
An introduction to CUDA
and GPU computing

Aaron Coutino, Marek Stastna, Kris Rowe

Updated by MFCF

January 2021

What is a GPU?

u A GPU (Graphical Processing Unit) is a special type of processor that was
designed to render and manipulate textures. They were originally designed
for rendering video games.

u The key difference between a CPU and a GPU is how many transistors are
allocated to processing compared to memory.

Why use a GPU?

u While originally designed for graphical processing, the
architecture of GPUs is suited for any applications which
perform many of the same simple task.

u In 2008, NVIDIA developed CUDA, the first general purpose
API for interfacing with GPUs. This has made it easy to
interface with the GPU and take advantage of this type of
computation.

u The figure on the right shows a typical work flow for a code
utilizing a GPU.

u When used correctly GPU computing can provide a massive
speed-up.

Speed up

When not to use a GPU

u The key to taking advantage of GPU computing is utilizing the mass
parallelization of processes.

u If your program or application cannot be made to perform many small tasks
then it will not be improved by GPU computing (it would probably make it
worse).

u Another issue to look for is that memory transfer is not the time-limiting
factor of your code. To process data, the CPU needs to transfer the data to
the GPU through the motherboard PCIe interface, which is much slower than
inter processor communication. In many cases this communication cost is the
limiting factor of the code and may get worse by transferring to the GPU.

GPU Computing in MATLAB

u Included in the Parallel Computing Toolbox.

u Extremely easy to use. To create a variable that can be processed using the
GPU, use the gpuArray function.

u This function transfers the storage location of the argument to the GPU. Any
functions which use this argument will then be computed by the GPU.

u Many of the built-in functions have been overloaded to accept gpuArray
arguments and will be evaluated on the GPU.

u For a list of these functions see: https://www.mathworks.com/help/parallel-
computing/run-matlab-functions-on-a-gpu.html

https://www.mathworks.com/help/parallel-computing/run-matlab-functions-on-a-gpu.html

Example

u N = 256;

u h_A = magic(N);

u d_A = gpuArray(h_A);

u d_B = abs(A.*A);

u h_B = gather(d_B);

GPU Computing in MATLAB

u The final step in the previous example used the gather function. This function
returns the variable created on the GPU (d_B) to the CPU so that it can be
further processed (plotted).

u A particularly helpful use of a GPU is the Fast-Fourier Transform. To take
advantage of this, the only change needed is to use the gpuArray to transfer
the variable to the GPU and gather to bring it back.

Spectral Shallow Water Equation Solver

CPU GPU

Performance Difference

Monte Carlo SImulations

u Monte Carlo simulations are particularly suited to GPU computing as you can
perform an ensemble of 1000s in roughly the same time as a single
simulation.

u To perform them in MATLAB you use the arrayfun function. The usage of this
function is: vector_answers = arrayfun(@somefunction, vector_input1,
vector_input2,…).

u This will perform the function somefunction using the inputs
vector_input1(1), vector_input2(1),… for each vector set.

u If these vector inputs are gpuArrays then each application of the function will
be performed on a separate thread.

Parameter Sweep

u This is an NPZD model where we are investigating
the dynamics of changing the parameter k.

u k goes from 0.05 to 10 by steps of 0.05 so there
are 199 values.

u The loop steps time forward and if it is a print
step it will gather the variables back from the
GPU.

GPU Computing in R

u Computing with GPUs is also extremely easy in R. All that is required is to
download one of the packages that have prebuilt functions.

u Example packages: gpuR, rpud, gputools, cudaBayesreg.

u Once the package is downloaded you can call the provided functions which
will operate on the GPU.

gputools

u gpuMatMult – Perform Matrix Multiplication with a GPU

u matA <- matrix(runif(2*3), 2, 3)

u matB <- matrix(runif(3*4), 3, 4)

u gpuMatMult(matA, matB)

u gpuQr – Estimate the QR decomposition for a matrix

u #get some random data of any shape at all

u x <- matrix(runif(25), 5, 5)

u qr <- gpuQr(x)

gputools

u gpuDistClust – Compute Distances and Hierarchical Clustering for Vectors on a GPU

u numVectors <- 5

u dimension <- 10

u Vectors <- matrix(runif(numVectors*dimension), numVectors, dimension)

u myClust <- gpuDistClust(Vectors, “maximum”, “mcquitty”)

u gpuLm – Fitting Linear Models using a GPU-enabled QR

u ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)

u trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)

u group <- gl(2, 10, 20, labels=c(“Ctl”, “Trt”))

u weight <- c(ctl, trt)

u anova(lm.D9 <- gpuLm(weight ~ group))

u summary(lm.D90 <- gpuLm(weight ~ group – 1))

u summary(resid(lm.D9) – resid(lm(D90))

rpud

u Rpuchol -- GPU Accelerated Cholesky Decomposition

u N <- 20

u x <- matrix(runif(N*5), ncol=N)

u A <- t(x)

u rpuchol(A)

u rpucor.test – Compute the p-values of the correlation matrix

u num <- 5

u dim1 <- 6

u dim2 <- 8

u x <- matrix(runif(num*dim1), num, dim1)

u y <- matrix(runif(num*dim2), num, dim2)

u rpucor.test(x, y, method=“kendall”)

u #introduce missing values

u x[3,5] <- NA

u y[4,1] <- NA

u rpucor.test(x, y, method=“kendall”, use=“pairwise.complete.obs”)

