
7 - Data Visualizations and Plotting
Visualization of data is a useful tool for better understanding of a data set. By using graphs such as scatter plots or histograms one can create a visual
representation of numerical information. This visual representation may help in understanding an abstract data relationship or discovering new insights. This
section shows how to create various types of visualizations such as curves and image plots in both R and Python. It also covers some of the important
packages/modules needed to create such visualizations.

7.1 - R Plots and ggplot2 Package
R has built-in functions for basic plotting needs such as plot() , hist() , points() , and many others. These functions do not require additional packages
and can be used directly in an R script or console. For more advanced plotting options one can install and load the ggplot2 package. The ggplot2 package is a
system for declaratively creating graphics. It is now over 10 years old and is used by hundreds of thousands of people to make plots. The ggplot2 documentation
page [14] ggplot2: Elegant Graphics for Data Analysis serves as a great resource with information on installation and usage, and also provides a helpful cheat
sheet. As described by the online reference in [14] "ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics. You provide the
data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details."

Additionally, the R package 'gridExtra' is used in combination with ggplot2. As per the gridExtra documentation page [15] gridExtra: Miscellaneous Functions for
"Grid" Graphics, it "provides a number of user-level functions to work with "grid" graphics, notably to arrange multiple grid-based plots on a page, and draw
tables." It is simply used here to display two ggplot2 plots side by side. Normally this can be done with the built-in R function par() but the ggplot2 graphics are
not compatible with this call.

The packages can be loaded into R using the calls library(ggplot2) and library(gridExtra) if already installed. If not installed one can download a
version using the calls install.packages(ggplot2) and install.packages(gridExtra) . It should be noted that version 3.3.2 of ggplot2 and version 2.3
of gridExtra are being used.

[1] ‘3.3.2’

[1] ‘2.3’

7.2 - Python Matplotlib Module
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. It is very easy to use and has tools for advanced
visualization as well as all your basic needs. A warning for English speaking non-Americans: unfortunately Matplotlib does not know what "colour" is and you must
use "color" to refer to this parameter.

We will make use of the pyplot and image tools within matplotlib. As described in the matplotlib documentation [16] Matplotlib: A 2D Graphics Environment "pyplot
is a state-based interface to matplotlib. It provides an implicit, MATLAB-like, way of plotting. It also opens figures on your screen, and acts as the figure GUI
manager. pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation." The image module within matplotlib supports basic
image loading, rescaling and display operations. It is used here simply to load a saved jpeg image.

Both of these modules can be imported separately from matplotlib with the calls import matplotlib.pyplot and import matplotlib.image . Here we
choose to import these under the names of plt and mpimg respectively. It should be noted that version 3.3.2 of matplotlib is being used.

3.5.3

7.3 - Scatter Plots
Typically scatter plots are used to explore the relationship between two numeric variables by plotting points on a Cartesian coordinate system.

7.3.1 - Matplotlib Scatter Plots

Scatter plots can be created with the scatter() function which includes multiple plotting parameters such as point style, colour, size, and transparency. The
Matplotlib documentation page [16] for scatter plots has a few important notes:

1. The plot function will be faster for scatterplots where markers don't vary in size or colour.
2. Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted.
3. Fundamentally, scatter works with 1D arrays; x, y, s, and c may be input as N-D arrays, but within scatter they will be flattened. The exception is c, which will be

flattened only if its size matches the size of x and y.

Here we plot some 2-dimensional Gaussian data, generated using the NumPy random() function.

It should be noted that some of the plotting parameters can be "vectorized" to give individual data points any desired appearance. One can create 2 separate
groups visually by adjusting the plotting parameters in vector form.

Instead of vectorizing the plotting parameters one can "stack" the plots on top of each other. One can plot each group of points one at a time each with different
plotting parameters. Obviously the order in which one choose to stack the plots will affect the layering of points. Stacking plots allows for a legend to be created
since one can assign a label to each plot call.

One can observe that the two matplotlib plotting methods produce virtually identical results.

7.3.2 - R Scatter Plots

R scatter plots can be produced using the built-in plot() function as long as the pch parameter is specified to display points. One can notice the extreme
similarity to the matplotlib functions.

Just as with using matplotlib, in R one can easily vectorize the parameters to distinguish between different groups in the data.

The alternative to vectorizing parameters is to 'stack' plots on top of each other. This is done in R by first by calling the plot() function, then the points()
function. Both of these calls operate the same but the plot() call will initialize the plotting space. Calling plot() twice will produce two separate scatter plots.

One can observe that the two R methods produce virtually identical results.

