
3 - Mathematical Operations
Naturally the vector and matrix arrays as defined in section 2 have mathematical operations which can be applied. These operations include vector/matrix addition,
subtraction, element-wise products and standard products. There is a strong similarity between how R and the Python NumPy module perform these operations; in
most cases the difference in code is a single character or two.

3.1 - Basic Vector Operations
For numeric vectors  and  the following definitions apply.

Element-wise vector product as:

Standard vector product as: 

Vector addition as: 

3.1.1 - NumPy Vector Operations

In Python, operations such as element-wise array multiplication, array products, and array addition are performed by using the built-in command keys * , @  and 
+ . Note that when performing addition or multiplication of an array with a scalar, Python will apply the operation across all dimensions.

(array([1, 2, 3]), array([2, 2, 2]))

array([2, 4, 6])

12

array([3, 4, 5])

Notice here below how the dimension is ignored when applying the operation with a scalar value.

array([3, 4, 5])

array([2, 4, 6])

3.1.2 - R Vector Operations

Similarly to Python, in R these operations are performed by using the command keys * , %*%  and + . Also when performing addition or multiplication of an array
with a scalar, R will apply the operation across all dimensions in the same way as NumPy.

[1] 1 2 3
[1] 2 2 2

[1] 2 4 6

     [,1]
[1,]   12

[1] 3 4 5

Notice how R has the same behaviour as Python when applying the operation with a scalar value.

[1] 3 4 5

[1] 2 4 6

3.2 - Basic Matrix Operations

For matrices  and  with  and ,  for 

 one defines:

Element-wise matrix product as:

Standard matrix product as (dimensions must agree): 

Matrix addition as: 

3.2.1 - NumPy Matrix Array Operations

Operations such as element-wise array multiplication, array products, and array addition are performed the same way for matrices as they are for vectors where
dimension sizes must agree. It should be noted that the NumPy transpose operator is simply .T  which can be used on NumPy arrays of any size.

array([[1, 3, 5],
       [2, 4, 6]])

array([[ 1,  9, 25],
       [ 4, 16, 36]])

array([[ 5, 11, 17],
       [11, 25, 39],
       [17, 39, 61]])

array([[ 2,  6, 10],
       [ 4,  8, 12]])

Just as was shown with vectors, NumPy will apply the operation across all dimensions when performing addition or multiplication of an array matrix and a scalar 
.

array([[3, 5, 7],
       [4, 6, 8]])

array([[ 2,  6, 10],
       [ 4,  8, 12]])

3.2.2 - R Matrix Operations

Matrix operations in R are the same as those used on vectors. It should be noted that the transpose operator in R is simply t()  which can be applied to both
vectors and matrices.

     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6

     [,1] [,2] [,3]
[1,]    1    9   25
[2,]    4   16   36

     [,1] [,2] [,3]
[1,]    5   11   17
[2,]   11   25   39
[3,]   17   39   61

     [,1] [,2] [,3]
[1,]    2    6   10
[2,]    4    8   12

Again, just as with vectors R will apply the operation across all dimensions if applying the operation with a scalar value.

     [,1] [,2] [,3]
[1,]    3    5    7
[2,]    4    6    8

     [,1] [,2] [,3]
[1,]    2    6   10
[2,]    4    8   12

(array([1, 2]),
 array([[1, 3, 5],
        [2, 4, 6]]))

array([ 5, 11, 17])

array([[ 1,  4],
       [ 3,  8],
       [ 5, 12]])

Notice above how here each column of  gets multiplied by the value corresponding to the elements of .

array([[ 1,  6, 15],
       [ 2,  8, 18]])

Above, each column of  gets multiplied by the value corresponding to the elements of . Python does not use the same strategy as R in this case. To perform
matrix-vector operations, the size of the matrix columns and the vector must match.

array([[2, 4],
       [4, 6],
       [6, 8]])

array([[2, 5, 8],
       [3, 6, 9]])

3.3.2 - R Matrix-Vector Array Operations

Dimensions must agree to compute matrix/vector products in R. We look to reproduce the operations performed in Python the same way in R.

