and_configurations.

To log into this server, simply ssh into it using your Nexus credentials. Currently, one GPU machine running Linux is
available to students and staff: it can be accessed on campus (e.g. on the Eduroam network) using the Nexus credentials
by,

Shell> ssh nexusUserName@gpu01.student.math.uwaterloo.ca

where Shell is a Unix shell (Windows users may choose to use, for example, Putty to ssh.) When accessing from an
off-campus location, a VPN client is necessary. Information about this resource can be found at, https://uwaterloo.ca/
math-faculty-computing-facility/services/specialty-research-linux-servers.

GPU computing at Compute Canada

Compute Canada provides GPU computing resources for those who have an account with them. The machines are listed at
the end of,

https://www.computecanada.ca/research-portal/accessing-resources/available-resources/

In particular, the Graham (GP3) machine is hosted at the University of Waterloo.

What is GPU computing?

GPU computing is a type of high performance computing (HPC) which employs a graphical processing unit (GPU) as
the main hardware for performing computation, instead of the usual design of using central processing units (CPU). Just
as the CPU is a hardware component on a circuit board (the motherboard, in fact), a GPU is a chip that typically re-
sides on a video card, the latter of which is also connected to the motherboard. Traditionally, video cards are found on
personal computers that are used for graphically demanding tasks such as image or video processing and gaming applications.

Why GPU computing, instead of multicore CPU’s?

1

https://en.wikipedia.org/wiki/Nvidia_Tesla#Specifications_and_configurations
https://uwaterloo.ca/math-faculty-computing-facility/services/specialty-research-linux-servers
https://uwaterloo.ca/math-faculty-computing-facility/services/specialty-research-linux-servers
https://www.computecanada.ca/research-portal/accessing-resources/available-resources/

Researchers found GPUs to be very suitable for tasks which can be parallelised (i.e. run simultaneously in one run of an
application.) Compared to multicore CPU’s and clusters of those, the parallel computing power obtained from the same
budget of a GPU set up, when used properly, is typically greater. From a high level, the advantage over multicore CPU
processors is due to the specialisation of the GPU chip design for high throughput: a GPU has a much larger number of
cores than a CPU and so more parallel threads (roughly, unit of one task) may be performed on a GPU than on a CPU.
However, proper usage of GPU typically involves careful planning: generally, the transfer of data from memory to CPU may
be faster than to a GPU for such components that are introduced into the market at around the same time. Fortunately,
there already exists R packages that implement GPU accelerated procedures for many common statistical usages. We give
a general walkthrough of some of these packages below. However, many of these implementations are for specific function-
alities: the reader may wish to move beyond this limitation by learning to write their own GPU code (two ways are to use
the ‘mid’-level GPU accelerated matrix operations benchmarked below or interface GPU-C code with R using the methods
below for the more technically inclined.)

What statistical problems are good for GPU computing? A limited survey.

This small review serve as proof of concepts to inspire the reader into thinking about their problem from a parallelisation
perspective. Some of these applications are in fact already implemented in R packages which we will either discuss or to
which we will provide links in the ‘Further resources’ section.

A simple but prominent example is the parallelised sum of a map: to wit, for a finite index set, i = 1, . . . ,M , with maps
fi : X → R and corresponding input xi, the goal is to compute the sum,

M∑
i=1

fi(xi).

There are two main places that the computation can be parallelised.

• Each fi(xi) can be computed independently from one another, so can be done concurrently. For example, if one’s
hardware allows up to 1000 parallel tasks, then M = 500000 can ideally be done in 500 function calls of f(x)’s of
each thread.

• The sum itself can be computed in parallel by, roughly, summing subsets of the summands at a time.

Monte Carlo methods with sampling such as the bootstrap [3] are readily parallelisable. Here, xi is a bootstrap sample
drawn from the original dataset and fi = f is the statistic in question. Importantly, note how this problem fits into the
general paradigm of GPU computing: input data (i.e. the dataset) is loaded into the video card memory once, and each
thread in the GPU simultaneously draws many bootstrap samples, xi, and computes f(xi) before returning. This common
paradigm is known as single instruction, multiple data (SIMD): the sampled {xi} are independent of each other, and the
same instruction (function f) is applied to each of them.

