
Accelerate MATLAB Code
using a GPU

By: Julian Landers

Contributions from Marek Stastna, Chris Subich

When to use a GPU?

• GPUs take advantage of code that is parallelizable.

• This means conducting the same computation on multiple data points.

• Parallel computing is not well suited to 'for' loops (however parallel
computations inside a for loop are okay).

• Code requiring lots of indexing data on an array stored on a GPU will
perform poorly.

• It takes time to copy data from the CPU to the GPU, so small datasets will
not benefit from computation on the GPU.

• Longer algorithms will see the benefit of the GPU for a smaller dataset,
since the data needs to be copied only once then can be operated on for
the entire computation.

How to use a GPU in MATLAB

• Before coding:
• gpuDeviceTable lists all

 available GPU devices.
• gpuDevice(#) selects which device to use. This command also clears the GPU's

memory.

• gpuArray
• Copies data to the GPU for computation. Many built-in MATLAB functions are

compatible with gpuArray.

• arrayfun
• Applies an input function to each element of an array. Behaves the same as the

regular arrayfun but on the GPU. Input array should be a gpuArray.

• parfor
• Computes for loop in parallel. This means that each iteration of the loop must not

depend on the previous or any other iteration.

gpuArray

• Copies data to the device (GPU) from the host (CPU).
• A = rand(100,1); B = gpuArray(A);

• Some functions also support creating data directly on the GPU.
• B = rand(100, 1, 'gpuArray');

• Most MATLAB functions are 'enabled' for gpuArray so all that needs to be done is
to pass a gpuArray to the function. Data created from a gpuArray will also be a
gpuArray.
• C = max(B); D = isgpuarray(C); returns ans = 1

• Some functions (lots of plotting functions) cannot use gpuArrays so they will need
to be copied back to the host.
• E = gather(C);

• The workspace section will show if an array is on
 the host or the device.

arrayfun

• Applies function to each element of array.

• Useful when a more complicated (not built-in) function is needed.

function [dist12 dist23] = calcDist(a, b, c)
 dist12 = sqrt(a^2 + b^2)
 dist23 = sqrt(b^2 + c^2)

end
A = rand(100, 1, 'gpuArray');B = rand(100, 1, 'gpuArray');
C = rand(100, 1, 'gpuArray');

[DIST12 DIST23] = arrayfun(@calcDist, A, B, C);

parfor

• Used to run a loop in parallel.

• Each iteration of the loop cannot depend on the previous one.

• The loop parameters must be integers.

• parfor loops cannot be nested.

• MATLAB will automatically divide up the iterations among the
workers.
A = rand(100, 100); store_arr = zeros(100, 1);
parfor ii = 1:100
 store_arr(ii) = max(A(ii,:)) - min(A(ii,:));

end

Using gpuArray

• For built-in functions, under the
"Extended Capabilities" section on the MATLAB
 Help Centre, the ability to handle a gpuArray is discussed.

• A list of all supported functions can be found here:
• https://www.mathworks.com/help/referencelist.html?type=function&capability=gpu

arrays

• Elements of a Cell Array can be stored on a GPU as well.
 cell_arr{#} = gpuArray(A);
• Remember to avoid lots of indexing such as A(i) = A(i-1)*func
• For longer methods, if the GPU runs out of memory, it can be cleared using
reset(gpuDevice(#)); where the # is the device number listed from
gpuDeviceTable.

https://www.mathworks.com/help/referencelist.html?type=function&capability=gpuarrays
https://www.mathworks.com/help/referencelist.html?type=function&capability=gpuarrays

Simple example

A = rand(1e6, 1); CpuTime is around 0.001940s

B = gpuArray(A); GpuTime is around 0.000138s

tic Tst logical returns 1

C = mod(A, 8);

CpuTime = toc

tic

D = mod(B, 8);

GpuTime = toc

Tst = isequal(C, D);

Timing test

• Four programs related to Lagrangian particle simulations are tested.
• See https://github.com/darksc0ur/GPU-Particles

• The number of particles varies between programs since each program
uses a slightly different method.

