
4 - Computing Least Squares Solutions
Computing a least squares solution involves many of the concepts covered in sections 2 and 3 such as matrix multiplication and matrix inverse. Thus there are
efficient and inefficient ways to compute a least squares solution given the problem setup. More specifically, if the problem involves a PSD matrix then one can take
advantage of the Cholesky decomposition methods which were shown to be advantageous.

4.1 - Ordinary Least Squares (OLS)
For solution , data matrix and solution space :

One can make use of the pseudo inverse of as its dimensions are arbitrary and may be singular:

4.1.1 - SciPy OLS

To compute the ordinary least squares solution the pseudo inverse is used. This is done with the SciPy function pinv() from the scipy.linalg function base.
More information on the pinv() function can be found on the SciPy documentation page [9].

(array([[0.67459005, 0.33554957],
 [0.48042258, 0.86050783],
 [0.64218228, 0.429431]]),
 array([1, 1, 1]))

array([0.99860208, 0.99970045, 1.00169257])

4.1.2 - Python statsmodels Module

As per the statsmodels documentation page [11] statsmodels: Econometric and Statistical Modeling with Python "statsmodels is a Python module that provides
classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration." As with the
previous Python modules introduced, the tools we require can be imported with the call import statsmodels.api as sm . It should be noted that version
0.13.2 of the statsmodels module is being used.

0.13.2

Here the module is used to compute least square solutions. The functions sm.OLS() and sm.GLS() are used to compute the ordinary and generalized least
square solutions.

4.1.3 - statsmodels OLS

Notice how the OLS() function produces the exact same result as the raw computation.

array([0.99860208, 0.99970045, 1.00169257])

4.1.4 - R OLS

Using the same technique as done in Python, the pseudo inverse is used to find the ordinary least squares solution. This is done with the R function pinv() from
the pracma package. More information on the pinv() function can be found on the pracma documentation page [10].

 [,1] [,2]
[1,] 0.6745901 0.3355496
[2,] 0.4804226 0.8605078
[3,] 0.6421823 0.4294310
[1] 1 1 1

 [,1]
[1,] 0.9986021
[2,] 0.9997004
[3,] 1.0016926

These results are consistent with the computations done in Python.

4.2 - Generalized Least Squares (GLS)
GLS makes use of the PSD inverse calculations and matrix multiplication functions. For solution , data matrix , solution space and PSD matrix :

Since is PSD, then is PSD and hence is also PSD. Thus using Cholesky decomposition for and the inner matrix
 the GLS computation then becomes:

4.2.1 - Python GLS

The shortcuts discussed above for PSD matrices can be used directly in the GLS computation. One can implement a version that uses Cholesky decomposition
methods, as well as a "pure" version which does not, and finally a built-in method using the statsmodels module.

A small GLS example is performed below using a matrix of size where all three methods are tested.

(array([[0.05154553, 0.33478251, 0.68424231],
 [0.7103685 , 0.42704954, 0.5659001],
 [0.6738195 , 0.29515479, 0.28922683]]),
 array([1., 1., 1.]),
 array([[1.14032497, 1.0809451 , 1.22701868],
 [1.0809451 , 1.33186762, 1.04385891],
 [1.22701868, 1.04385891, 1.86092279]]))

(array([1., 1., 1.]), array([1., 1., 1.]), array([1., 1., 1.]))

One can observe that the results are all equivalent for each method. To view the difference in computational run times for each of these methods, a small
experiment is run using varying sized matrices.

Computational Runtime (seconds)

N for NxN sized matrix Pure GLS Cholesky GLS statsmodels GLS

10 0.000081 0.000589 0.000398

50 0.000610 0.001257 0.001597

500 0.630047 0.020646 0.497284

1000 3.008091 0.069500 2.308699

5000 11.976236 3.500787 65.164299

10000 21.954963 15.347694 545.324912

Note: these runtimes will vary depending on the machine one uses but we can expect the overall trends to stay the same. One can observe how much slower the
built-in statsmodels function sm.GLS() is compared to the other two methods. This can be attributed to additional tasks performed by the statsmodels function
within the GLS() call. These tasks include calculating residuals, fitted values, and other descriptive summary results. If your goal is to produce nice results and
you are not concerned with run time, then the use of this function may be desired. If run time is a concern, then building GLS functions from scratch is clearly
advantageous. These raw functions can be improved by implementing a Cholesky decomposition method, which was shown above to compute solutions the
fastest.