Many solutions that employ ’divide and conquer’ strategies have GPU accelerated algorithms, and are beneficial to statistical
applications as well.

For example, order statistics require sorting one’s data set: sorting algorithms have been parallelised by researchers[12]. [14],
in addition to providing a solution algorithm, also reviews previous research into GPU accelerated versions of radix, quick-
and mergesort algorithms. [10] is a research collaboration involving NVIDIA researchers detailing implementations of sorting
algorithms on GPU hardware.

Solutions involving iteration through pairs of data points have also been parallelised and GPU-accelerated. For example,
[2] provides GPU algorithms for the Manhattan (l1) distance between vectors of cDNA microarray data, as well as their
Pearson’s correlation. [8] also provides a method for parallelising the computation of Pearson’s coefficient. Another example
is the computation of the all-pairs shortest distance in a large graph (for example, [6] and [5].) All the examples exploit
structures in the problem to reorganise the code from näıve for-loop constructs.

For example, consider Pearson’s coefficient,

Cov(x, y)√
Var(x)Var(y)

:=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
.

2

Because the covariances are sample moments, such sums are readily parallelisable similarly to the Monte Carlo problems.
As an extension, Spearman’s coefficient is Pearson’s coefficient on the ranks of the data,

Cov(rx, ry)√
Var(rx)Var(ry)

.

and so (at least näıvely) requires an additional step of ranking and sorting.

As a tangent on the use of ranking and sorting procedures, the computation of Kendall’s coefficient between two data

vectors, x, y, both of size m requires the classification of all

(
m
2

)
pairs (xi, yi), (xj , yj) with i 6= j into either concordant

or discordant pairs. (A pair {xi, yi), (xj , yj) is said to be concordant if either xi < xj and yi < yj or xi > xj and yi > yj ,
and discordant if either xi < xj and yi > yj or xi > xj and yi < yj . A pair can be neither concordant or discordant, in
which case the coefficient should be modified to take into account of such ties. See, for example, [1].) [9] investigate the
parallelisation of the computation of Kendall’s coefficient. Speed up is achieved largely due to different parallelisation of the
underlying sorting procedure coupled with hardware specific improvements.

Work has also been done on incorporating GPU designs to optimisation problems: prominent statistical applications include
model fitting and M -estimators (M stands for ‘maximisation’.) Techniques to exploit of parallelisation may fall into two
categories: parallelisation of evaluation of the functions and parallelisation of distributed algorithms. An example of the
former is the evaluation of the score function of the form,

m∑
i=1

∇θ logL(xi; θ),

which is the gradient of the log-likelihood function logL over parameters θ given a dataset x. Once again, we see the
SIMD-sum theme occurring: for a fixed θ (say, the previous step of a gradient descent), the evaluation of either the indi-
vidual summands or the sum itself can be parallelised. An example of the latter is the parallelisation of swarm optimisation.
In this framework, many candidate solutions are moved around the domain of the function in search of the optimum. At
every step, all candidates report their function values: based on this collective information, the step of each candidate is
adaptively determined in hopes that eventually this ‘swarm’ will all converge to a (global) optimum. An application to
the particle swarm optimisation algorithm can be found in [15]. Generally, the sum of log-likelihoods are typically trivially
parallelisable whereas the summands themselves require that the log-likelihood has a form that is amenable to parallelisation.

In Bayesian computations, there have been research into GPU accelerated sampling, broadly falling into the categories of
Monte Carlo procedures with i.i.d sampling and Markov Chain sampling, MCMC. The common theme in the latter is to
work with parametrisations and representations of the Bayesian network that allow either a large number of random variables
to be sampled in parallel or to parallelise within a single sampling of one variable. An example of the former are mixture
models whose latent variables and their corresponding observations may be sampled independently. An example of the latter
is the use of computationally expensive univariate samplers in a Gibbs’ sampling scheme. A common instance of this is
the Metropolis-within-Gibbs scheme, where a Metropolis-Hastings MCMC is run for some or all of the univariate sampling
from the conditional distributions. For large datasets, the evaluation of the posterior likelihood may be very expensive, but,
as pointed out above, the product of an i.i.d sample likelihood can be parallelised via the log-likelihood sum computation.
[11] provides the cudaBayesreg package for R for Bayesian hierarchical modelling, specialised to fMRI data. [13] provides
an excellent exposition of GPU considerations in MCMC computations. [7] provides approximate Bayesian computation
(ABC) methods in systems biology using GPU hardware: even though it is in python, the concept and methodology are
nevertheless valuable.