[1] 1 2
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6

     [,1]
[1,]    5
[2,]   11
[3,]   17

If the vector in question is of the same size as the number of matrix rows one can perform a version of element-wise matrix/vector multiplication where each row in
the matrix is multiplied by the same element from the vector. One should use caution when attempting operations as this since R will perform the matrix/vector
multiplication as long as matrix length (number of elements in the matrix) is a multiple of the vector length.

     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    4    8   12

     [,1] [,2] [,3]
[1,]    1    9   10
[2,]    4    4   18

This "rule" is applied in the same way when performing matrix/vector addition. R will perform the addition as long as matrix length is a multiple of the vector length.
If the vector is the same length as the matrix columns, the addition will be applied across the rows.

     [,1] [,2] [,3]
[1,]    2    4    6
[2,]    4    6    8

     [,1] [,2] [,3]
[1,]    2    6    7
[2,]    4    5    9

This feature is useful but can lead to unnoticed errors if one is performing such operations with with incorrectly sized objects.

3.4 - Speeding up Matrix Multiplication
If performing matrix/matrix or matrix/vector multiplication, one can use operators such as @  and %*%  or built-in NumPy and R functions instead. These choices
will all produce the same result but vary in how long they take, thus certain methods should be used to speed up the computation. This section will specifically
show the case of computing the matrix multiplication of .

The Python time  module is used for these examples. Extra documentation on the time()  function base can be found in the Python standard Library [7]. It is
used here only to track the seconds between operations. Using the time.time()  function, one can extract the current system time at any point during code
execution.

3.4.1 - Python Fast Matrix Multiplication

Consider the matrix multiplication of  (cross product) for matrix  . If making use of the @  operator, one can use the built-in NumPy matmul()  function or
the dot()  function to complete identical computations.

(array([[ 5, 11, 17],
        [11, 25, 39],
        [17, 39, 61]]),
 array([[ True,  True,  True],
        [ True,  True,  True],
        [ True,  True,  True]]))

To convince readers of the difference in speed for these functions a simple experiment is run for varying sizes of matrix when computing . One can observe
how matmul()  and @  perform the same but both perform the matrix multiplication faster than using the dot()  function.

Computational Runtime (seconds)

N for NxN sized matrix Original @ operation NumPuy matmul function NumPy dot function

50 0.000029 0.000015 0.000038

100 0.000097 0.000070 0.001514

500 0.003549 0.003270 0.005038

1000 0.009449 0.008407 0.015854

5000 0.282705 0.222986 1.096729

7500 0.642238 0.625548 1.836163

10000 1.264970 1.227064 3.886481

15000 3.829852 3.969029 9.502815

20000 8.174821 8.056721 19.351828

It should be noted that these computational run times will be different depending on the machine one uses. The main take-away is that these trends will still hold;
the dot()  function is not optimal for computing  whereas there seems to be no clear advantage in using the @  operator over the matmul()  function.

3.4.2 - R Fast Matrix Multiplication

Similarly in R, if making use of the %*%  operator, one can use the built-in crossprod()  function instead to complete the computation of .

     [,1] [,2] [,3]
[1,]    5   11   17
[2,]   11   25   39
[3,]   17   39   61
     [,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] TRUE TRUE TRUE
[3,] TRUE TRUE TRUE

Similarly to what is done above in Python, one can run a simple experiment in R to test the speed difference in these choices. It is shown how the crossprod()
function outperforms the direct multiplication %*% .

A matrix: 9 x 3 of type dbl

N for NxN sized matrix Original %*% operation R crossprod() Function

50 0.000044 0.000024

100 0.008224 0.000532

500 0.030992 0.005052

1000 0.063106 0.008369

5000 1.028639 0.530416

7500 2.777560 1.239570

10000 5.119740 2.580541

15000 14.600272 7.541085

20000 31.476654 16.136891

Again, these computational runtimes will be different depending on the machine one uses. The main take-away is that the R crossprod()  function is
significantly faster than the operation t(X) %*% X , with larger matrices causing an even bigger discrepancy between run times. Without getting into the details
of why this is the case, R's crossprod()  function is faster because it does not compute the transpose. Technically the call t(X) %*% X  has to first take the
matrix transpose t(X)  and then perform the matrix multiplication to get the result, hence performing two separate computations. The crossprod()  function
leverages the structure of X to compute  without having to take the transpose of  at all.