7.4 - Histograms
Histograms are great tools to approximate the distribution of numerical data. Typically they are created to represent frequency or "counts" of data which fall into
specified ranges or they represent this information as a proportion or percentage.

7.4.1 - Matplotlib Histograms

Histograms can be created with the hist() function which also includes multiple plotting parameters. The type of histogram to draw is specified by the
histtype parameter; bar is a traditional bar-type histogram. If multiple data are given the bars are arranged side by side. barstacked is a bar-type

histogram where multiple data are stacked on top of each other. step generates a line plot that is by default unfilled and stepfilled generates a line plot that
is by default filled. The hist() documentation page for matplotlib [16] also notes that for large numbers of bins (>1000), step and stepfilled can be
significantly faster than bar and barstacked .

The hist() function also allows for multi dimensional data to be stacked or grouped by setting the parameter stacked to stacked=True or
stacked=False .

7.4.2 - R Histograms

R has a built-in hist() function for displaying histograms. It should be noted that R's default is to plot the counts in the cells defined by equally spaced breaks.
Thus the height of a rectangle is proportional to the number of points falling into the cell, as is the area, provided the breaks are equally-spaced. The default with
non-equally spaced breaks is to give a plot of area one, in which the area of the rectangles is the fraction of the data points falling in the cells.

7.4.3 - R ggplot2 Histograms

For multi-dimensional data the ggplot2 geom_bar() and geom_histograms() calls are used to create the stacked and grouped histograms.

7.5 - Curves
Plotting lines or curves is one of the easiest visualization concepts to understand. It is simply plotting sequences of one dimensional data arrays, similar to a
scatter plot or plotting points, but the points are connected in order.

7.5.1 - Matplotlib Curves

Curves can be plotted with Matplotlib function plot() . Many plotting arguments can be used inside such as the line style, line width, and colour.

Matplotlib also has a useful function fill_between() which allows one to fill space between curves. This can come in handy when displaying confidence
intervals or data with variation.

7.5.2 - R Curves

The built-in R functions plot() and points() can be used to display curves by setting the type argument to type = l which is used for lines.

To replicate the results of the matplotlib function fill_between() in R, the polygon function can be used. The polygon() function will draw a polygons
whose two sets of vertices are specified by two vectors, essentially acting the same way as the matplotlib fill_between() .

7.6 - Images and Array (Field) Plots
Images can be thought of as grid spaces in which each grid point acts as a "pixel" with its own "pixel value" or pixel colour. Arbitrary grid spaces can be defined
with functions which define the pixel value. These are known as field plots.

7.6.1 - Matplotlib Images and Field Plots

To define a domain for field plots we make use of the NumPy function meshgrid() . This allows creation of a grid space in the (x,y) space and evaluation of
functions of the form f(x,y) over this grid space. One can make use of the imshow() function to display the results of an evaluation over this grid space. Many
options are available inside the imshow() function which can alter the visualization.

The imshow() function can also be used in a layering technique where one can "stack" or "layer" image plots over one another. Here we must use the alpha
parameter which changes the transparency of the displayed images; otherwise, one will see only the top layer, or top image.

Within matplotlib's image tools one can make use of the imread() function to import images into memory. Images can be stored in a red-green-blue (RGB)
format where pixels are split into three channels of values in the red, green and blue colours.

This imported image has three channels of pixels stored as values in three matrices of size 934 by 1600. These channels can be accessed by indexing the image's
third location, the first being the red channel, second being the green, and last being the blue. The channels can then be extracted from the image and individually
plotted.

7.6.2 - R Images and Field Plots

The R image() function is used to create field plots identical to those produced in Python with matplotlib. One can use the meshgrid function from the R
pracma package [10] to create a grid space.

A layering technique is used to "stack" or "layer" image plots over one another. Here the alpha parameters of the layered images are set to produce a blended
image.

7.6.3 - R jpeg Package

For tasks such as loading images into R we make use of the jpeg package. As per the jpeg documentation page [17] jpeg: Read and Write JPEG images "This
package provides an easy and simple way to read, write and display bitmap images stored in the JPEG format. It can read and write both files and in-memory raw
vectors." We use the rasterImage() function to draw a raster image at specified locations and sizes and the readJPEG() function to read in the jpeg image
from memory.

Just as with all R packages, it can be loaded with the call library(jpeg) and installed if needed with the call install.packages(jpeg) . It should be noted
that version 0.1.8.1 of jpeg is being used.

[1] ‘0.1.8.1’

The original image is displayed and one can extract its red, blue and green channels.

