

MFCF S&AS GRAD SESSION FALL 2024

AGENDA

- Introduction, Help Centre
- Getting online
- Using your computer
 - desktops, accessing your files, central file service, printing, applications
- Academic resources
 - personal web pages using Scholar
 - library journals
- Computing resources
 - Linux environment servers (fast, big, GPU, HPC), managing jobs and priorities
 - Windows environment MS Remote Desktop
- Mathematical applications
- Questions

HELP CENTRE

- MC 3017, ext. 46323 (hMFCF) <u>mfcfhelp@uwaterloo.ca</u>
- desktops re-imaging, downloading software
- personal laptop wired connections submit RT ticket
- accounts, printing
- Request Tracker <u>https://rt.uwaterloo.ca/SelfService/Forms/</u> <u>MFCF/</u>
- please feel free to ask us for help!

GETTING CONNECTED

- two-factor authentication for campus wide services
- on-campus: wireless and wired connections
 - Wired connection
 - submit <u>request</u> with MAC address, OS, name of supervisor, room number, expiry date
- off-campus: VPN
 - use <u>https://checkvpn.uwaterloo.ca/</u> to verify things work
- Microsoft 365 suite including Teams

VIRTUAL PRIVATE NETWORK

- Allows remote access to all campus network resources
 - e.g. files, remote desktop services
 - all data transferred are encrypted and secure
- Install VPN from IST. This is a one-time install.
 - https://uwaterloo.ca/information-systems-technology/services/virtualprivate-network-vpn
 - includes Windows and Mac instructions
 - the client is called Cisco Secure Client
 - WatIAM credentials to login

WIRELESS

- Select eduroam from the list of available Wi-Fi networks
- authentication
 - userid@uwaterloo.ca
 - WatIAM password
- Do NOT run your own wifi service. It just interferes with eduroam and makes it worse for everyone!

WIRED

- submit a <u>request</u> in the MFCF RT queue with the following information:
 - operating system
 - room
 - expiry date
 - MAC hardware address
 - https://uwaterloo.ca/math-faculty-computing-facility/services/ wired-connections/how-find-mac-hardware-address
 - name of sponsor/supervisor

USING YOUR COMPUTER

- desktop
- central file service
- printing
- applications

COMPUTERS

- managed by MFCF
- Masters students share (hence no administrative permissions on the machines)
- machines must be left on 24/7 for management tasks (automatic rebooting for software upgrades and OS patching)
- files on local machine are NOT backed up
- PhD students have individual machines with their choice of platform with admin permissions.
- Common Mathematical software R, Maple, MATLAB, Office suite, etc., preinstalled or available via self-serve portal

DESKTOPS

- Windows PCs are joined to "Nexus" (campus central domain)
 - > P: drive is your personal storage on central file server
 - similar access to network and local storage
- Mac minis icons on the desktop for:
 - files.math.uwaterloo.ca your files on the central fileserver
 - windows.math.uwaterloo.ca- connects to Windows terminal servers using Remote Desktop
 - > P: drive is your personal storage on central file server
 - Iinux.math.uwaterloo.ca opens Linux command window
 - more about choice of Linux servers later in the presentation
- Linux manage your own

CENTRAL FILE SERVICE

- central research file server "files.math.uwaterloo.ca"
- central teaching file server coursework "files.student.math.uwaterloo.ca"
- frequent online backups for safe reliable storage and easy retrieval of old versions
- all central Linux and Windows servers, plus your desktop machines, use the central file servers
- keep your important files there, not on your desktop!