3.5 - Computing Matrix Properties
Computing matrix properties is a very common task in data science. These properties include matrix inverse, pseudo-inverse and matrix determinant. One can also
take advantage of matrix structure (PSD matrix) to compute these properties faster and more efficiently.

3.5.1 - Matrix Inverse

For matrix  its inverse  is defined such that  for size  identify matrix .

If the matrix  is positive semi-definite (psd), , then the computation can be done in a more efficient way using a Cholesky decomposition
where  for triangular matrix . Thus one can calculate  where  is found using a backwards/forwards solver. This is much faster than
a normal inverse calculation.

3.5.1.1 - NumPy Matrix Inverse

NumPy provides a linear algebra function base which can be accessed using the call np.linalg() . This function base includes a matrix inverse function 
inv() . The inverse can also be computed using a NumPy matrix class np.matrix() . For an invertible matrix  the inverse can be computed directly with the

call A.I .

array([[0.0882257 , 0.72253488],
       [0.98528755, 0.27361679]])

array([[-0.39783495,  1.05055551],
       [ 1.43259419, -0.12827892]])

matrix([[ True,  True],
        [ True,  True]])

3.5.1.2 - Python SciPy Module

SciPy is a collection of mathematical algorithms and convenient functions built on the NumPy extension of Python. This section will make use of the SciPy linear
algebra module scipy.linalg  for its matrix inverse and solving functions. As per the SciPy documentation page [9] SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python " scipy.linalg  contains all the functions in numpy.linalg  plus some other more advanced ones. Another advantage of using 
scipy.linalg  over numpy.linalg  is that it is always compiled with BLAS/LAPACK support, while for NumPy this is optional. Therefore, the SciPy version

might be faster depending on how NumPy was installed."

Once installed it can be loaded/imported with the import  call as done below. It should be noted that version 1.5.2 of SciPy is being used.

1.5.2

Here the linalg functions are imported from SciPy since we are interested in using its solve_triangular()  function. This function is used to compute the
inverse of a triangular matrix efficiently by forward/backward solving.

3.5.1.3 - NumPy/SciPy PSD Matrix Inverse

When computing matrix inverse of a PSD matrix, one can take advantage of this structure to speed up computation. One must compute the Cholesky
decomposition of the matrix to finds its inverse. The Cholesky decomposition can be found by using the NumPy function cholesky()  and the inverse is found
with the backwards solver solve_triangular() .

array([[10.07986811,  7.31169132],
       [ 7.31169132, 10.47672508]])

(array([[ 0.20092226, -0.14022336],
        [-0.14022336,  0.19331135]]),
 array([[ 0.20092226, -0.14022336],
        [-0.14022336,  0.19331135]]))

Alternatively, the SciPy linalg solve()  function has a parameter sym_pos  which can be set to True  if the matrix in question is PSD. One can see that this
approach also produces the same inverse results.

array([[ 0.20092226, -0.14022336],
       [-0.14022336,  0.19331135]])

When working with PSD matrices, always take advantage of this structure. A small experiment can be run to show how much faster PSD matrix inverse calculations
are when using a Cholesky method or built-in PSD method compared to the regular inverse calculation. The internal NumPy inv()  function is compared to the
Cholesky method and to the SciPy PSD inverse method. (SciPy solve()  has additional parameters to assume the matrix is PSD assume_a='pos' .)

Computational Runtime (seconds)

N for NxN Matrix NumPy Basic Inverse Cholesky/Triangular Inverse SciPy Inverse

50 0.000432 0.000211 0.000112

100 0.000458 0.000471 0.000200

500 0.020880 0.005580 0.004286

1000 0.024315 0.048687 0.028815

5000 1.129247 0.899440 0.822636

7500 2.702918 2.209273 2.119805

10000 7.565928 4.326654 4.271921

15000 12.245309 11.531817 13.766104

20000 24.037661 24.183464 26.564049

Note: Run times will vary depending on the machine one uses. The main take-away is that the Cholesky method with NumPy is advantageous for matrices smaller
than 20000x20000. One can see that for the large matrix, the NumPy inv()  function actually out-performs the Cholesky and SciPy methods. This is because
the NumPy inv()  function contains internal multi-processing tools which start to have an effect in decreasing run time if using a large enough matrix. For smaller
matrices the multi-processing tools do not have as much of an effect so the Cholesky and SciPy methods are faster.