GPU accelerated common statistical functions package

We single out the R package gputools as one of the more accessible packages for GPU computing because it wraps many
common functionality of the base R package with a friendly syntax. The following are some examples directly from the
manual [4] (load the library with library(gputools).)

Linear models with lm on GPU:

Annette Dobson (1990) "An Introduction to Generalized Linear Models".

Page 9: Plant Weight Data.

3

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2,10,20, labels=c("Ctl","Trt"))

weight <- c(ctl, trt)

anova(lm.D9 <- gpuLm(weight ~ group))

summary(lm.D90 <- gpuLm(weight ~ group - 1))# omitting intercept

summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

Correlation coefficients with cor on GPU:

numAvars <- 5

numBvars <- 10

numSamples <- 30

A <- matrix(runif(numAvars*numSamples), numSamples, numAvars)

B <- matrix(runif(numBvars*numSamples), numSamples, numBvars)

gpuCor(A, B, method="pearson")

gpuCor(A, B, method="kendall")

A[3,2] <- NA

gpuCor(A, B, use="pairwise.complete.obs", method=’pearson’)

Distance calculation with dist on GPU:

numVectors <- 5

dimension <- 10

Vectors <- matrix(runif(numVectors*dimension), numVectors, dimension)

gpuDist(Vectors, "euclidean")

gpuDist(Vectors, "maximum")

gpuDist(Vectors, "manhattan")

gpuDist(Vectors, "minkowski", 4)

There are many more statistical procedures in gputools which may be called directly as those listed: interested readers
may want to explore the list here.

Speed comparison of GPU matrix multiplication and inverse on R

For the user new to GPU computing, it can be intimidating to wade through the large amount of GPU (R) package documen-
tation on the web. Many of them intersect on similar functionalities and their code implementation details are sometimes
obscure in description. In particular, unless published, we found it difficult to ascertain how the code was GPU-accelerated,
by how much and the reason for the speed up from the manual. Finally, it is realistically rare that the typical end user has
the time or knowledge to fine-tune the packages themselves. Here, we run some benchmarks from an end-user perspective
by replicating what is done in the R manual and scaling up the data size: no configurations are tuned beyond what is done
by install.packages. Because matrix multiplication and inversion are fundamental operations in statistics (as well as in
other fields that make use of R), we produce these benchmarks using large dense matrices.

The packages we compare are the R base, gputools, gpuR and gmatrix. All tests are run on a single NVIDIA Tesla
P-100-PCIe GPU card. The package microbenchmark used to time the runs. The total time used includes the time used
to create the matrices on the GPU memory. The data matrices are shared by all the tests. For a fixed m, we generate
A,B ∈ Rm×m by drawing their elements independently from Unif([0, 1]). ATA is also computed to obtain a positive definite
matrix. All such data generation are done on CPU and not timed on GPU. The matrix multiplication operation is tested
by computing AB for m ∈ {100, 1000, 2500, 5000, 7500, 10000} and matrix inversion is tested by computing (ATA)−1 for
m ∈ {100, 1000, 2500, 5000, 7500}. We measure the minimum, maximum and 25, 50, and 75-th quantiles of the base 10
logarithm of the number of seconds to perform the operation for the maximum number of simultaneous runs allowed by the
memory of the GPU, capped at 100. We were unable to run the matrix inverse test for gputools at the time of writing,
and so is omitted there.

4

https://cran.r-project.org/web/packages/gputools/gputools.pdf

Figure 1: Base-10 logarithm of run times in seconds for matrix multiplication of two random square matrices. The box
plots show the minimum, 25-th, 50-th, 75-th quantiles and the maximum log10 run time of a set number of independent
benchmarking runs (displayed below each set of points for each matrix row size.)

5

Figure 2: Base-10 logarithm of run times in seconds for matrix inversion of a random positive symmetric matrix.
The box plots show the minimum, 25-th, 50-th, 75-th quantiles and the maximum log10 run time of a set number of
independent benchmarking runs (displayed below each set of points for each matrix row size.)

