
6 - Computing Statistics and Percentiles
Computing general statistics and percentiles is a popular way to generate quick inference on a given data set. Some of these popular statistics include mean,
median, mode, variance, skewness, kurtosis and central moments. This information can almost always be generated very quickly using tools in both R and Python.
Percentiles of interest are usually those that correspond to quartiles, specifically the first and third from which one generate an interquartile range (IQR). This
section covers how to compute these statistics and desired percentiles in both R and Python. One will notice the extreme similarity in code between R and Python
for these tasks.

6.1 - Computing Basic Statistics
Computing popular statistics for data sets is something both R and Python can handle easily. For a set of data points one can define:

The mean of as:

The median of as:

The variance of as:

The standard deviation of as:

The mode as the element in which occurs most frequently (can be more than one).
The kurtosis as:

The skewness as:

The central moment as:

It should be noted that these statistics can be computed across a given dimension for data of dimension higher than 1. For example if given a data matrix, these
statistics can be computed across rows or columns.

6.1.1 - Statistics in Python

The NumPy library has built-in functions for the major statistical properties such as mean, median, variance and standard deviation. One can compute the desired
statistics using the NumPy functions; mean() , median() , var() and std() .

Data: [1 2 3 4 2]
Mean: 2.4
Median: 2.0
Variance: 1.04
Standard Deviation: 1.0198

The SciPy 'stats' library is needed for more detailed properties such as mode, kurtosis (Fisher or Pearson), skewness and moments. As per the SciPy stats
documentation page [9] "This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical
tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more." The SciPy stats library is imported using import scipy.stats
which is the same import call used throughout this document.

One can computed desired statistics using SciPy stats functions mode() , kurtosis() , skew() and moment() .

Data: [1 2 3 4 2]
Mode: 2
Pearson Kurtosis: 1.9556
Skewness: 0.2715
3rd Moment: 0.288

As perviously stated, these functions are built so that they can be computed across any array axis, not just for one dimensional vector arrays.

array([[1, 2, 3, 4, 2],
 [1, 2, 3, 4, 2]])

(array([2.4, 2.4]), array([0.27154542, 0.27154542]))

6.1.2 - Computing Statistics in R

R was built for statistical analysis and hence has many built-in functions to compute popular statistics, these include mean() , median() , var() and std() .
Note that R does not have a built-in 'mode' function but the calculation can be done fairly easily using the call names(sort(table(data), TRUE))[[1]] for
the given data.

[1] "Data:"
[1] 1 2 3 4 2
[1] "Mean: 2.4"
[1] "Median: 2"
[1] "Variance: 1.3"
[1] "Standard Deviation: 1.1402"
[1] "Mode: 2"

Notice results are identical to those produced in Python. In order to compute more complex statistics such as kurtosis, skewness and moments the package
'moments' is required.

6.1.3 - R moments Package

As per the moments documentation page [13] Moments, Cumulants, Skewness, Kurtosis and Related Tests, moments can be described as "Functions to calculate:
moments, Pearson's kurtosis, Geary's kurtosis and skewness; tests related to them (Anscombe-Glynn, D'Agostino, Bonett-Seier)." We will use the package to
compute more complex statistics for which there is no built-in R function. The moments package can be installed in R or R Studio with the command
install.packages('moments') . Once the package is installed it can be loaded/imported in with the command library(moments) after which all the

package functions will be available for use. It should be noted that moments version 0.14 is being used.

[1] ‘0.14’

Below the moments functions kurtosis() , skewness() and moment() are used to compute the desired statistics.

[1] "Data:"
[1] 1 2 3 4 2
[1] "Pearson Kurtosis: 1.9556"
[1] "Skewness: 0.2715"
[1] "3rd Moment: 0.288"

Notice results are identical to those produced in Python.

6.2 - Computing Percentiles
Other common measures of location are Quartiles and Percentiles. It should be noted that Quartiles are just special percentiles. The first quartile, , is the same
as the percentile. The third quartile, is the same as the percentile. The median or second quartile, is the same as the percentile. A
percentile can be defined as a score below which a given percentage of scores in its frequency distribution falls.

6.2.1 - Percentiles in Python

NumPy provides the function percentile() for calculating percentiles. The SciPy stats function base also provides a function for calculating the inter quartile
range iqr() which is the difference between the third and first quartile.