3.5.1.4 - R Matrix Inverse

R has a built in solve()  function which can be used to compute the matrix inverse. solve()  is used to find solutions for  but calling 
solve(A)  will compute  directly.

          [,1]      [,2]
[1,] 0.3010248 0.4155825
[2,] 0.1056157 0.5757500

           [,1]      [,2]
[1,]  4.4485912 -3.211041
[2,] -0.8160505  2.325899

             [,1]          [,2]
[1,]  1.00000e+00 -5.321529e-17
[2,] -3.12986e-18  1.000000e+00

3.5.1.5 - R PSD Matrix Inverse

In R the PSD matrix inverse can also use the same Cholesky strategy to speed things up. This is done with the R functions chol()  and backsolve() .

          [,1]      [,2]
[1,]  62.37641 -47.26029
[2,] -47.26029  37.46537
          [,1]      [,2]
[1,]  62.37641 -47.26029
[2,] -47.26029  37.46537

A small experiment can also be run in R to show how much faster PSD matrix inverse calculations are if using a Cholesky decomposition compared to the regular
inverse function.

A matrix: 9 x 3 of type dbl

N for NxN sized matrix Original 'solve()' Inverse Cholesky Inverse Method

50 0.001137 0.000117

100 0.005223 0.000315

500 0.456043 0.005908

1000 1.421121 0.026170

5000 5.334972 0.847194

7500 7.199269 1.962065

10000 10.100626 4.224895

15000 20.104878 10.673056

20000 35.091830 24.792031

Note: Run times will vary depending on the machine one uses. The main take-away is that use of the Cholesky method in R will significantly reduce computational
run time. This difference in speed will increase as the size of the matrix in question increases. This should be great motivation to always take advantage of PSD
matrix structure in R.

3.5.2 - Matrix Pesudo-Inverse

If the matrix inverse does not exist one can calculate its pseudo inverse. The pseudo inverse of a matrix  notation , is defined as:

 if  is full column rank,
 if  is full row rank and

 if  is square, invertible

3.5.2.1 - SciPy Pseudo Inverse

This is done with the SciPy linear algebra function base. The pinv()  function computes the matrix pseudo inverse.

array([[1, 2],
       [3, 4],
       [5, 6]])

array([[1.0000000e+00, 8.8817842e-16],
       [0.0000000e+00, 1.0000000e+00]])

3.5.2.2 - R Package pracma (Practical Numerical Math Functions)

As per the pracma documentation page [10] Package 'pracma' (Practical Numerical Math Functions), the package 'Provides a large number of functions from
numerical analysis and linear algebra, numerical optimization, differential equations, time series, plus some well-known special mathematical functions. Uses
'MATLAB' function names where appropriate to simplify porting.' One can load this package with the call library(pracma)  if already installed. If not installed,
one can download the package from CRAN using the call install.packages('pracma') . We will use the peudo-inverse function in pracma. It should be noted
that version 2.2.9 of the pracma package is being used.

[1] ‘2.2.9’

3.5.2.3 - R Pseudo Inverse

We will make use of the pracma function pinv()  to calculate matrix pseudo inverse.

     [,1] [,2]
[1,]    1    2
[2,]    3    4
[3,]    5    6

              [,1] [,2]
[1,]  1.000000e+00    0
[2,] -4.440892e-16    1

3.5.3 - Matrix Determinant

For matrix  let  be the  sized matrix formed by deleting the ith row and jth column of .

The determinant of  can then be defined as:

Again, if the matrix  is positive semi-definite (PSD), , then the computation can be done in a more efficient way using a Cholesky
decomposition where  for triangular matrix . Since  is triangular one can calculate the determinant of the PSD matrix as:

3.5.3.1 - SciPy Matrix Determinant

To calculate determinant in Python it is recommended to use the SciPy linear algebra function base instead of NumPy. They are virtually the same but SciPy has
more options and tends to be more powerful in what it can accomplish. The determinant can be called by using .det() .

(array([[1, 2],
        [3, 4]]),
 -2.0)

3.5.3.2 - SciPy PSD Matrix Determinant

For a PSD matrix, one can again take advantage of this structure to speed up computation. One must compute the Cholesky decomposition of the matrix to find
the determinant. The determinant of a triangular matrix is the product of its diagonal values.