We can see that, for our particular test cases, the gmatrix package grants (the most) significant speed up for both op-
erations. At m = 10000, the median speed up between the base multiplication and the gmatrix multiplication is strictly
more than 10

1
2 ≈ 3 times or 300%. On the other hand, for m = 2500, the median of the speed up on the matrix inversion

operation is somewhat negligible.

Interestingly, the package GpuR provides the most speed up for the matrix inverse experiment, while gmatrix seems to not
scale well with the matrix size. We also note the larger 25-75% range of the base package run time versus both GPU
packages. Particularly, the GpuR package seems to yield a speed up almost all the time, and its performance is possibly more
robust against other factors that might influence the run time.

In general, we observe that computation on GPU is only suitable for large matrices whereas the base package on the CPU
performs faster for smaller matrices. This is because any GPU procedure typically incurs extra run time to first load its data
on to the GPU memory before its massive processing power can be leveraged.

Potential caveat: the microbenchmark package used here is agnostic to the GPU architecture. Using this package, the
individual runs for a single package is run simultaneously on the GPU. It is yet unclear how this may actually affect the
performance of certain packages, especially without knowing how the R code is implemented. microbenchmark was chosen
as it is typically an accurate timer at the C level of any R code being run. In light of this, we treat the above benchmarks
as conservative ones.

Note: as far as the author can tell, there are no other steps that are needed to set up packages tested on R outside of the
instructions provided by the manual on CRAN and the steps prompted by install.packages. If any reader can point out
any possible additional set up steps needed from an end-user perspective, the author would be happy to try them out and
update this benchmarking.

R with CUDA: getting your hands dirty

Those experienced with C may opt to implement the algorithm in C directly. One reason for this is to have more control

6

over aspects of the execution (two prominent concerns being memory management and the number of parallel process to
start.) Another reason may be that CRAN does not have a package suitable for one’s application. Interestingly, to the best
of the author’s knowledge, there is no GPU accelerated versions of the popular apply function.

CUDA is an extension of C from NVIDIA to allow the user to interface with the GPU at the C level. We will not provide
a tutorial on the CUDA language. Instead, we outline the salient points in an example that are different from the usual C
language. Our discussion focuses on using a Linux operating system (as on many of the servers offered by MFCF as well as
the BSD back end of MacOS.) The steps are analogous on Windows.

At a high level, R is able to load .so (.dll on Windows) library files using the dyn.load function, and .C function is
used to call any functions compiled and linked in the library. We will therefore compile CUDA source code into these formats.

At the coding level, GPU coding with CUDA typically follows this general programming procedure.

• Create or store data on the CPU memory using C.

• Allocate on the GPU memory and copy data from CPU memory to it.

• Allocate any necessary memory and perform the parallel tasks on the GPU.

• Allocate on CPU memory and copy results of the parallel tasks from GPU memory to it.

• Process results using CPU as per usual C code.

We demonstrate this procedure with an example. Suppose we wish to approximate the integral,

I(a, b) :=

∫ b

a

e−
u2

2 du = (b− a)E[e−
U2

2],

where the expectation on the right is taken over U ∼ Unif(a, b). Then, for any a < b, we can, for a large M , use the
sample mean estimate on the left of the following that satisfies the law of large numbers,

Î(a, b;M) :=
(b− a)
M

M∑
i=1

e−
U2
i
2

a.s.−→ (b− a)E[e−
U2

2].

This sampling algorithm can be put into the above steps as follows.

• Create or store the random seed of the simulations on the CPU memory.

• Allocate GPU memory and write the seeds to it.

• Allocate memory on GPU for {e−
U2
i
2 : i = 1, . . . ,M}, and compute them.

• Allocate on CPU memory and copy results of the parallel tasks from GPU memory to it.

• Compute the mean of the results on CPU.