7.7 - 3D Visualizations
3D visualizations are a direct extension from 2D visualizations with the addition of an additional axis. Because we live in a three dimensional reality, these types of
plots may better represent physical or real world spatial data.

7.7.1 - Matplotlib 3D Visualizations

One can make use of the axes() , plot3D() and scatter3D() tools within matplotlib's pyplot toolbox. It is very easy to use and similar to 2D plotting, with
the addition of the third z axis.

One can also create very nice contour plots with the contour3D() function, wireframe plots with the plot_wireframe() function, and surface plots with the
plot_surface() function. Other options exist within the pylot toolbox and can be used in a very similar way.

7.7.2 - R 3D Visualizations with plot3D Package

As per the plot3D documentation page [18] plot3D: Plotting Multi-Dimensional Data the package "provides many functions for viewing 2-D and 3-D data, including
perspective plots, slice plots, surface plots and scatter plots." It should be noted that many of the functions are extensions of R’s persp() or image() function.
Here we use the functions lines3D , scatter3D and contour3D from the plot3D package.

The package can be loaded into R using the call library(plot3D) if already installed. If not installed one can download a version using the call
install.packages(plot3D) . It should be noted that version 1.3 of plot3D is being used.

[1] ‘1.3’

The scatter3D() function is used to create a scatter of points in 3D while the lines3D() function is used here to draw the 3D line.

For a 3D contour plot the contour3D() function is used.

The persp() function is used here to create both a wireframe plot and a surface plot. The only difference is how the color parameter is specified, in the
wireframe plot the colour is set to NA while in the surface plot a plasma colour scheme is used. Note that persp() is actually a built-in R function and does not
need any external packages in order to be used.

[10] Hans W. Borchers, 2022, Package 'pracma' (Practical Numerical Math Functions), [link]
[14] H. Wickham, 2016. ggplot2: Elegant Graphics for Data Analysis, [link]
[15] Baptiste Auguie, Anton Antonov, 2017. gridExtra: Miscellaneous Functions for "Grid" Graphics, [link]
[16] J. D. Hunter, 2007. Matplotlib: A 2D Graphics Environment, [link]
[17] Simon Urbanek, 2019. jpeg: Read and Write JPEG images, [link]
[18] Karline Soetaert, 2019. plot3D: Plotting Multi-Dimensional Data, [link]

library(ggplot2)
packageVersion("ggplot2")

library(gridExtra)
packageVersion("gridExtra")

import numpy as np
import matplotlib

import matplotlib.pyplot as plt # Plotting
import matplotlib.image as mpimg # Reading images
print(matplotlib.__version__)

N(0, 1)

data = np.random.normal(size = (2,300)) # Random Gaussian data for plotting

plt.scatter(x = data[0], # x axis
 y = data[1], # y axis
 marker = 'o', # default point style is a circle 'o', many options are
 # availible 'o':cricle, 'v':triangle down, '^':triangle up,...
 s = 50, # point size, default is (rcParams['lines.markersize'])^2
 c = "red", # point colour, default is blue
 alpha = 0.5, # alpha shading transparncey of points, default is solid colour
 edgecolor = "black", # colour of point edges, default is same as point colour
 linewidths = 1) # width of point edges, default is 1.5

plt.xlabel("X ~ N(0,1)") # add x axis label
plt.ylabel("Y ~ N(0,1)") # add y axis label
plt.title("Random Standard Normal") # add plot title
plt.xlim([-4, 4]) # limits of x axis
plt.ylim([-4, 4]) # limits of y axis
plt.show() # to display nicely

Vectorize plotting parameters into two groups
sizes = [60]*150 + [30]*150
colours = ['red']*150 + ['green']*150
edgecolor = ['blue']*150 + ['black']*150

plt.scatter(x = data[0], # x axis
 y = data[1], # y axis
 marker = 'o', # point style
 s = sizes, # point size vectorized
 c = colours, # point colour vectorized
 alpha = 0.5, # alpha shading transparncey
 edgecolor = edgecolor, # colour of point edges vectorized
 linewidths = 1) # width of point edges

plt.xlabel("X ~ N(0,1)") # x axis label
plt.ylabel("Y ~ N(0,1)") # y axis label
plt.title("Random Standard Normal") # plot title
plt.xlim([-4, 4]) # limits of x axis
plt.ylim([-4, 4]) # limits of y axis
plt.show() # display

data_group1 = data[:,0:150] # first group of data
data_group2 = data[:,150:300] # second group of data

