
2 - Mathematical Objects
Mathematics and mathematical objects provide a foundation on which most of data science is built. These mathematical objects include scalar values, 1-
dimensional vectors, 2-dimensional matrices and even higher dimensional data structures. This section will explore these objects and how one can initialize,
create, and manipulate them using R or Python. This can be handled in R with built-in functions and array creation methods but in Python we must introduce the
NumPy module.

2.1 - Python NumPy Module
As per the NumPy documentation page [8] Array Programming with NumPy, "NumPy is a fundamental package for scientific computing in Python. It is a Python
library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast
operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical
operations, random simulation and much more."

The NumPy documentation page [8] includes a section with instructions on downloading and installing the NumPy module. For example if you are using pip
NumPy can be installed with the call pip install numpy . Once installed it can be loaded/imported with the import  call as done below. It should be noted
that version 1.19.1 of NumPy is being used.

1.23.2

GOOD TIP: Import the NumPy module with a shorter name such as np  (this was done above). Each time a NumPy function is used its name must be called first.
For example to use the NumPy random()  function one must make the call np.random() . If NumPy had been imported under a different name such as 
numpy_module  then the call would have been numpy_module.random() . Using shorter and clear module names can save you some time coding.

2.2 - Vectors (1D Arrays)
An important distinction between numeric arrays is those which use floating point values (real numbers) and those which use integers values. There is usually a
preference in using one over the other for most applications; for example, integer arrays can be used for indexing.

Ex. One dimensional numeric arrays of the form:

2.2.1 - Numpy Vectors

According to the NumPy documentation [8], there are six general mechanisms for creating arrays:

1. Conversion from other Python structures (i.e. lists and tuples)
2. Intrinsic NumPy array creation functions (e.g. arange, ones, zeros, etc.)
3. Replicating, joining, or mutating existing arrays
4. Reading arrays from disk, either from standard or custom formats
5. Creating arrays from raw bytes through the use of strings or buffers
6. Use of special library functions (e.g., random)

array([0, 1, 2])

Note that the NumPy arange()  function returns an integer array where as the ones()  and zeros()  functions return floating point arrays by default.

array([[1., 1., 1.]])

array([[0.],
       [0.],
       [0.]])

When manually creating a NumPy array the function np.array()  is used. If any one of the values is set to floating point then the entire array will be a floating
point array (all values change).

array([0., 0., 0.])

2.2.2 - Indexing NumPy Vectors

NumPy arrays are 0-indexed and indexing makes use of square brackets. The indexing of [0] will give the first element in the array. Placing an array inside the
indexing bracket allows one to index any number of specific elements.

array([1, 2, 3, 4])

1

4

array([1, 2, 3])

array([1, 2, 3, 4, 1, 1, 2, 2])

2.2.3 - R Vectors

A vector is the most common and basic data structure in R. Technically, a vector can be one of two types: atomic vectors and lists. It is a collection of elements that
are most commonly composed of characters, logical, integers or numeric values. Vectors can be initialized in R using various functions or manual options such as
colon syntax : , rep()  function, numeric()  function and manual c()  function.

[1] 0 1 2

[1] 1 1 1

[1] 0 0 0

[1] 1 2 3

2.2.4 - Indexing R Vectors

Vectors in R are not 0-indexed and indexing makes use of square brackets. The indexing of [1] will give the first element in the vector. As with Python, placing a
vector inside the indexing bracket allows one to index any number of specific elements.

[1] 1 2 3 4

1

4

[1] 1 2 3

[1] 1 2 3 4 1 1 2 2

2.3 - Matrices (2D Arrays)
All numeric matrices in the following examples use only floating point values:

2.3.1 - NumPy Matrices

In Python, a matrix is a two-dimensional data structure arranged into rows and columns. Using NumPy, a matrix can be initialized the exact same way as the
vectors but by using nested lists. Note that NumPy includes a Matrix data object ( np.matrix ) but using the array object ( np.array() ) is all that is needed.
The same six general mechanisms for NumPy creating arrays (outlined above) can be applied to creating matrices or 2D arrays.

Note that NumPy includes an identity matrix function np.eye(n)  which can create an  idenity matrix.

array([[1., 0.],
       [0., 1.]])

array([[1., 2.],
       [3., 4.]])

Matrices can be created with NumPy using the array operation or by changing the dimensional structure of a NumPy array with the reshape()  function. Python
fills the matrix in order of rows first, which is opposite of R.

array([[1., 2.],
       [3., 4.]])