The CUDA and R code listings for this examples are in the appendix. The CUDA function mcIntegrationGaussianDensity
is the main work horse of the steps of our procedure, and is called through .C in R. For example, to approximate I(−4, 4)
using Î(−4, 4; 1024000), we perform the following R function call,

R> mcIntegrationCUDA(-4.0, 4.0, 1024000)

We will not discuss the memory management in CUDA here. We simply note that CUDA allows one to organise threads (in our
case, one per Monte Carlo sampling) into blocks: such organisation is sometimes key to speed ups gained in GPU computing.
In our example, we empirically found that dividing M = 1024000 Monte Carlo runs into 1000 blocks of 1024 threads yields
fairly significant speed up against native R code. microbenchmark was used to time 100 independent runs of both algorithms:

As readily expected, the CUDA/C implementation out-paces the native R one with sapply very significantly. A single run of
the CUDA code produced a value for Î(−4, 4; 1024000) of,

[1] 2.487866

7

Method Min Q25 Mean Q50 Q75 Max
CUDA from R 6.177006 ms 6.292781 ms 13.03467 ms 6.308993 ms 6.327924 ms 649.695 ms
Native R 3.120825 s 3.1628 s 3.252945 s 3.240894 s 3.30436 s 4.12569 s

Figure 3: Statistics of run times computing Î(−4, 4, 1024000) between the custom CUDA implementation from R and native
R using sapply. Each method was run independently for 100 times using microbenchmark.

while the native R code with sapply produced,

[1] 2.508225

Further resources

We have only reviewed a very small subset of functionalities of the packages herein are reviewed. The reader may therefore
find their documentations and their originating academic publications to be useful for learning about the packages further.

• gputools:
https://cran.r-project.org/web/packages/gputools/index.html (CRAN)

https://academic.oup.com/bioinformatics/article/26/1/134/181997 (Academic source)

• gmatrix:
https://cran.r-project.org/web/packages/gmatrix/index.html (CRAN)

• OpenCl

https://cran.r-project.org/web/packages/OpenCL/index.html

The following resources may be useful for applications not covered in this document.

• The CRAN HPC task list (contains a list of GPU supported packages, as well as a general list of non-GPU but HPC
related packages for R):
https://cran.r-project.org/web/views/HighPerformanceComputing.html

• gpuR (similar to gmatrix)
https://cran.r-project.org/web/packages/gpuR/index.html (CRAN)

https://cran.r-project.org/web/packages/gpuR/vignettes/gpuR.pdf (Vignette)

• rpud package (removed from CRAN): similar toolset to gputools.
http://www.r-tutor.com/content/download

• WideLM package (on MetaCRAN): uses GPU to fit many linear models in parallel to a single dataset.
https://www.r-pkg.org/pkg/WideLM

• cudaBayesreg: a package for performing Bayesian hierarchical modelling (specialised to fMRI data.)
https://cran.r-project.org/web/packages/cudaBayesreg/index.html

https://www.researchgate.net/publication/265483496_cudaBayesreg_Bayesian_Computation_in_CUDA

• RCuda package: similar to OpenCl, provides a way to incorporate CUDA code in R.
http://www.omegahat.net/RCUDA/

http://www.omegahat.net/RCUDA/RCUDA.pdf

• An NVIDIA blog post on GPU computing with respect to R.
https://devblogs.nvidia.com/parallelforall/accelerate-r-applications-cuda/

• Rth: a package based upon Thrust that provides functionalities accelerated by both GPU and multicore CPU.
http://heather.cs.ucdavis.edu/\simmatloff/rth.html

https://matloff.wordpress.com/2014/06/17/rth-a-flexible-parallel-computation-package-for-r/

Appendix: CUDA and R code for Monte Carlo integration example

In R:

8

https://cran.r-project.org/web/packages/gputools/index.html
https://academic.oup.com/bioinformatics/article/26/1/134/181997
https://cran.r-project.org/web/packages/gmatrix/index.html
https://cran.r-project.org/web/packages/OpenCL/index.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/packages/gpuR/index.html
https://cran.r-project.org/web/packages/gpuR/vignettes/gpuR.pdf
http://www.r-tutor.com/content/download
https://www.r-pkg.org/pkg/WideLM
https://cran.r-project.org/web/packages/cudaBayesreg/index.html
https://www.researchgate.net/publication/265483496_cudaBayesreg_Bayesian_Computation_in_CUDA
http://www.omegahat.net/RCUDA/
http://www.omegahat.net/RCUDA/RCUDA.pdf
https://devblogs.nvidia.com/parallelforall/accelerate-r-applications-cuda/
http://heather.cs.ucdavis.edu/$\sim $matloff/rth.html
https://matloff.wordpress.com/2014/06/17/rth-a-flexible-parallel-computation-package-for-r/