CONNECT TO FILE SERVER FROM YOUR OWN MACHINE

- ▶ Use Virtual Private Network (VPN) when accessing campus resources remotely <u>https://vpn.uwaterloo.ca</u>
- store files on the central Math fileserver (back up your data)
 - Mac standalone: Go > Connect to Server...
 - smb://files.math.uwaterloo.ca/UWuserid
 - Windows standalone: Map a network drive
 - \\files.math.uwaterloo.ca\UWuserid
 - Windows Remote Desktop: windows.math.uwaterloo.ca
 - > P: drive (files are stored automatically on the file server)
 - Linux: File Manager > Connect to Server...
 - smb://files.math.uwaterloo.ca/UWuserid
 - ssh to linux.math.uwaterloo.ca

PRINTING

- access is automatic once registered check with admin for location of printers
- for thesis only do not print books
- can be added to your personal workstation
 - https://uwaterloo.ca/math-faculty-computing-facility/ services/service-catalogue-printing/adding-printersyour-computer

APPLICATIONS

math software

- R, Maple, Julia, Octave (freeware version of MATLAB), Python and many more
- MATLAB Free campus wide license. See <u>https://uwaterloo.atlassian.net/</u> wiki/spaces/ISTKB/pages/284525621/Download+or+use+MATLAB+online
- others at <u>https://uwaterloo.ca/information-systems-technology/services/</u> <u>software-faculty-and-staff/licensed-software-university-waterloo</u> (some free, some paid by your supervisor)
- typesetting
 - LaTeX, including Overleaf Commons (<u>www.overleaf.com/edu/uwaterloo</u>)
- Zoom Free campus wide license. <u>https://uwaterloo.zoom.us</u>

APPLICATIONS – OVERLEAF

- Overleaf is a collaborative online document editor understands LaTeX for typesetting math
 - www.overleaf.com/edu/uwaterloo
- works in browser
- templates for UW thesis style, etc.
- UW site licence, free of charge for grad students

APPLICATIONS - ZOOM

- UW site licence free for grad students
- pro/educational level features
- https://uwaterloo.zoom.us
 - click Sign In, use your <u>UWuserid@uwaterloo.ca</u> address and WatIAM password
- https://uwaterloo.atlassian.net/wiki/spaces/ISTSERV/pages/ 42583425333/Collaboration+-+Zoom
- we use Microsoft Teams a lot here too

ACADEMIC RESOURCES

- personal web sites
 - <u>UW Scholar</u>
- library journals
 - start at <u>uwaterloo.ca/library</u>
 - find articles for your department
 - Math representative

PERSONAL WEB SITES

- UWaterloo Scholar <u>https://uwaterloo.ca/scholar</u>
 - does not require programming or coding skills
 - easy to use tools, self managed with templates/content modules
 - bio, CV, publications, events, etc....
 - publications can be imported into UWaterloo Scholar
 - Documentation and guidelines:
 - https://uwaterloo.ca/web-resources/scholar
- how long to keep Scholar site after leaving:
 - indefinite (cannot edit after you leave)
 - make sure to put in a link to a new site before it's read only
 - request IST to have it shut down/hidden

LIBRARY JOURNALS

- start at <u>uwaterloo.ca/library</u>
 - Quick Links -> Get Access From Anywhere to connect using your surname and barcode on back of WatCard
 - Quick Links -> Research Guides
 - scroll down, click Statistics, then click the title
 - select the "Find Articles" tab for links to various research databases including MathSciNet (on <u>AMS.org</u> site)
 - check out "Links of Interest" tab
- Library support person for Math: Rebecca Hutchinson (<u>r3hutchinson@uwaterloo.ca</u>)
- training workshops may be available, or just email Rebecca with any questions

COMPUTING RESOURCES

- Linux environment
 - servers
 - job management
- Windows environment
 - servers
 - Remote Desktop
- Loaner laptops high end Windows, Mac, and Linux
 - Iaptops with GPU for highly parallel computing
 - can be borrowed short-term with authorization from supervisor

LINUX ENVIRONMENT

- Servers
- Job management

SERVERS

- types of Linux servers
 - > aliases ssh to one of: linux.math, biglinux.math, fastlinux.math, and linux.student.math (course work only)
 - GPU servers, Parallel clusters
 - departmental-specific servers: e.g. Biostatistics group, Machine Learning group
 - ask your supervisor if they have extra resources for you to use and if so, they can submit a <u>request</u> to us
- what they can be used for:
 - Math applications/IDEs
 - MATLAB, SAGE, CPLEX, Maple, R, Julia, NumPy, SciPy, etc.
 - compilers and numerical libraries (gcc, GSL)
 - parallel tools on biglinux (OpenMP) and the clusters (MPI)
 - Iots more memory and processors than your supplied desktop or laptop
 - long running jobs