4.2.2 - R GLS

The same process for GLS computation can be carried out in R, making use of the same PSD matrix tricks. It should be noted that matrix multiplication is slightly
slower in R compared to NumPy.

Similar to what was done above for Python, a small GLS example is performed below using a matrix of size . Here the Cholesky method is implemented and
compared to a "pure" implementation that uses no decomposition.

 [,1] [,2] [,3]
[1,] 0.9049013 0.14480767 0.5152959
[2,] 0.7297637 0.40634528 0.2310326
[3,] 0.2044630 0.04217148 0.5226685
[1] 1 1 1
 [,1] [,2] [,3]
[1,] 3.4516124 0.5254392 0.7363178
[2,] 0.5254392 3.2415333 0.8283556
[3,] 0.7363178 0.8283556 3.3701677

 [,1]
[1,] 1
[2,] 1
[3,] 1
 [,1]
[1,] 1
[2,] 1
[3,] 1

One can observe the equivalence os the solutions for each method. To view the difference in computational run times for each of these methods, a small
experiment is run using varying sized matrices.

A matrix: 6 x 3 of type dbl

N for NxN sized matrix Pure Implementation Cholesky Implementation

10 0.000717 0.000070

50 0.001714 0.000257

500 1.063931 0.069808

1000 2.827480 0.168958

5000 13.069145 3.751185

10000 33.688865 16.694152

Note: these runtimes will vary depending on the machine one uses but we can expect the overall trends to stay the same. The results are similar to what was found
in Python. Taking advantage of a Cholesky decomposition when computing a GLS solution in R clearly leads to faster run times. The difference in run time appears
to get larger as the size of the system increases.

[9] Virtanen, P. et al., 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, [link]
[10] Hans W. Borchers, 2022, Package 'pracma' (Practical Numerical Math Functions), [link]
[11] Seabold, Skipper, and Josef Perktold, 2010. statsmodels: Econometric and Statistical Modeling with Python, [link]

S X Y

XS = Y

XT XS = XT Y

S = (XT X)−1XT Y

X

XS = Y

X+XS = X+Y

S ≈ X+Y

X = np.random.uniform(size = (3,2))
Y = np.array([1,1,1])
X,Y

inv = la.pinv(X)
S = inv @ Y
X @ S # approximate solution to y

import statsmodels.api as sm
print(sm.__version__)

inv2 = sm.OLS(Y, X).fit()
inv2.fittedvalues # same approx solution as raw computation

set up with same "random" data as Python example
X <- matrix(c(0.67459005, 0.48042258, 0.64218228, 0.33554957, 0.86050783, 0.429431), ncol = 2)
Y <- rep(1, 3)
print(X)
print(Y)

inv <- pinv(X)
S <- inv %*% Y
print(X %*% S) # approximate solution to y

S X Y Σ

XS = Y

XT Σ−1XS = XT Σ−1Y

S = (XT Σ−1X)−1XT Σ−1Y

Σ Σ−1 (XT Σ−1X) Σ = LT
1 L1

(XT Σ−1X) = XT (L−1
1 L−T

1)X = LT
2 L2

S = (XT Σ−1X)−1XT Σ−1Y

= (L−1
2 L−T

2)XT (L−1
1 L−T

1)Y

A fast generalized least squares solution for data matrix X, solution space Y and PSD matrix sigma.
The function computes X(X^Tsigma^{-1}X)^{-1}X^Tsigma^{-1}Y
Notes: -> sigma must be PSD
-> dimensions of X, Y and sigma must agree for matrix multiplication
def chole_gls(X, Y, sigma):

 # Find first inverse sigma^{-1}
 L = la.solve_triangular(np.linalg.cholesky(sigma), np.eye(len(sigma)), lower=True)

 # Find next inverse (...)^{-1}
 inner = X.T @ np.matmul(L.T,L)
 L2 = la.solve_triangular(np.linalg.cholesky(inner @ X), np.eye(len(X)), lower=True)

 # Return gls
 return np.matmul(L2.T,L2) @ inner @ Y

A pure generalized least squares solution for data matrix X, solution space Y and PSD matrix sigma.
The function computes X(X^Tsigma^{-1}X)^{-1}X^Tsigma^{-1}Y
Notes: -> sigma must be PSD
-> dimensions of X, Y and sigma must agree for matrix multiplication
def pure_gls(X, Y, sigma):