##
#
Monte Carlo integration by calling custom CUDA library.
#
M.Y.S. Shum
20170620
#
##

library(microbenchmark)

Load library
LIBRARY_PATH <- ’../cuda/’
dyn.load(paste0(LIBRARY_PATH, ’McIntegration.so’))

Conveient wrapper to call functions.
mcIntegrationCUDA <- function(a, b, num_mc, verbose=FALSE)
{

#
Computes the integral
#
I = int_a^b e**(-0.5 * u ** 2) du,

#
using CUDA function from McIntegration.so.
#

num_threads_per_block <- 1024
num_blocks <- ceiling(num_mc / num_threads_per_block)

print(paste0(’num_blocks: ’, num_blocks))
print(paste0(’num_threads_per_block: ’, num_threads_per_block))

res <- .C("mcIntegrationGaussianDensity",
as.double(a),
as.double(b),
as.integer(num_mc),
as.integer(num_blocks),
as.integer(num_threads_per_block),
as.logical(verbose),
result=double(length=1))

return(res[[7]])
}

#
Test runs
#
a <- -4.0
b <- 4.0
num_mc <- 1000 * 1024

Do benchmark.
print(microbenchmark(mcIntegrationCUDA(a, b, num_mc)))
print(microbenchmark((b-a) * mean(sapply(1:num_mc, function(i) exp(-0.5 * runif(1,a,b) ** 2)))))

Print a test run.
print((mcIntegrationCUDA(a,b,num_mc)))
print(((b-a) * mean(sapply(1:num_mc, function(i) exp(-0.5 * runif(1,a,b) ** 2)))))

In CUDA/C:

//
//
// An example of Monte Carlo integration using CUDA.
//
// M.Y.S. Shum
// 20170620
//
// On MFCF machines, compile with,
//
// nvcc -G -L /usr/lib/R/lib/ -I /usr/share/R/include/ -I /usr/local/cuda-8.0/include -lR
// --shared -o McIntegration.so -Xcompiler -fPIC /McIntegration.cu
//
//

#include <unistd.h>
#include <stdio.h>
#include <math.h>

#include <R.h>

#include <curand.h>
#include <curand_kernel.h>

#define MY_PI 3.14159265358979323846264338327950288

9

__global__ void rand_init(unsigned int seed, curandState_t* states)
{

//
// Initialises the pseudo-random number generator for each thread. Threads will use the same seed,
// but, by enumerating through the thread index, it will produce different set sequences of random
// numbers.
//
unsigned int thread_ind = blockIdx.x * blockDim.x + threadIdx.x;
curand_init(seed, thread_ind, 0, &states[thread_ind]);

}
__global__ void sampleAndTransform(curandState_t* states, double* output, const double a, const double b)
{

//
// Method to
//
// 1. sample u ~ Unif(a,b) and
// 2. evaluate exp(-0.5 * u **2).
//

unsigned int thread_ind = blockIdx.x * blockDim.x + threadIdx.x;
double u = (b - a) * curand_uniform(&states[blockIdx.x]) + a;
output[thread_ind] = exp(-0.5f * pow(u,2));

}
extern "C" void mcIntegrationGaussianDensity(double* a, double* b,

int* num_mc, int* num_blocks, int* num_threads_per_block,
bool* verbose,
double* result)

{

//
// Method to estimate the integral
//
// I = int_a^b e**(-0.5 * u ** 2) du.
//
// We note that I = (b-a) * Expectation(e**(-0.5 * u ** 2)) with u ~ Unif(a,b), and use
// Monte Carlo sampling to estimate this.
//

// Initialise states in each parallel process.
if(*verbose) { printf("Initialising randomness state on GPU.\n"); }
curandState_t* states;
cudaMalloc((void**) &states, *num_mc * sizeof(curandState_t));
rand_init<<<*num_blocks, *num_threads_per_block >>>(time(0), states);
cudaDeviceSynchronize();

