
5 - Subtle But Important Differences
R and Python have many differences. Some of the major ones involve initializing and/or creating objects, editing/mutating objects, and how those objects are
stored in memory.

5.1 - Initializing Objects in R
R will initialize new memory for all created objects. The easiest way to show this is with a simple example initializing matrices. If we create a matrix  and then call
a new variable  and set it equal to  ( ! <- " ), these matrices are actually "pointing" to different spaces in memory. Changing the contents of  will NOT
change the contents of .  and  will actually share the same space in memory until something is done to modify one of them, at which point it is copied to a
new location in memory ("copy-on-modify" semantics).

     [,1] [,2]
[1,]    1    1
[2,]    1    1
     [,1] [,2]
[1,]    1    1
[2,]    1    1

     [,1] [,2]
[1,]    2    1
[2,]    1    1
     [,1] [,2]
[1,]    1    1
[2,]    1    1

Notice how only the contents of the matrix  are changed. R’s built-in copy-on-modify process prevents users from having two symbols always pointing to the
same object; the concept of pointers does not fit naturally into R’s language concept. In order to achieve similar functionality to Python one needs the help of an
external package 'pointr'.

5.1.1 R pointr Package

As per the pointr documentation page [12] pointr: Working Comfortably with Pointers and Shortcuts to R Objects "R has no built-in pointer functionality. The pointr
package fills this gap and lets you create pointers to R objects, including subsets of data frames. This makes your R code more readable and maintainable." The
pointr package provides functionality to create pointers to any R object easily, including pointers to subsets/selections from data frames.

Like other R packages, the pointr package can be installed in R or R Studio with the command install.packages('pointr') . Once the package is installed it
can be loaded/imported with the command library(pointr) after which all the package functions will be available for use. It should be noted that pointr
package version 0.1.0 is being used.

[1] ‘0.1.0’

     [,1] [,2]
[1,]    1    1
[2,]    1    1
     [,1] [,2]
[1,]    1    1
[2,]    1    1

     [,1] [,2]
[1,]   15    1
[2,]    1    1
     [,1] [,2]
[1,]   15    1
[2,]    1    1

     [,1] [,2]
[1,]    0    1
[2,]    1    1
     [,1] [,2]
[1,]    0    1
[2,]    1    1

Notice how the contents of both matrices change when changing the values in one or the other.

5.2 - Initializing Objects in Python
Unlike R, Python does not initialize new memory for all created objects. The easiest way to show this is with a simple example initializing matrices. If we create a
NumPy matrix  and then call a new variable  and set it equal to  ( B = A ), both matrices are now "pointing" to the same space in memory. Changing the
contents of  will also change the contents of .

(array([[1, 1],
        [1, 1]]),
 array([[1, 1],
        [1, 1]]))

(array([[15,  1],
        [ 1,  1]]),
 array([[15,  1],
        [ 1,  1]]))

Notice how the contents of both matrices are changed. Performing this same sequence of code in R will produce two separate matrices in memory for  and .
Changing the contents of  would not affect  at all. This is a major difference between the two languages and can lead to coding bugs if this initialization is not
done carefully. For Python to behave the same way as R in this case, one needs to make use of the NumPy copy()  function. We wish to have the matrix 
initialized with the same contents as  but stored in separate memory as its own object.

(array([[1, 1],
        [1, 1]]),
 array([[1, 1],
        [1, 1]]))

(array([[15,  1],
        [ 1,  1]]),
 array([[1, 1],
        [1, 1]]))

Notice now only the contents of the matrix  are changed. It should be noted that the NumPy copy()  function is a "shallow" copy: it will not copy object
elements within array. In the example above we just have numerical arrays (matrix) which do not contain objects so the copy is performed correctly. If one element
was added, say character 'a', then a deepcopy()  call would be needed because the basic NumPy copy()  no longer works.

(array([list([1, 1]), 'a', list([1, 1])], dtype=object),
 array([list([1, 1]), 'a', list([1, 1])], dtype=object))

(array([list([15, 1]), 'a', list([1, 1])], dtype=object),
 array([list([15, 1]), 'a', list([1, 1])], dtype=object))

Notice how the contents of both the matrix  and  are changed.

5.2.1 Python copy Module

Documentation for the copy module can be found at [7] where they explain the difference between copy()  and deepcopy() . "A shallow copy constructs a new
compound object and then (to the extent possible) inserts references into it to the objects found in the original. A deep copy constructs a new compound object
and then, recursively, inserts copies into it of the objects found in the original."

(array([list([1, 1]), 'a', list([1, 1])], dtype=object),
 array([list([1, 1]), 'a', list([1, 1])], dtype=object))

(array([list([15, 1]), 'a', list([1, 1])], dtype=object),
 array([list([1, 1]), 'a', list([1, 1])], dtype=object))

Notice how only the contents of the matrix  are changed.