(array([[4., 0., 0., 0.],
        [0., 4., 0., 0.],
        [0., 0., 4., 0.],
        [0., 0., 0., 4.]]),
 256.0)

256.0

A small experiment is run comparing normal vs Cholseky methods to convince readers of the speed increase.

Computational Runtime (seconds)

N for NxN Matrix SciPy Basic Determinant Cholesky Determinant

50 0.000381 0.000075

100 0.000442 0.000169

500 0.904340 0.003077

1000 2.433227 0.043376

5000 8.525671 0.601734

7500 10.126296 1.279135

10000 12.639214 1.540401

15000 16.681865 3.881504

20000 21.266501 6.762789

Note: Run times will vary depending on the machine one uses. The main take-away is that using a Cholesky method to find the determinant of a PSD matrix is
significantly more efficient than using a normal determinant calculation. The difference in speed will continue to increase as the size of the matrix in question
increases. This should be sufficient motivation to use a Cholesky method to calculate the determinant of a PSD matrix in Python.

3.5.3.3 - R Matrix Determinant

In R one can utilize the built in function det()  to compute matrix determinant.

     [,1] [,2]
[1,]    1    3
[2,]    2    4

-2

3.5.3.4 - R PSD Matrix Determinant

For PSD matrices the computation can again be greatly sped up. R uses the diag()  function to extract diagonal elements in a matrix and the prod()  function
to compute the product of an array of elements.

         [,1]     [,2]
[1,] 1.452562 1.448369
[2,] 1.448369 1.481538

0.0542528720289448
0.0542528720289448

A small experiment can be run to convince readers of the speed increase.

A matrix: 9 x 3 of type dbl

N for NxN sized matrix Original 'det()' Determinant Cholesky Determinant Method

50 0.001460 0.000672

100 0.005022 0.000138

500 0.413112 0.002762

1000 1.334488 0.030634

5000 4.695797 0.261089

7500 6.188897 0.708372

10000 7.033950 1.471535

15000 10.149708 3.090780

20000 14.394160 6.171631

Note: Run times will vary depending on the machine one uses. The main take-away is the same as the Python experiment. Using a Cholesky method to find the
determinant of a PSD matrix is clearly superior in R.

There are other computational methods besides a Cholesky decomposition such as QR decomposition or singular value decomposition (SVD) which can be used to
one's advantage. Only the Cholesky method was explored here because of its general speed advantage and simplicity to implement. It should be noted that a
Cholesky decomposition is not always optimal and that one should always be aware of the structure and properties of the mathematical objects one is dealing with.

[7] Van Rossum, G. & Drake, F.L., 2009. Python 3 Reference Manual, [link] 
[9] Virtanen, P. et al., 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, [link] 
[10] Hans W. Borchers, 2022, Package 'pracma' (Practical Numerical Math Functions), [link]

3.3 - Basic Matrix-Vector Operations

For vector  and matrix  with  and  for ,  one

defines:

Standard matrix-vector product (dimensions must agree) as:

### 3.3.1 - NumPy Matrix-Vector Array Operations Dimensions must agree when computing matrix/vector products. For example, one cannot multiply a matrix of
size  with a vector of size . Both Python and R will produce error messages if trying to calculate a matrix/vector product with incompatible dimensions.

x = [x1 … xn]T y = [y1 … yn]T ∈ Rn

x ⊙ y = [x1 ⋅ y1 … xn ⋅ yn]T ∈ Rn

x ⋅ y = xT y =
n∑

i=1

xiyi ∈ R

x + y = [x1 + y1 … xn + yn]T ∈ Rn

X1 = np.array([1,2,3])
X2 = np.array([2,2,2])
X1, X2

X3 = X1 * X2 # element-wise multiplication
X3

X4 = X1 @ X2 # vector product
X4

X5 = X1 + X2 # vector addition
X5

X6 = X1 + 2 # vector/scalar addition
X6

X7 = X1 * 2 # vector/scalar multiplication
X7

X1 <- c(1,2,3)
X2 <- c(2,2,2)
print(X1)
print(X2)

X3 <- X1 * X2 # element-wise multiplication
print(X3)

X4 <- X1 %*% X2 # vector product
print(X4)