2.3.2 - Indexing NumPy Matrices

NumPy matrix arrays are indexed with the same tools as those for vector arrays but one must now consider the additional dimension (across rows and columns).

array([[1, 2],
       [3, 4]])

1

4

array([1, 3])

array([3, 4])

array([2, 4, 4])

array([[2, 2, 2],
       [4, 4, 4],
       [4, 4, 4]])

2.3.3 - R Matrices

In R, matrices are an extension of the numeric or character vectors. They are simply an atomic vector with dimensions: the number of rows and columns. The
elements of a matrix in R must be of the same data type. Matrices can be created in R using the matrix()  operation or by changing the dimensional structure of
a vector with the dim()  function.

     [,1] [,2]
[1,]   NA   NA
[2,]   NA   NA

     [,1] [,2]
[1,]    1    3
[2,]    2    4

     [,1] [,2]
[1,]    1    3
[2,]    2    4

It should be noted how R fills the contents of a matrix, going along each column from top to bottom row. To change this filling to rows first, one can use byrow = 
TRUE  inside the matrix call.

     [,1] [,2]
[1,]    1    2
[2,]    3    4

2.3.4 - Indexing R Matrices

Matrices in R are indexed with the same tools as those for vectors in R but one must now consider the additional dimension (across rows and columns).

     [,1] [,2]
[1,]    1    2
[2,]    3    4

1

4

[1] 1 3

[1] 3 4

[1] 2 4 4

     [,1] [,2] [,3]
[1,]    2    2    2
[2,]    4    4    4
[3,]    4    4    4

[8] Harris, C.R., Millman, K.J., van der Walt, S.J. et al, 2020. Array Programming with NumPy, [link]

import numpy as np # NumPy
print(np.__version__)

xi ∈ R,  i = 1, . . . , n,  →x =

⎡⎢⎢⎢⎢⎣

x1

x2

⋮
xn

⎤⎥⎥⎥⎥⎦
∈ Rn

# arange(n) gives an array of size n with elements from 0 to n-1
X = np.arange(3)
X

# ones(n) gives array of size n with all elements equal to 1
X = np.ones((1,3)) # 1 row 3 columns 
X

# zeros(n) gives array of size n with all elements equal to 0
X = np.zeros((3,1)) # 3 rows 1 column
X

# array() allows for manual array creation
X = np.array([0,0,0.]) # "0." enforces floating point
X

X = np.array([1,2,3,4])
X

X[0] # first element

X[3] # last element

X[0:3] # use colon sytax n:m to get elements from postion n to m-1

X[[0,1,2,3,0,0,1,1]] # insert array to get any elements

# colon sytax "n:m" gives an array of size (m-n) with elements from n to m
X <- 0:2
print(X)

# rep(x, n) gives an array of the element x repeated n times
X <- rep(1,3)
print(X)

# numeric(n) can intialize array of size n with all elements equal to 0
X <- numeric(3)
print(X)

# c() allows for manual array creation
X <- c(1,2,3)
print(X)

X <- c(1,2,3,4)
print(X)

X[1] # first element

X[4] # last element

print(X[1:3]) # use colon sytax n:m to get elements from postion n to m

print(X[c(1,2,3,4,1,1,2,2)]) # insert array to get any elements

xij ∈ R,  i = 1, . . . , n,  j = 1, . . . , m,  X =
⎡⎢⎢⎣

x11 … x1m

⋮ ⋱ ⋮
xn1 … xnm

⎤⎥⎥⎦ ∈ Rn×m

n × n

M = np.eye(2) # identity matrix
M

M = np.array([[1.,2],[3,4]]) # manual matrix creation
M

m = np.array([1.,2,3,4]) # matrix from a vector
M = m.reshape(2,2)
M

M = np.array([[1,2],[3,4]])
M

M[0,0] # first row, first column (top left)

M[1,1] # last row, last colummn (bottom right)

M[:,0] # first column 

M[1,:] # last row 

M[[0,1,1], [1,1,1]] # specific elements

M[[[0],[1],[1]], [1,1,1]] # specific rows and elements

M <- matrix(nrow = 2, ncol = 2) # matrix with elements not set
print(M)

M <- matrix(c(1,2,3,4), ncol = 2, nrow = 2) # manual matrix creation
print(M)

m <- c(1,2,3,4) # matrix from vector
dim(m) <- c(2,2)
print(m)

M <- matrix(c(1,2,3,4), nrow = 2, byrow = TRUE) # filled by row first
print(M)

M <- matrix(c(1,2,3,4), nrow = 2, byrow = TRUE)
print(M)

M[1,1] # first row, first column (top left)

M[2,2] # last row, last colummn (bottom right)

print(M[,1]) # first column

print(M[2,]) # last row

print(M[c(1,2,2), 2]) # specific elements

print(M[c(1,2,2), c(2,2,2)]) # specific rows and elements

https://numpy.org/