 # Find first inverse sigma^{-1}
 s_inv = la.inv(sigma)

 # Return gls
 return la.inv(X.T @ s_inv @ X) @ X.T @ s_inv @ Y

R3×3

Data
x = np.random.uniform(0,1, size = (3,3))
y = np.array([1.,1,1])
PSD sigma matrix
s = np.random.uniform(0,1, size = (3,3)) # symmetric psd
s = s + s.T - np.diag(s.diagonal())
s = np.matmul(s,s.T)/3
x,y,s

soln = pure_gls(x, y, s)
soln_chole = chole_gls(x,y,s)
soln_sm = sm.GLS(y, x, s).fit()
x @ soln, x @ soln_chole, soln_sm.fittedvalues # 3 solutions all equal to y

N = np.array([2, 10, 50, 500, 1000, 5000, 10000])
n = len(N)

data
X = np.random.uniform(0,1, size = (N[n-1], N[n-1]))
Y = np.ones(N[n-1])
psd sigma
sigma = np.random.uniform(0,1, size = (N[n-1], N[n-1]))
sigma = 0.5*(sigma + sigma.T)
sigma = sigma + N[n-1] * np.eye(N[n-1])

time_normal = []
time_chole = []
time_sm = []

for i in range(n):

 t1 = time.time()
 sol1 = pure_gls(X[0:N[i], 0:N[i]], Y[0:N[i]], sigma[0:N[i], 0:N[i]])
 time_normal.append(time.time()-t1)

 t2 = time.time()
 sol2 = chole_gls(X[0:N[i], 0:N[i]], Y[0:N[i]], sigma[0:N[i], 0:N[i]])
 time_chole.append(time.time()-t2)

 t3 = time.time()
 sol3 = sm.GLS(Y[0:N[i]], X[0:N[i], 0:N[i]], sigma[0:N[i], 0:N[i]]).fit()
 time_sm.append(time.time()-t3)

A fast generalized least squares solution for data matrix X, solution space Y
and PSD matrix sigma. The function computes (X^Tsigma^{-1}X)^{-1}X^Tsigma^{-1}Y
Notes: -> sigma must be PSD
-> dimensions of X, Y and sigma must agree for matrix multiplication
chole_gls <- function(X,Y,sigma) {

 # sigma inverse
 Linv <- backsolve(chol(sigma), diag(ncol(X)))

 # inner inverse
 inner <- crossprod(tcrossprod(Linv), X)
 L2 <- backsolve(chol(crossprod(inner, X)), diag(ncol(X)))

 # return gls soln
 tcrossprod(tcrossprod(L2), inner) %*% Y
}

A pure generalized least squares solution for data matrix X, solution space Y
and PSD matrix sigma. The function computes (X^Tsigma^{-1}X)^{-1}X^Tsigma^{-1}Y
Notes: -> sigma must be PSD
-> dimensions of X, Y and sigma must agree for matrix multiplication
pure_gls <- function(X, Y, sigma) {

 # sigma inverse
 inv1 <- solve(sigma)

 # inner inverse
 inv2 <- solve(t(X) %*% inv1 %*% X)

 # return gls
 inv2 %*% t(X) %*% inv1 %*% Y
}

R3×3

x <- matrix(runif(9), ncol = 3)
y <- c(1,1,1)
s <- matrix(runif(9), ncol = 3)
s <- 0.5*(s + t(s))
s <- s + 3*eye(3)
print(x)
print(y)
print(s)

soln1 <- pure_gls(x,y,s)
soln2 <- chole_gls(x,y,s)
print(x %*% soln1)
print(x %*% soln2) # same solution equal to y

scales <- c(2, 10, 50, 500, 1000, 5000, 10000)
n <- length(scales)
time_solve <- numeric(n)
time_chol <- numeric(n)
X <- matrix(runif(scales[n]^2, 0, 1), nrow = scales[n], ncol = scales[n])
Y <- rep(1, scales[n])

s <- matrix(runif(scales[n]^2, 0, 1), nrow = scales[n], ncol = scales[n])
s <- 0.5 * (t(s) + s)
s <- s + scales[n] * eye(scales[n])

for (i in 1:n) {
 N <- scales[i]

 t1 <- Sys.time()
 soln1 <- pure_gls(X[1:N, 1:N], Y[1:N], s[1:N, 1:N])
 time_solve[i] <- Sys.time() - t1

 t3 <- Sys.time()
 soln2 <- chole_gls(X[1:N, 1:N], Y[1:N], s[1:N, 1:N])
 time_chol[i] <- Sys.time() - t3
}

https://scipy.org/
https://cran.r-project.org/package=pracma
https://www.statsmodels.org/