X5 <- X1 + X2 # vector addition
print(X5)

X6 <- X1 + 2 # vector/scalar addition
print(X6)

X7 <- X1 * 2 # vector/scalar multiplication
print(X7)

X = [X1 … Xm] =
⎡⎢⎢⎣

x11 … x1m

⋮       ⋮
xn1 … xnm

⎤⎥⎥⎦ Y = [Y1 … Ym] =
⎡⎢⎢⎣

y11 … y1m

⋮       ⋮
yn1 … ynm

⎤⎥⎥⎦ ∈ Rn×m xij,  yij ∈ R Xj Yj ∈ Rn

i = 1, . . . , n,  j = 1, . . . , m

X ⊙ Y = [X1 ⊙ Y1 … Xm ⊙ Ym] =
⎡⎢⎢⎣

x11y11 … x1my1m

⋮     ⋮
xn1yn1 … xnmynm

⎤⎥⎥⎦ ∈ Rn×m

XT Y =
⎡⎢⎢⎣

XT
1 Y1 … XT

1 Ym

⋮     ⋮
XT

mY1 … XT
mYm

⎤⎥⎥⎦ =
⎡⎢⎢⎣

∑n
i=1 x1iy1i … ∑n

i=1 x1iymi

⋮     ⋮
∑n

i=1 xmiy1i … ∑n
i=1 xmiymi

⎤⎥⎥⎦ ∈ Rm×m

X + Y = [X1 + Y1 … Xm + Ym] =
⎡⎢⎢⎣

x11 + y11 … x1m + y1m

⋮     ⋮
xn1 + yn1 … xnm + ynm

⎤⎥⎥⎦ ∈ Rn×m

X = np.array([[1,3,5],[2,4,6]])
X

M1 = X * X # element-wise multiplication
M1

M2 = X.T @ X # matrix product
M2

M3 = X + X # matrix/matrix addition
M3

∈ R

M4 = X + 2 # matrix/scalar addition
M4

M5 = X*2 # matrix/scalar multiplication
M5

X <- matrix(1:6, nrow = 2, ncol = 3)
print(X)

M1 <- X * X # element-wise multiplication
print(M1)

M2 <- t(X) %*% X # matrix product
print(M2)

M3 <- X + X # matrix/matrix addition
print(M3)

M4 <- X + 2 # matrix/scalar addition
print(M4)

M5 <- X*2 # matrix/scalar multiplication
print(M5)

x = [x1 … xn]T ∈ Rn Y = [Y1 … Ym] =
⎡⎢⎢⎣

y11 … y1m

⋮       ⋮
yn1 … ynm

⎤⎥⎥⎦ ∈ Rn×m Yj ∈ Rn xi,  yij ∈ R j = 1, . . . , m i = 1, . . . , n

Y T x = [Y T
1 x … Y T

m x]T = [
n∑

i=1

y1ixi …
n∑

i=1

ymixi]T ∈ Rm

R2×4 R3

x = np.array([1,2])
Y = np.array([[1,3,5],[2,4,6]])
x, Y

M = Y.T @ x # matrix/vector product
M

M1 = Y.T * x # multiplied across rows
M1

Y T x

x2 = np.array([1,2,3])
M2 = Y * x2 # multiplied across columns
M2

Y x2

M3 = X.T + x # addition is the same across rows of X
M3

M4 = X + x2 # addition is the same across columns of X
M4

x <- c(1,2)
Y <- matrix(1:6, nrow = 2, ncol = 3)
print(x)
print(Y)

M <- t(Y) %*% x # matrix/vector product
print(M)

M1 <- Y * x # multiply across rows
print(M1)

x2 <- c(1,2,3) # multiplication is no longer across rows
M2 <- Y * x2
print(M2)

M3 <- Y + x # addition is the same across rows
print(M3)

M4 <- Y + x2 # addition is no longer the same across rows
print(M4)

XT X

import time  # for timing code blocks

XT X X

X = np.array([[1,3,5],[2,4,6]])
M = X.T @ X                      # direct multiplication with @ 
M_new = np.matmul(X.T, X)        # matmul() function
M_new2 = np.dot(X.T, X)          # dot() function
M, (M == M_new2) == (M == M_new) # all produce same result