• Three different hardware setups are tested: two server grade GPUs
and one desktop GPU.

• The RTX 3070Ti is connected to a Dell laptop with a Razer Core X
external GPU enclosure.
• https://www.razer.com/ca-en/gaming-egpus/razer-core-x

https://github.com/darksc0ur/GPU-Particles
https://www.razer.com/ca-en/gaming-egpus/razer-core-x

Comparison of GPUs used

Nvidia GeForce RTX 3070ti
in GPU enclosure

• Ampere Architecture

• 8GB GDDR6

• Compute Capability
8.6

• Around $390 for the
external enclosure
and $850 for the GPU
card

Nvidia Tesla P100 on Server

• Pascal Architecture

• 12GB HBM2

• Compute Capability
6.0

• Around $8000

Nvidia A100 on Server

• Ampere Architecture

• 40GB HBM2e

• Compute Capability
8.0

• Around $20000

Explanation of code

just_run_parts_red_and_psi.m

• Solves particle positions with a
flow streamfunction using a
Symplectic Euler method.

• Has a random noise included in
the simulation which is solved
using Bartosch's method for red
noise.

Juliandist2.m

• Searches for particles that have
"interacted" by considering all
particles below a cutoff distance
to have interacted.

• Calculates this by binning all the
particles into bins the width of
the cutoff distance. All particles
in the same bin are said to have
interacted.

Explanation of code

low_mem_dist.m

• Searches for particles that have
"interacted" by considering all
particles below a cutoff distance
to have interacted.

• This is implemented by binning
the particles, then explicitly
computing the distance
between all the particles in the
bin, and between all the
particles in adjacent bins.

low_mem_test_sort.m

• Searches for particles that have
"interacted" by considering all
particles below a cutoff distance
to have interacted.

• This is implemented by binning
the particles and using a binary
search to find which particles are
below the cutoff distance.

Timing Results

Program Name just_run_parts_red
_and_psi.m
numparts = 10000

JulianDist2.m
Numparts = 1e7

low_mem_dist.m
Numparts = 5e5

low_mem_test_so
rt.m numparts =
5e6

Time on personal
computer CPU

419s 6.9798s 37.5337s 538s

Time on personal
computer GPU

202s 0.91795s 11.6380s 141s

Time on P100
server CPU

1872s 58.6054s Effectively forever Effectively forever

Time on P100
server GPU

1666s 3.6085s 11.6552s 210s

Time on A100
server CPU

1040s 30.586s 177s 1600s

Time on A100
server GPU

326s 1.2503s 5.3788s 157s

Results

• As seen on the previous slide, for medium to large number of particles, the GPU
device outperforms the CPU for all calculations.

• While the computations on the server generally perform a bit slower, the GPUs
have a much larger memory, so they will be able to handle a higher number of
particles compared to the desktop GPU.

• The comparison between the CPU and GPU on the personal machine is a good
comparison, since it is a direct comparison between a consumer grade CPU and
GPU.

• Converting existing MATLAB code to be computed in parallel on a GPU is very
easy. In all the programs tested, the only change was to copy the initial particle
position data to the GPU.

• For additional information, the MATLAB Help Centre website should be
consulted.
• https://www.mathworks.com/help/matlab/help-and-support.html

https://www.mathworks.com/help/matlab/help-and-support.html

	Slide 1: Accelerate MATLAB Code using a GPU
	Slide 2: When to use a GPU?
	Slide 3: How to use a GPU in MATLAB
	Slide 4: gpuArray
	Slide 5: arrayfun
	Slide 6: parfor
	Slide 7: Using gpuArray
	Slide 8: Simple example
	Slide 9: Timing test
	Slide 10: Comparison of GPUs used
	Slide 11: Explanation of code
	Slide 12: Explanation of code
	Slide 13: Timing Results
	Slide 14: Results