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

(2.5, 5.0, 7.5)

5.0

(3.0, 6.0)

6.2.2 - Percentiles in R

R provides the function quantile() for calculating percentiles and also an IQR() function for calculating the interquartile range. These are built in functions
and do not require external packages.

 [1] 0 1 2 3 4 5 6 7 8 9 10

25% 50% 75%
2.5 5.0 7.5

5

30% 60%
 3 6

Notice results are identical to those produced in Python.

[9] Virtanen, P. et al., 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, [link]
[13] Lukasz Komsta, Frederick Novomestky, 2022-05-02. Moments, Cumulants, Skewness, Kurtosis and Related Tests, [link]

X = {x1 … xn}, xi ∈ R

X

X̄ =
n∑

i=1

xi

1
n

X

Med(X) = { X[] n even

(X[] + X[])/2 n odd

n
2
n−1

2
n+1

2

X

V ar(X) = σ2 =
n∑

i=1

(xi − X̄)21
n − 1

X

sd(X) = √V ar(X) = σ

X

Kurt(X) = n ⋅
∑n

i=1(xi − X̄)4

(∑n
i=1(xi − X̄)2)2

Skew(X) = n ⋅
(∑n

i=1(xi − X̄)3)2

(∑n
i=1(xi − X̄)2)3

kth

⋅
n∑

i=1

(xi − X̄)k1
n

data = np.array([1,2,3,4,2])

Compute using NumPy
mean = np.mean(data)
median = np.median(data)
var = np.var(data)
std = np.std(data)

Display results:
print("Data:", data)
print('Mean:', mean)
print('Median:', median)
print('Variance:', var)
print('Standard Deviation:', round(std, 4))

nth

import scipy.stats as stats # statistics tools

Compute using Scipy
mode = stats.mode(data)[0][0]
kurt_pear = stats.kurtosis(data, fisher=False)
skew = stats.skew(data)
moment3 = stats.moment(data, moment=3)

Display results:
print("Data:", data)
print('Mode:', mode)
print('Pearson Kurtosis:', round(kurt_pear, 4))
print('Skewness:', round(skew, 4))
print('3rd Moment:', round(moment3, 4))

data = np.array([[1,2,3,4,2], [1,2,3,4,2]])
data

mean2 = np.mean(data, axis = 1)
skew2 = stats.skew(data, axis = 1)
mean2, skew2

data <- c(1,2,3,4,2)

Compute using built-in R functions
mean <- mean(data)
median <- median(data)
var <- var(data)
std <- sd(data)

Manual computation (no built-in functions)
mode <- names(sort(table(data), TRUE))[[1]]

Display results:
print('Data:')
print(data)
print(paste0('Mean: ', mean))
print(paste0('Median: ', median))
print(paste0('Variance: ', var))
print(paste0('Standard Deviation: ', round(std, 4)))
print(paste0('Mode: ', mode))

library(moments)
packageVersion("moments")

Compute using "moments" package
kurt_pear <- kurtosis(data)
skew <- skewness(data)
moment3 <- moment(data, order = 3, central = TRUE)

Display results:
print('Data:')
print(data)
print(paste0('Pearson Kurtosis: ', round(kurt_pear, 4)))
print(paste0('Skewness: ', round(skew, 4)))
print(paste0('3rd Moment: ', round(moment3, 4)))

Q1

25th Q3 75th Q2 50th kth

k

data = np.arange(11)
data

quartiles
Q50 = np.percentile(data, 50) # 2nd quartile
Q25 = np.percentile(data, 25) # 1st quartile
Q75 = np.percentile(data, 75) # 3rd quartile
Q25, Q50, Q75

IQR = stats.iqr(data)
IQR

percentiles
P30 = np.percentile(data, 30) # 30th percentile
P60 = np.percentile(data, 60) # 60th percentile
P30, P60

data <- c(0:10)
print(data)

quartiles
Q <- quantile(data, c(0.25, 0.5, 0.75))
print(Q)

IQR <- IQR(data)
IQR

percentiles
P <- quantile(data, c(0.3, 0.6))
print(P)

https://scipy.org/
https://cran.r-project.org/package=moments