BIGLINUX.MATH

- for large memory or multi-process jobs
- pool of computers with 4 high-core-count CPUs, large memory FASTLINUX.MATH
- for jobs where processor speed is most important
- pool of computers with fastest CPUs
- 2 CPUs per machine, low core count; moderate memory

LINUX.MATH

- for light-duty casual use
- pool of older computers

LINUX ENVIRONMENT - SERVERS

CHOOSING A MACHINE FROM ONE OF THE POOLS

https://howbusy.math.uwaterloo.ca/

\$	Q Search or jump to	🕮 cmd+
🗮 Home > Dashboards > Research > CPU - biglinux.math.private 🛛 😪		
hosts cpu147.math.private.uwaterloo.ca + cpu149.math.private.uwaterloo ~		
CPU Utilization (last 15min of 2023-09-22 10:9) ③		
cpu147.math.private.uwaterloo.ca cpu149.math.private.uwaterloo	1.2% 13.5%	Why are some systems > of the CPU resources. Th 1/2 the speed untill one (
cpu152.math.private.uwaterloo	22.8% 7.9%	
cpu156.math.private.uwaterloo	44.6%	
~ Overview		
	9/21 00:00 09/22 00:00	cpu utilization (load15 / 1 300% 200% 100% 0% 09/16 00:00
 cpu147.math.private.uwaterloo.ca cpu149.math.private.uwaterloo.ca cpu154.math.private.uwaterloo.ca cpu156.math.private.uwaterloo.ca 	vate.uwaterioo.ca	 cpu147.math.private.uw; cpu154.math.private.uw;

SOFTWARE ENVIRONMENT

- Ubuntu 22.04
- see details at
 - https://uwaterloo.ca/mfcf/services/ -> Research Computing -> Research and staff Linux servers

JUPYTER

- web-based application that allows you to use or create documents that contain live code, equations, and visualizations
- use it remotely for Python, R, MATLAB, Octave, etc., or a command shell for quick work
- https://jupyter.math.uwaterloo.ca

GPU SERVERS

- gpu-pr1-01 / gpu-pr1-02 / gpu-pr1-03 / gpu-pr1-04
- NVIDIA P100, A100, H100, and L40S
- CUDA and other parallel GPU tools
- access via SLURM job scheduler see our web site
 - https://uwaterloo.ca/mfcf/services/specialty-researchlinux-servers

PARALLEL CLUSTERS

- Hpc-pr3
 - 8 nodes with 32 cores and 128 GB per node
- access via SLURM job scheduler see our website
 - https://uwaterloo.ca/mfcf/services/specialty-researchlinux-servers

HIGH-PERFORMANCE COMPUTING

- Digital Research Alliance of Canada <u>https://alliancecan.ca/</u>
 - formerly Compute Canada
- graham cluster located here at UW
 - ▶ 32,000 CPUs
 - InfiniBand high-speed interconnect
 - 320 NVIDIA P100 GPUs
- sponsored by your faculty member, free of charge

JOB MANAGEMENT

- background jobs
- nice
- nohup, screen, tmux

PUT JOBS IN THE BACKGROUND

- if you do this:
 - \$ firefox

you can't run another command until firefox exits

- put an ampersand on the end:
 - \$ firefox &

it runs in the background and you can type more commands

- see what jobs you have in the background:
 - \$ jobs
- e.g. bring the third one to the foreground again:
 - ► \$ fg %3
- e.g. kill the second one:
 - \$ kill %2

NICE

- commands started at the shell prompt run at normal interactive priority ('nice' value of zero)
- having many things competing for interactive priority can make the system feel slow
- so it is not polite (or "nice") to run big/long jobs at normal priority
- use the "nice" command to start a job at a polite background level (value higher than zero):

```
% nice 19 ./a.out &
```