XT X

N = np.array([2, 10, 50, 100, 500, 1000, 5000, 7500, 10000, 15000, 20000])

time_original = []
time_function1 = []
time_function2 = []
D = np.random.uniform(0,1, size = (20000,20000))

for i in range(len(N)):
    X = D[0:(N[i]-1), 0:(N[i]-1)]
    
    t1 = time.time()
    M = X.T @ X
    time_original.append(time.time()-t1)
    
    t2 = time.time()
    M_new = np.matmul(X.T, X)
    time_function1.append(time.time()-t2)
    
    t3 = time.time()
    M_new2 = np.dot(X.T, X)
    time_function2.append(time.time()-t3)

XT X

XT X

X <- matrix(1:6, nrow = 2, ncol = 3)
M <- t(X) %*% X       # direct multiplication with %*%
M_new <- crossprod(X) # can use tcrossprod() for X %*% t(Y)
print(M)
print(M == M_new)     # produce same result

scales <- c(2, 50, 100, 500, 1000, 5000, 7500, 10000, 15000, 20000)
n <- length(scales)
time_original <- numeric(n)
time_function <- numeric(n)
D <- matrix(runif(20000^2, 0, 1), nrow = 20000, ncol = 20000)
count <- 1

for (i in scales) {
    X <- D[1:i,1:i]
    
    t1 <- Sys.time()
    M_original <- t(X) %*% X
    time_original[count] <- Sys.time() - t1
    
    t3 <- Sys.time()
    M_function <- crossprod(X)
    time_function[count] <- Sys.time() - t3
    
    count <- count + 1
}

XT X X

A ∈ Rn×n A−1 AA−1 = In n In

A xT Ax ≥ 0 ∀x ∈ Rn

A = LT L L A−1 = L−1L−T L−1

A

# 2d NumPy array
M = np.random.uniform(0,1, size = (2,2))
M

# Inverse with NumPy function
M_inv1 = np.linalg.inv(M)
M_inv1

# Inverse with NumPy matrix class
M2 = np.matrix(M)
M_inv2 = M2.I
M_inv1 == M_inv2  # same result

import scipy.linalg as la # linear algebra tools
print(scipy.__version__)

# Create PSD matrix
M = M + M.T - np.diag(M.diagonal())
M = np.matmul(M,M.T)
M

# Normal NumPy inversion
inv1 = np.linalg.inv(M)

# Cholesky/triangular inversion
L = la.solve_triangular(np.linalg.cholesky(M), np.eye(len(M)), lower=True)
inv2 = np.matmul(L.T,L)

# Equivelent results
inv1, inv2

# SciPy psd inversion
inv3 = la.solve(M, np.eye(len(M)), sym_pos = True)
inv3

N = np.array([2, 50, 100, 500, 1000, 5000, 7500, 10000, 15000, 20000])
n = len(N)

X = np.random.uniform(0,1, size = (20000, 20000)) # symmetric psd
X = X + X.T - np.diag(X.diagonal())
X = np.matmul(X,X.T)
    
time_normal = []
time_chole = []
time_sci = []

for i in range(n):
    
    M = X[0:N[i], 0:N[i]]
    I = np.eye(N[i])

    t1 = time.time()
    X_inv1 = np.linalg.inv(M)
    time_normal.append(time.time()-t1)
    
    t2 = time.time()
    L = la.solve_triangular(np.linalg.cholesky(M), I, lower=True, check_finite=False)
    X_inv2 = np.matmul(L.T,L)
    time_chole.append(time.time()-t2)
    
    t3 = time.time()
    X_inv3 = la.solve(M, I, sym_pos = True, assume_a='pos', overwrite_a=True, overwrite_b=True, check_finite=False)
    time_sci.append(time.time()-t3)

Ax = b ⇒ x = A−1b

A−1

M <- matrix(runif(4, 0, 1), ncol = 2)
print(M)

M_inv <- solve(M) # to find inverse.
print(M_inv)

print(M %*% M_inv) # check for idenity

M <- M + t(M) - diag(diag(M)) # symmetric psd M
M <- crossprod(M)