plt.scatter(x = data_group1[0], # plot first group
 y = data_group1[1],
 marker = 'o',
 s = 60,
 c = "red",
 alpha = 0.5,
 edgecolor = "blue",
 linewidths = 1,
 label = "Group 1") # legend label

plt.scatter(x = data_group2[0], # stack plot of second group
 y = data_group2[1],
 marker = 'o',
 c = "green",
 edgecolor = "black",
 s = 30,
 alpha = 0.5,
 linewidths = 1,
 label = "Group 2") # legend label

plt.xlabel("X ~ N(0,1)") # x axis label
plt.ylabel("Y ~ N(0,1)") # y axis label
plt.title("Random Standard Normal") # plot title
plt.xlim([-4, 4]) # limits of x axis
plt.ylim([-4, 4]) # limits of y axis
plt.legend() # display legend
plt.show() # display

data <- matrix(rnorm(600), nrow = 2) # Random Gaussian data for plotting

plot(data[1,], # x axis data
 data[2,], # y axis data
 xlab = "X ~ N(0,1)", # x axis label
 ylab = "Y ~ N(0,1)", # y axis label
 main = "Random Standard Normal", # title
 xlim = c(-4,4), # limits of x axis
 ylim = c(-4,4), # limtis of y axis
 col = "black", # colour of point outline, default is black
 pch = 21, # point style, default is non-filled circle
 bg = adjustcolor("red", # colour of point fill
 alpha.f = 0.5), # point fill transparency
 cex = 1.5) # point size

Vectorize plotting parameters into two groups
colours <- adjustcolor(c(rep("red", 150), rep("green", 150)), alpha.f = 0.5)
edge_colours <- c(rep("blue", 150), rep("black", 150))
sizes <- c(rep(1.5, 150), rep(1, 150))

plot(data[1,],
 data[2,],
 xlab = "X ~ N(0,1)",
 ylab = "Y ~ N(0,1)",
 main = "Random Standard Normal",
 xlim = c(-4,4),
 ylim = c(-4,4),
 col = edge_colours, # vectorized point edge colours, two groups
 pch = 21,
 bg = colours, # vectorized point colours, two groups
 cex = sizes) # vectorized point sizes, two groups

display legend
legend("topright", # legend location
 legend = c("Group 1", "Group 2"), # legend text
 col = c("blue", "black"), # legend point edge colour
 pch = 21, # legend point style
 pt.cex = c(1.5,1), # legend point size
 pt.bg = adjustcolor(c("red", "green"), # legend point colour
 alpha.f = 0.5))

data_group1 <- data[,1:150] # first group of data
data_group2 <- data[,151:300] # second group of data

plot(data_group1[1,], # plot first group
 data_group1[2,],
 xlab = "X ~ N(0,1)",
 ylab = "Y ~ N(0,1)",
 main = "Random Standard Normal",
 xlim = c(-4,4),
 ylim = c(-4,4),
 col = "blue",
 pch = 21,
 cex = 1.5,
 bg = adjustcolor("red",
 alpha.f = 0.5))

points(data_group2[1,], # stack second group of plotted points
 data_group2[2,],
 xlab = "X ~ N(0,1)",
 ylab = "Y ~ N(0,1)",
 main = "Random Standard Normal",
 xlim = c(-4,4),
 ylim = c(-4,4),
 col = "black",
 pch = 21,
 cex = 1,
 bg = adjustcolor("green",
 alpha.f = 0.5))

display legend
legend("topright", # legend location
 legend = c("Group 1", "Group 2"), # legend text
 col = c("blue", "black"), # legend point edge colour
 pch = 21, # legend point style
 pt.cex = c(1.5,1), # legend point size
 pt.bg = adjustcolor(c("red", "green"), # legend point colour
 alpha.f = 0.5))

First Plot
plt.subplot(1, 3, 1) # plot positon
plt.hist(data[0], # data
 density = False, # displays frequencies instead of density, default is freq.
 color = "Red", # box colour, default is blue
 alpha = 0.5, # box transparency
 orientation = "vertical", # plot orientation, default is vertical
 bins = 10) # histogram bins, can be integer or sequence, default is 10
plt.title("X axis Data") # histogram title
plt.ylabel("Frequency") # y axis label

Second plot using stacking
plt.subplot(1, 3, 2)
plt.hist(data[0],
 color = "Red",
 alpha = 0.5,
 label = "X") # label for legend
plt.hist(data[1],
 alpha = 0.5,
 label = "Y", # label for legend
 color = "blue")
plt.title("Layered")
plt.legend()