• use the "renice" command to reset the priority of a running job:

010	./a.c	out &								
	% ps - USER rblanc		%CPU 0.8			RSS TI 2016 pt				TIME COMMAND 0:00 ./a.out
010	top PID 14142	USER rblander	PR 20		VIRT RES 269m 150m		5 %CPU ⁹ R 100.0		TIME+ 0:01.1	COMMAND 2 ./a.out
0/0	b renice 19 14142									
010	top PID 14142	USER rblander	PR 39		VIRT RES 269m 150m		5 %CPU ⁹ R 100.0		TIME+ 0:01.2	COMMAND 3 ./a.out

NOHUP

- Iog-out sends "hang up" (HUP) signal to child processes
- "nohup" command blocks HUP signal
- syntax: put 'nohup' in front of usual command line
 - % nohup ./myprog.a <infile >outfile
 - % nohup matlab -nojvm -r [a,b,c]=myarray -logfile myarray.log
 - % logout

SCREEN

- Iets you disconnect from session and reconnect later
- start: screen
- disconnect: ctrl-A d
- reconnect: screen -x

TMUX

terminal multiplexer: multiple terminal sessions in one window

WINDOWS ENVIRONMENT

- Servers
- Remote Desktop

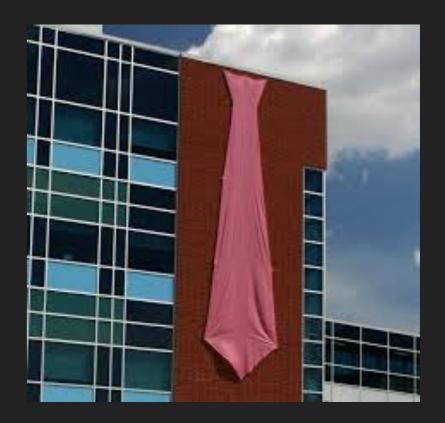
SERVERS

- types of Windows servers
- file storage is mapped to P: drive (files.math)
 - windows.math
 - pool of servers for research computing
 - wingpu.math (request access)
 - ▶ GPU server with three NVIDIA T4 GPUs
 - mondo.math (request access)
 - GPU workstation for highly parallel computing
 - windows.student.math
 - pool of servers for student/coursework computing, NOT for research
 - M: drive (files.student.math)

REMOTE DESKTOP

- Microsoft Remote Desktop
 - can disconnect from a session and reconnect later
 - but on windows.student.math, disconnected sessions get closed after two hours
- save your work often
- write code with checkpoint methods

Mather	Mathematical Applications								
View	Edit	Delete	Layout	Revisions	Clone				
Most recen	status: <i>Publisi</i> t version: <i>Yes</i> npublish this e	;							
Maple worksl	neets - develo	ped for Applied M	1ath courses						
MATLAB tute	MATLAB tutorials								
Introduction to GPU computing in MATLAB, R, and C++ with CUDA (PDF)									
Accelerating]	Accelerating MATLAB code with GPUs - compares CPU and GPU performance								
Accelerating	Accelerating physics calculations with CUDA in Python using Numba: A Monte-Carlo example								
Theoretical Background Notes for "Accelerating physics calculations with CUDA in Python using Numba"									
<u>R and GPU computing</u> - specifically for Statisticians (PDF)									
Comparison of	of R and Pythe	on Data Science A	Applications						
Scientific Blo	<u>gging with R a</u>	and Blogdown							
Dedalus									


WEB RESOURCES

- MFCF Web site <u>uwaterloo.ca/mfcf</u>
- LinkedIn Learning (<u>LiL</u>)- online training
 - formerly known as Lynda.com
- Request Tracker online reporting system
- handy one-page reference to all the main topics we covered:
 - https://uwaterloo.ca/mfcf/mfcf-information-sheet-math-faculty
- services for grad students:
 - https://uwaterloo.ca/mfcf/services/audience/25

THANK YOU

From the MFCF Team

suggestions for future topics?

https://uwaterloo.ca/math-faculty-computing-facility/services/audience/25