5.3 - R Pre-Allocation vs. Appending
In general, a list or an array of elements can be created by appending to the front/back of the list or by updating specific elements. For example, a list of size three
with all elements equal to zero ( ) can be created by initializing an empty list ( ) and appending 0 to the front or back three times. Alternatively, this can be
done by initializing a list of size three of any elements ( ) then updating each element to 0. This section should be a major point of focus and interest to
those concerned about the differences in computational run time for these two methods. In R, one should always pre-allocate space for an object and avoid
appending whenever possible. An experiment in R is run below where the run time to create arrays of varying sizes is tracked. A method of iteratively appending
values to an empty array is tested against a method of filling an array of a pre-specified size with the same values. Note: the arrays built in each iteration are just
arrays of ones ([1,1,....,1]).

A matrix: 9 x 3 of type dbl

Array of size N Appending Pre-Allocation

10 0.000236 0.000204

100 0.002469 0.002213

500 0.012527 0.011183

1000 0.027220 0.022216

5000 0.162233 0.114250

10000 0.399416 0.237125

20000 1.149267 0.443867

50000 5.199226 1.125084

100000 18.368219 2.252459

Note: computational run times will vary depending on the machine one uses but these overall trends should stay the same. One can notice the drastic difference in
runtime when comparing these two methods. The difference in run time increases as the size of the desired array increases. Clearly the pre-allocation method is
superior to appending in R. This is because R creates a new space in memory for the entire object each time you append an element. In other words, R creates a
new object with size 1 greater than the old one and then copies each of the old object values into the new one.

5.4 - Python Pre-Allocation vs. Appending
Similar to what was done above in R, a small experiment is run in Python comparing the methods of pre-allocation and appending.

Computational Runtime (seconds)

Array of size N Appending Pre-Allocation

10 0.000002 0.000001

100 0.000011 0.000009

500 0.000050 0.000043

1000 0.000102 0.000086

5000 0.000500 0.000455

10000 0.000999 0.001187

20000 0.002029 0.001843

50000 0.005026 0.004513

100000 0.009944 0.009273

Note: computational run times will vary depending on the machine one uses but these overall trends should stay the same. It is shown that pre-allocating in Python
is only slightly faster than appending, but there is not much of a gain; the two methods are comparable. This is a completely different result compared to the
experiment in R, which showed one should always pre-allocate. In Python this is something the user does not need to be as concerned about as the methods can
be interchanged without significant change in run time.

[7] Van Rossum, G. & Drake, F.L., 2009. Python 3 Reference Manual, [link] 
[12] Joachim Zuckarelli, 2020. pointr: Working Comfortably with Pointers and Shortcuts to R Objects, [link]
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A <- matrix(c(1,1,1,1), ncol = 2)
B <- A
print(A)
print(B)

A[1,1] <- 2 # only A is changed
print(A)
print(B)

A

# install.packages('pointr') -> run if not installed
library(pointr)
packageVersion("pointr")

A <- matrix(c(1,1,1,1), ncol = 2)
ptr("A_ptr", "A") # A_ptr points to A
print(A)
print(A_ptr)

A[1,1] <- 15 # both change
print(A)
print(A_ptr)

A_ptr[1,1] <- 0 # both change
print(A)
print(A_ptr)

A B A
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A = np.array([[1,1],[1,1]])
B = A
A, B

A[0,0] = 15 # both change
A,B

A B

A B

B
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A = np.array([[1,1],[1,1]])
B = np.copy(A)
A, B

A[0,0] = 15 # only A changes
A,B

A

A = np.array([[1,1],'a', [1,1]], dtype = object)
B = np.copy(A)
A, B

A[0][0] = 15 # changes both
A, B

A B

import copy # object copying

A = np.array([[1,1],'a', [1,1]], dtype = object)
B = copy.deepcopy(A)
A, B

A[0][0] = 15 # only A changes
A, B

A

[0, 0, 0] []
[e1, e2, e3]

N <- c(2, 10, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000)
app_time <- numeric(length(N))
pre_time <- numeric(length(N))
count <- 1
for (j in N) {
    l1 <- c()
    l2 <- numeric(j)
    
    t <- Sys.time()
    for (i in 1:j) {
        l1 <- append(l1, 1)
    app_time[count] <- Sys.time() - t
    }
    
    t2 = Sys.time()
    for (i in 1:j) {
        l2[i] = 1
    pre_time[count] <- Sys.time() - t2
    }
    
    count <- count + 1
}

N = np.array([2, 10, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000])
app_time = []
pre_time = []
for j in N:
    l1 =[]
    l2 = [0] * j
    
    t = time.time()
    for i in range(j):
        l1.append(1)
    t2 = time.time() - t
    app_time.append(t2)
    
    t3 = time.time()
    for i in range(j):
        l2[i] = 1
    t4 = time.time() - t3
    pre_time.append(t4)

https://www.python.org/
https://cran.r-project.org/package=pointr