Last plot
plt.subplot(1, 3, 3)
plt.hist(data[1],
 alpha = 0.5,
 color = "blue")
plt.title("Y axis Data")

plt.show() # display

first plot
plt.subplot(1, 2, 1)
plt.hist(data.T, # data
 color = ["red", "blue"], # colors for each dimenison
 alpha = 0.5, # transparency
 label = ["X", "Y"], # labels for each dimension
 stacked = False) # separated and not stacked
plt.legend()
plt.ylim([0,140]) # so plots share same scale
plt.title("Separated")
plt.ylabel("Frequency")

second plot
plt.subplot(1, 2, 2)
plt.hist(data.T, # data
 color = ["red", "blue"], # colors for each dimenison
 alpha = 0.5, # transparency
 label = ["X", "Y"], # labels for each dimension
 stacked = True) # stacked not separated
plt.legend()
plt.title("Stacked")

display
plt.show()

set up plot layout
par(mfrow = c(1,3), # three plots side by side
 mar = c(5.1, 4, 4.1, 0.5)) # spacing between plots

first plot
hist(data[1,],
 col = adjustcolor("red", 0.5), # box colour
 breaks = 12, # bin spacing, can be integer or sequence
 freq = TRUE, # frequencies and not density
 main = "X axis Data", # title
 xlab ="") # remove x axis label

second plot
hist(data[1,],
 col = adjustcolor("red", 0.5),
 breaks = 12,
 freq = TRUE,
 main = "Layerd",
 xlab ="",
 ylab = "")
layer over top
hist(data[2,],
 col = adjustcolor("blue", 0.5),
 breaks = 12,
 freq = TRUE,
 xlab = "",
 ylab = "",
 add = T) # so plotting knows this is to be overlayed
add legend to seccond plot
legend("topleft",legend = c("X", "Y"),
 col = adjustcolor(c("red", "blue"), 0.5),
 pch = 15)

last plot
hist(data[2,],
 col = adjustcolor("blue", 0.5),
 breaks = 12,
 freq = TRUE,
 main = "Y axis Data",
 xlab = "",
 ylab = "")

move data into data frame object
df <- data.frame(d = c(data[1,], data[2,]),
 group = c(rep("X", 300), rep("Y", 300)))
df2 <- data.frame(d = c(data[1,], data[2,], data[2,]),
 group = c(rep("X", 600), rep("Y", 300)))

first plot (separated)
p <- ggplot(df, aes(d, fill = group)) + # define plotting space and groups
 geom_histogram(position = "dodge", bins = 10) + # define barplot and style
 guides(fill = guide_legend(title = NULL)) + # remove legend title
 ylim(0, 120) + # set y axis limits
 theme_classic() + # set plotting theme, default background is grey grid
 xlab("") + # remove x axis label
 ylab("Frequency") + # edit y axis label
 ggtitle("Separated") + # edit plot title
 theme(legend.position = c(0.8, 0.8)) + # move postion of legend
 theme(plot.title = element_text(hjust = 0.5)) # move title to center of plot, default is left

second plot
p2 <- ggplot(df2, aes(x = d, fill = group)) + # define plotting space and groups
 geom_histogram(bins = 13, position="identity") + # define histogram bins and style
 theme_classic() +
 guides(fill=guide_legend(title=NULL)) +
 xlab("") +
 ylab("") + # remove y axis lable
 ggtitle("Stacked") + # edit title
 theme(legend.position = c(0.8, 0.8)) +
 theme(plot.title = element_text(hjust = 0.5))

display plots side by side
grid.arrange(p, p2, ncol = 2)

data
domain = np.linspace(-10, 10, 1000) # x axis domain
function1 = np.sinc(domain) # sinc function (sin(pi*x)/pi*x)
function2 = np.cos(domain) # cosine function (cos(x))
function3 = domain ** 2 # quadratic function
function4 = np.exp(domain) # exponential function

Stack 4 curves on same plot
plt.plot(domain, function1, # data
 label = "sinc(x)", # lable for legend
 color = "blue", # colour of curve (line)
 linestyle = "-", # line style, many options to choose from, default is solid line "-"
 lw = 4) # line width
plt.plot(domain, function2,
 label = "cos(x)",
 color = "red", # if no color is specified Python will choose a unique one
 linestyle = "--",
 lw = 1)
plt.plot(domain, function3,
 label = "x^2",
 color = "green",
 linestyle = "-.",
 lw = 2)
plt.plot(domain, function4,
 label = "exp(x)",
 color = "orange",
 linestyle = ":",
 lw = 3)