Behind the scenes

u In both MATLAB and R the actual interface with the GPU is performed using
CUDA C++.

u As such, in order to use the functionality outlined above, you must download
CUDA. It can be found at: https://developer.nvidia.com/cuda-downloads

u For making your own applications, beyond what you can do within these
languages, you may wish to work in C++ so as to directly control the
computation.

u For compiling CUDA code you must use the compiler provided by NVIDIA, nvcc.
It is based on g++ and has most of its features.

https://developer.nvidia.com/cuda-downloads

CUDA C++

u Assuming that you have installed CUDA in your path, you need to provide the
linker –lcudart (CUDA runtime).

u In your header you will then need to add #include <cuda>.

u The way coding in CUDA C++ works is that you create “kernels” which are
functions that will be evaluated on the GPU. These functions are preceded by
the declaration specifier __global__.

u To invoke a kernel you call: SOME_KERNEL<<<n_blocks,size_blocks>>>(input1,
input2, …)

u You may be wondering what n_blocks and size_blocks are…

GPU Breakdown

Example

CUDA C++

u In order to create a variable that is stored on the GPU you must first allocate
its memory. This is done through the cudaMalloc function.

u This function takes in the address of your declared variable (&variable) and
the size to allocate. For a vector of length N this would be
N*sizeof(float,int,double,etc…).

u Together this is cudaMalloc(&variable,N*sizeof(float)).

u Generally you will have a corresponding copy of this variable on the CPU
which is allocated using the normal malloc() function.

u The newest CUDA version supports “managed memory” which you allocate
once with cudaMallocManaged and is dynamically moved between the CPU
and GPU. This simplifies coding dramatically.

CUDA C++

u You must transfer your data to and from the GPU if you want to perform any
other operations on it (for example write it out).

u To do this you use the cudaMemcpy function. It takes in: target_vector,
original_vector, size of vector, and direction.

u The target_vector and original_vector are both pointers to vectors where one
of them is located on the GPU while the other is located on the CPU/RAM.

u The size is just number of elements * sizeof(float,int,double,etc…).

u The direction is either cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost
depending on which way the data is moving.

Example

CUDA Libraries

u In addition to the C++ API, CUDA comes with several libraries that are CUDA
versions of standard libraries.

u Some examples include: cuFFTW, cuBLAS, cuRAND, and cuSPARSE.

u Some of these libraries even provide built-in understanding of the original
library, eg. cuFFTW understands most FFTW3 syntax.

u In addition to this there are several specific guides for optimizing your code
for a given GPU architecture. These can all be found at:
http://docs.nvidia.com/cuda/index.html#axzz4bKHKYSVN

http://docs.nvidia.com/cuda/index.html

MFCF Resources

u MFCF Servers should be used for small-scale jobs. Medium and large-scale jobs are
better handled by SHARCNET

u gpu-pr1-01

u 28 cores

u 128GB of system memory

u NVIDIA Tesla P100, 4 GPU cards @ 16GB VRAM

u mosaic-gpu (machines 01-20)

u 20 cores

u 256GB of system memory

u NVIDIA Tesla K20m 1 card per machine @ 5GB VRAM

u Use Nexus login information.

u Use CISCO VPN Client to connect off-campus.

u Use Slurm workload manager to access machines: https://uwaterloo.ca/math-
faculty-computing-facility/services/specialty-research-linux-servers

https://uwaterloo.ca/math-faculty-computing-facility/services/specialty-research-linux-servers

Summary

u GPU computing is an extremely powerful tool for massively parallelizable
problems.

u It can provide huge boost in speed for very little investment compared to
traditional CPU computing

u Both MATLAB and R provide very easy to learn and use interfaces for taking
advantage of this.

u The general design ideas can be relatively easily implemented in CUDA C++.

u However CUDA is not the only option. ATI have developed an open source API
called OpenCL which will work with any GPU.

References

u http://docs.nvidia.com/cuda/cuda-c-
programmingguide/index.html#axzz4bUyxiASo

u http://docs.nvidia.com/cuda/cuda-quick-
startguide/index.html#axzz4bUyxiASo

u https://www.mathworks.com/help/distcomp/examples/using-gpu-
arrayfunfor-monte-carlo-simulations.html

u https://www.mathworks.com/help/distcomp/gpu-computing-in-matlab.html

u http://www.r-tutor.com/gpu-computing

u https://www.r-bloggers.com/r-gpu-programming-for-all-with-gpur/

u https://www.r-
project.org/conferences/useR2011/TalkSlides/Contributed/16Aug_1115_Focu
sI_3-HighPerfComp_1- Ligtenberg.pdf

http://docs.nvidia.com/cuda/cuda-c-programmingguide/index.html
http://docs.nvidia.com/cuda/cuda-quick-startguide/index.html
https://www.mathworks.com/help/distcomp/examples/using-gpu-arrayfunfor-monte-carlo-simulations.html
https://www.mathworks.com/help/distcomp/gpu-computing-in-matlab.html
http://www.r-tutor.com/gpu-computing
https://www.r-bloggers.com/r-gpu-programming-for-all-with-gpur/
https://www.r-project.org/conferences/useR2011/TalkSlides/Contributed/16Aug_1115_FocusI_3-HighPerfComp_1-%20Ligtenberg.pdf