L <- chol(M)                         # cholesky
L_inv <- backsolve(L, diag(ncol(L))) # triangular inverse
inv1 <- tcrossprod(L_inv)       
inv2 <- solve(M)
print(inv1)
print(inv2)                          # same results 

scales <- c(2, 50, 100, 500, 1000, 5000, 7500, 10000, 15000, 20000)
n <- length(scales)
time_solve <- numeric(n)
time_chol <- numeric(n)

# Generate psd matrix
X <- matrix(runif(20000^2, 0, 1), nrow = 20000, ncol = 20000)
X <- 0.5 * (t(X) + X) - diag(diag(X))
X <- crossprod(X)
count <- 1

for (i in scales) {
    M <- X[1:i, 1:i]
    
    t1 <- Sys.time()
    inv1 <- solve(M)
    time_solve[count] <- Sys.time() - t1
  
    t3 <- Sys.time()
    L <- chol(M)
    L_inv <- backsolve(L, diag(ncol(L)))
    inv2 <- tcrossprod(L_inv)
    time_chol[count] <- Sys.time() - t3
    
    count <- count + 1
}

A ∈ Rn×m A+

A+ = (AT A)−1AT A

A+ = AT (AAT )−1 A

A+ = A−1 A

A = np.array([[1,2],[3,4], [5,6]])
A

A_pinv = la.pinv(A)
A_pinv @ A # approximates inverse so that A*A^{-1} = I

# install.packages('pracma') -> run if not installed
library(pracma)
packageVersion("pracma")

A <- matrix(c(1,3,5,2,4,6), ncol = 2)
print(A)

A_pinv <- pinv(A)
print(A_pinv %*% A) # approximate inverse so that A*A^{-1} = I

A =
⎡⎢⎢⎣

a11 … a1n

⋮ ⋱ ⋮
an1 … ann

⎤⎥⎥⎦ ∈ Rn×n A(i, j) R(n−1)×(n−1) A

A

det(A) = |A| =
n∑

i=1

ai1 ⋅ (−1)i+1 ⋅ det(A(i, 1))

A xT Ax ≥ 0 ∀x ∈ Rn

A = LT L L L

det(A) = det(LT ) ⋅ det(L) = (
n∏

i=1

Lii)
2

X = np.array([[1,2],[3,4]])
det = la.det(X)
X, det

X = 4 * np.eye(4)
det_eye = la.det(X)
X, det_eye

L = la.cholesky(X)
det2 = L.diagonal().prod() ** 2
det2 # same result

N = np.array([2, 50, 100, 500, 1000, 5000, 7500, 10000, 15000, 20000])
n = len(N)

X = np.random.uniform(0,1, size = (20000, 20000)) # symmetric psd
X = X + X.T - np.diag(X.diagonal())
X = np.matmul(X,X.T)/20000
    
time_normal = []
time_chole = []

for i in range(n):
    
    M = X[0:N[i], 0:N[i]]

    t1 = time.time()
    X_inv1 = la.det(M)
    time_normal.append(time.time()-t1)
    
    t2 = time.time()
    L = la.cholesky(M)
    X_inv2 = L.diagonal().prod() ** 2
    time_chole.append(time.time()-t2)

X <- matrix(c(1,2,3,4), ncol = 2)
print(X)
det(X)

X <- matrix(runif(4, 0, 1), nrow = 2, ncol = 2)
X <- 0.5 * (t(X) + X)
X <- crossprod(X)
det1 <- det(X)
print(X)

L <- chol(X)
det2 <- prod(diag(L))**2
# same results
det1
det2

scales <- c(2, 50, 100, 500, 1000, 5000, 7500, 10000, 15000, 20000)
n <- length(scales)
time_solve <- numeric(n)
time_chol <- numeric(n)
X <- matrix(runif(20000^2, 0, 1), nrow = 20000, ncol = 20000)
X <- 0.5 * (t(X) + X) - diag(diag(X))
X <- crossprod(X)

for (i in 1:n) {
  N <- scales[i]
  M <- X[1:N, 1:N]
  
  t1 <- Sys.time()
  det1 <- det(M)
  time_solve[i] <- Sys.time() - t1
  
  t3 <- Sys.time()
  L <- chol(M)
  det2 <- prod(diag(L)) ** 2
  time_chol[i] <- Sys.time() - t3
}

 

https://www.python.org/
https://scipy.org/
https://cran.r-project.org/package=pracma