Display plot
plt.ylim([-1.2, 4])
plt.xlim([-11, 11])
plt.legend(loc = "upper right")
plt.xlabel("x")
plt.title("Plotting Curves")
plt.show()

100 trials of 10 N(0,1) samples
trials = np.random.normal(size = (100,10))
avgs = np.mean(trials, axis = 1)
stds = np.std(trials, axis = 1)

plt.fill_between(np.linspace(0,100,100), # domain space (x axis)
 avgs-stds, # upper limit of filled area
 avgs+stds, # lower limit of filled area
 color = "blue", # colour of filled space
 alpha = 0.3, # trasnparency of filled space
 label = "+- 1 Sample SD") # label for legend
plt.plot(np.linspace(0,100,100),
 avgs, # average line
 color = "blue",
 lw = 2,
 label = "Sample Average")

Display plot
plt.xlabel("Trials")
plt.legend(loc = "upper right")
plt.ylim([-2, 2.8])
plt.title("N(0,1) Samples")
plt.show()

data
domain <- seq(from = -10, to = 10, length = 1000) # x axis domain
func1 <- sin(pi * domain) / (pi * domain) # sinc function
func2 <- cos(domain) # cosine function
func3 <- domain^2 # quadratic function
func4 <- exp(domain) # eponential function

Stack 4 curves on same plot
plot(domain, # x axis data
 func1, # y axis data
 ylim = c(-1, 4), # y axis range
 type = "l", # plot type is line, default is points
 col = "blue", # colour
 lwd = 4, # line width
 xlab = "x", # x axis label
 ylab = "", # y axis label
 main = "Plotting Curves") # title
points(domain,
 func2,
 type = "l",
 col = "red",
 lwd = 1,
 lty = "dashed") # line type, default is solid
points(domain,
 func3,
 type = "l",
 col = "green",
 lwd = 2,
 lty = "dotdash")
points(domain,
 func4,
 type = "l",
 col = "orange",
 lwd = 3,
 lty = "dotted")

add legend to plot
legend("topright",
 legend = c("sinc(x)", "cos(x)", "x^2", "exp(x)"), # legend text
 lty = c("solid", "dashed", "dotdash", "dotted"), # legend lines
 col = c("blue","red", "green", "orange"), # legend line colours
 lwd = c(4,1,2,3), # legend line widths
 cex = 0.7) # legend size, default is cex = 1

100 trials of 10 N(0,1) samples
trials <- matrix(rnorm(100*10), ncol = 10)
avgs <- rowMeans(trials)
sds <- apply(trials, 1, sd)

plot avergae line
plot(1:100, avgs,
 col = "blue",
 type = "l",
 lwd = 2.5,
 ylim = c(-2,3),
 ylab = "",
 xlab = "Trials",
 main = "N(0,1) Samples")

add +- 1 standard devation to plot
polygon(c(1:100,rev(1:100)), # x axis of shading area
 c(avgs + sds, rev(avgs - sds)), # top and bottom of shading area
 col = adjustcolor("blue", 0.3)) # shading colour

legend
legend("topright",
 legend = c("Sample Average", "+- 1 Sample SD"),
 lty = c("solid", NA), # use NA when not using a vectorized parameter
 lwd = c(2.5, NA),
 col = c("blue", "black"),
 pch = c(NA, 22),
 cex = 0.7,
 pt.bg = c("blue", adjustcolor("blue", 0.3)),
 pt.cex = c(1, 1.5))

Data
x,y = np.meshgrid(np.linspace(-3, 3, 50), # grid space on x axis, 50 "blocks" between -3 and 3
 np.linspace(-3, 3, 50)) # grid space on y axis, 50 "blocks" between -3 and 3
z = (1 - x/2 + x**5 + y**3) * np.exp(-x**2 - y**2) # evaluation over grid space

First plot
plt.subplot(1, 2, 1)
plt.imshow(z, # data
 cmap = "Blues", # colour map, many options availible default is "viridis"
 aspect = "auto", # adjust pixel size, default is "equal" with all pixels same square size
 origin = "lower", # location of origin [0,0], default is "upper" top left corner
 alpha = 0.8) # adjust transparency
plt.title("Non-Sqaure Pixels")

Second plot
plt.subplot(1, 2, 2)
plt.imshow(z,
 cmap = "Oranges", # new colour mapping
 aspect = "equal", # all pixels same square size
 origin = "lower",
 alpha = 0.8)
plt.title("Sqaure Pixels")

plt.show() # display plots nicely

Z1 = np.add.outer(range(8), range(8)) % 2 # background image (8x8 sqaures)
edges = np.min(x), np.max(x), np.min(y), np.max(y) # set layered images on same axis