// Allocate memory for storing integrand.
if(*verbose) { printf("Initialising GPU memory.\n"); }
double cpu_integrands[*num_mc];
double* gpu_integrands;
cudaMalloc((void**) &gpu_integrands, *num_mc * sizeof(double));
cudaDeviceSynchronize();

// Compute integrands.
if(*verbose) { printf("Computing integrands.\n"); }
sampleAndTransform<<<*num_blocks, *num_threads_per_block >>>(states, gpu_integrands, *a, *b);

// Write result from GPU to CPU memory.
if(*verbose) { printf("Writing to CPU.\n");}
cudaMemcpy(cpu_integrands, gpu_integrands, *num_mc * sizeof(double), cudaMemcpyDeviceToHost);

// Take the average of the returned integrands and normalise.
if(*verbose) { printf("Taking average on CPU\n"); }
double expectation = 0.0;
for (unsigned int i=0; i<*num_mc; ++i) { expectation += cpu_integrands[i]; }
expectation /= *num_mc;

// Compute integral.
if(*verbose) { printf("Computing integral\n"); }
double integral = ((*b-*a) * expectation);

// Information
if(*verbose) {printf("Integral= %f.\n", integral); }
if(*verbose) {printf("Normalised density? %f.\n", integral / (sqrt(2.0 * MY_PI))); }

// Write to result.
*result = integral;

// Clean up: free memory on GPU.
cudaFree(states);
cudaFree(gpu_integrands);

}

10

Bibliography

[1] Alan Agresti and Maria Kateri. Categorical data analysis. Springer, 2011.

[2] Dar-Jen Chang et al. “Compute pairwise manhattan distance and pearson correlation coefficient of data points with gpu”. In: Software
Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, 2009. SNPD’09. 10th ACIS International Conference
on. IEEE. 2009, pp. 501–506.

[3] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

[4] Gputools on CRAN. https://cran.r-project.org/web/packages/gputools/gputools.pdf.

[5] Pawan Harish and PJ Narayanan. “Accelerating large graph algorithms on the GPU using CUDA”. In: International Conference on High-
Performance Computing. Springer. 2007, pp. 197–208.

[6] Gary J Katz and Joseph T Kider Jr. “All-pairs shortest-paths for large graphs on the GPU”. In: Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware. Eurographics Association. 2008, pp. 47–55.

[7] Juliane Liepe et al. “ABC-SysBioapproximate Bayesian computation in Python with GPU support”. In: Bioinformatics 26.14 (2010),
pp. 1797–1799.

[8] Yongchao Liu, Tony Pan, and Srinivas Aluru. “Parallel pairwise correlation computation on intel xeon phi clusters”. In: Computer Architecture
and High Performance Computing (SBAC-PAD), 2016 28th International Symposium on. IEEE. 2016, pp. 141–149.

[9] Yongchao Liu et al. “Parallelized Kendall’s Tau Coefficient Computation via SIMD Vectorized Sorting On Many-Integrated-Core Processors”.
In: arXiv preprint arXiv:1704.03767 (2017).

[10] Nadathur Satish, Mark Harris, and Michael Garland. “Designing efficient sorting algorithms for manycore GPUs”. In: Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on. IEEE. 2009, pp. 1–10.

[11] Adelino Ferreira da Silva. “cudaBayesreg: Bayesian computation in CUDA”. In: The R Journal 2.2 (2010), pp. 48–55.

[12] Erik Sintorn and Ulf Assarsson. “Fast parallel GPU-sorting using a hybrid algorithm”. In: Journal of Parallel and Distributed Computing
68.10 (2008), pp. 1381–1388.

[13] Marc A Suchard et al. “Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures”. In:
Journal of computational and graphical statistics 19.2 (2010), pp. 419–438.

[14] Xiaochun Ye et al. “High performance comparison-based sorting algorithm on many-core GPUs”. In: Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. IEEE. 2010, pp. 1–10.

[15] You Zhou and Ying Tan. “GPU-based parallel particle swarm optimization”. In: Evolutionary Computation, 2009. CEC’09. IEEE Congress
on. IEEE. 2009, pp. 1493–1500.

11

https://cran.r-project.org/web/packages/gputools/gputools.pdf