First image
plt.imshow(Z1,
 interpolation = 'nearest', # interpolation method used, default is 'antialiased'
 extent = edges, # bounding box that the image will fill, default is based on origin location
 alpha = 0.5)

Second image overlayed
plt.imshow(z,
 cmap = 'Oranges',
 alpha = 0.9,
 interpolation = 'bilinear',
 extent = edges)
plt.title("Layered Images")

display
plt.show()

img = mpimg.imread('map.jpeg')

plt.imshow(img) # plot original RGB image
plt.title("Original Image")
plt.axis('off') # removes axis numbers, no "ticks"
plt.show()

red_channel = img[:,:,0] # extract red channel
green_channel = img[:,:,1] # extract green channel
blue_channel = img[:,:,2] # extract blue channel

original plot
plt.subplot(2,2,1)
plt.imshow(img)
plt.title("Original")
plt.axis('off')

red channel plot
plt.subplot(2, 2, 2)
plt.imshow(red_channel, cmap = "Reds")
plt.title("Red Channel")
plt.axis('off')

green channel plot
plt.subplot(2, 2, 3)
plt.imshow(green_channel, cmap = "Greens")
plt.title("Green Channel")
plt.axis('off')

blue channel plot
plt.subplot(2, 2, 4)
plt.imshow(blue_channel, cmap = "Blues")
plt.title("Blue Channel")
plt.axis('off')

display
plt.show()

Data
ticks <- seq(from = -3, to = 3, length = 50) # grids "ticks"
grid <- meshgrid(ticks, y = ticks) # grid with 50 points between -3 and 3 on both axis
X <- grid$X
Y <- grid$Y
z <- (1 - X/2 + X^5 + Y^3) * exp(-X^2 - Y^2) # evaluate on grid space

Display side by side
par(mfrow = c(1,2),
 mar = c(5.1, 2, 4.1, 0.5)) # adjust margins

First plot
image(z = z,
 main = "Non-Square Pixels", # title
 col = hcl.colors(50, palette = "Blues", alpha = 0.8), # colour mapping
 asp = 2) # chnage pixel size, default is square asp = 1
Second plot
image(z = z,
 main = "Square Pixels",
 col = hcl.colors(50, palette = "Oranges", alpha = 0.8)) # new colour mapping

par(mfrow = c(1,1)) # display one plot

first image
checkers <- matrix(rep(c(rep(c(0,1),4), rep(c(1,0), 4)), 4), ncol = 8) # "checkers"
image(z = checkers,
 main = "Layered Images",
 col = hcl.colors(50, palette = "Oranges", alpha = 0.5),
 xlim = c(0,1), # limits of image x axis
 ylim = c(0,1)) # limits of image y axis

second image
image(z = z,
 col = hcl.colors(50, palette = "Oranges", alpha = 0.8),
 add = T) # add image over top

library(jpeg) # For reading images into memory
img <- readJPEG("map.jpeg") # get image
packageVersion("jpeg")

plot original RGB image
plot.new()
rasterImage(img, # data
 xleft = 0, # plotting regions
 xright = 1,
 ytop = 1,
 ybottom = 0,
 interpolate = FALSE) # no interpolation when drawing
title(paste0("Original Image")) # add title to image

Display 4 plots
par(mfrow = c(2,2), mar = c(1,1,1,1))

original
plot.new()
rasterImage(img,
 xleft = 0,
 xright = 1,
 ytop = 1,
 ybottom = 0,
 interpolate = FALSE)
title(paste0("Original Image"))

Get RBG channels
r <- img[,,1]
g <- img[,,2]
b <- img[,,3]

Red channel
image(t(r[nrow(r):1,]),
 col = hcl.colors(50, palette = "Reds", alpha = 0.5, rev = T),
 main = "Red Channel",
 xaxt = "n", # remove axis
 yaxt = "n")

Green channel
image(t(g[nrow(g):1,]),
 col = hcl.colors(50, palette = "Greens", alpha = 0.5, rev = T),
 main = "Green Channel",
 xaxt = "n",
 yaxt = "n")

blue channel
image(t(b[nrow(b):1,]),
 col = hcl.colors(50, palette = "Blues", alpha = 0.5, rev = T),
 main = "Blue Channel",
 xaxt = "n",
 yaxt = "n")

lay out 3d plotting space
fig = plt.axes(projection='3d')

create 3D curve (line)
zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)
yline = np.cos(zline)

plot 3D curve (line)
fig.plot3D(xline, yline, zline, 'black')

create 3D data points
zdata = 15 * np.random.random(300)
xdata = np.sin(zdata) + 0.1 * np.random.randn(300)
ydata = np.cos(zdata) + 0.1 * np.random.randn(300)

plot 3D data points over line
fig.scatter3D(xdata, ydata, zdata, c=zdata, cmap = 'plasma')

display
plt.title("3D Plotting")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()

data
x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X ** 2 + Y ** 2))

contours
fig = plt.axes(projection='3d')
fig.contour3D(X, Y, Z,
 50,
 cmap='plasma')

display
plt.title("3D Contours")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()

wireframe plot
fig = plt.axes(projection='3d')
fig.plot_wireframe(X, Y, Z,
 color='black',
 alpha = 0.8,
 linewidth=0.3)

display
plt.title("3D Wireframe")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()

surface plot
fig2 = plt.axes(projection='3d')
s = fig2.plot_surface(X, Y, Z,
 rstride=1,
 cstride=1,
 cmap='plasma',
 edgecolor='black',
 linewidth=0.2)
Display
plt.title("3D Surface Plot")
plt.xlabel("X")
plt.ylabel("Y")
plt.colorbar(s, shrink = 0.6, aspect = 5) # add colour bar if desired
plt.show()

library(plot3D) # 3D plotting package
packageVersion("plot3D")

colours <- hcl.colors(100,palette = "plasma") # plasma colour scheme

create 3D curve (line)
zline <- seq(0, 15, length.out = 1000)
xline <- sin(zline)
yline <- cos(zline)

plot 3D curve (line)
lines3D(x = xline, y = yline, z = zline, # data
 col = "black", # line colour
 theta = 30, # 3D viewing perspective
 phi = 30, # 3D viewing perspective
 ticktype = 'detailed', # add axis ticks
 xlab = "X",
 ylab = "Y",
 zlab = "Z",
 cex.axis = 0.6, # axis numbers font size
 main = '3D Plotting')

create 3D data points
set.seed(10) # reproduce same data
zdata <- 15*runif(300) # z axis
xdata <- sin(zdata) + 0.05*rnorm(300) # x axis
ydata <- cos(zdata) + 0.05*rnorm(300) # y axis

plot 3D data points over line
scatter3D(x = xdata, y = ydata, z = zdata, # data
 colkey = FALSE, # remove colour bar
 theta = 30,
 phi = 30,
 ticktype = 'detailed',
 xlab = "X",
 ylab = "Y",
 zlab = "Z",
 cex.axis = 0.6,
 add = TRUE, # add over existing line plot
 pch = 16, # point style (filled circles)
 col = adjustcolor(colours, alpha.f = 0.7)) # transparency of points

function to create z space
f <- function(x, y){
 sin(sqrt(x^2 + y^2))
}
data
x <- y <- seq(-6, 6, length = 30) # x and y axis same
z <- outer(x, y, f) # evaluation

contours
contour3D(x = x, y = y, z = z, # data
 colvar = z, # countours based on z axis
 nlevels = 80, # number of contour lines
 col = colours, # contour colours
 theta = 30,
 phi = 30,
 ticktype = 'detailed',
 xlab = "X",
 ylab = "Y",
 zlab = "Z",
 cex.axis = 0.6,
 main = "3D Contours",
 colkey = FALSE) # remove colour bar

wireframe plot
persp(x, y, z, # data
 main = "3D Wireframe",
 theta = 30,
 phi = 30,
 border = "black", # colour of lines
 box = T, # include box around plot
 ticktype = 'detailed',
 xlab = "X",
 ylab = "Y",
 zlab = "Z",
 col = NA, # no colour between wire lines
 lwd = 0.5, # line thickness
 cex.axis = 0.6)

colour tool to fill the surfaces of plot
zfacet <- (z[-1, -1] + z[-1, -ncol(z)] + z[-nrow(z), -1] + z[-nrow(z), -ncol(z)])/4
facetcol <- cut(zfacet, 100)

surface plot
persp(x, y, z, # data
 main = "3D Surface Plot",
 theta = 30,
 phi = 30,
 border = "black",
 box = T,
 ticktype = 'detailed',
 xlab = "X",
 ylab = "Y",
 zlab = "Z",
 col = colours[facetcol], # colour between lines based on colour tool
 lwd = 0.5,
 cex.axis = 0.6)

https://cran.r-project.org/package=pracma
https://ggplot2.tidyverse.org/
https://cran.r-project.org/package=gridExtra
https://matplotlib.org/
https://cran.r-project.org/package=jpeg
https://cran.r-project.org/package=plot3D

