
C&O 631 ASSIGNMENT 4
Suggested Solutions

1. Prove that the mapping ψ defined on pages 62 and 63 of the Course Notes is an involution.

Solution: Suppose that we are in Case 1, so α = ∅ or αm < si, and we have ψ((α, s)) =
(α′, t), where s ≡ sit and α′ = α∪{si}. Now suppose that tj exists such that tj is the largest
element in t that commutes with all elements of α′, and that can appear leftmost in a string
equivalent to t (with t ≡ tjt

′). Then s ≡ sitjt
′ ≡ tjsit

′ (for the second equivalence, si ∈ α′,
so tj commutes with si), so we must have tj < si. But this implies that ψ((α′, t)) = (α, s).
On the other hand, if no such tj exists, then we also have ψ((α′, t)) = (α, s).

Otherwise, suppose that we are in Case 2, so αm exists, and we have ψ((α, s)) = (α′′, s′′),
where α′′ = α \ {αm} and s′′ = αms

′′. Then by construction αm is the largest element in s′′

that commutes with everything in α′′, and that can appear leftmost in a string equivalent
to s′′. Also by construction, either α′′ = ∅ or its largest element is αm−1 where αm−1 < αm.
Hence in both cases we have ψ(α′′, s′′) = (α, s).

2. Consider the symmetric functions uλ defined on page 57 of the Course Notes.

(a) Prove that u(n) = −pn, n ≥ 1.

(b) Prove that the number of ordered factorizations of (1 2 . . . n) into m (k+1)-cycles, where
n = km+ 1, is given by

nm−1.

(A (k + 1)-cycle is a permutation with a cycle of length k + 1, together with n− k− 1 fixed
points.)

Solution: (a) At the bottom of page 56 of the Course Notes, we have the formula

(1) h∗n =
∑
λ`n

(−1)l(λ)(n+ 1)l(λ)−1
pλ
z(λ)

, n ≥ 1,

where we have used the evaluation |C(λ)| = n!/z(λ). This formula immediately gives

〈h∗n, pn〉 = (−1)1(n+ 1)0 = −1,

since 〈pλ, pν〉 = z(λ)δλ,ν . The formula also implies that if µ has more than one part, then
h∗µ = h∗µ1 · · · is a linear combination of pα’s in which all partitions α that appear have more
than one part. But this means that

〈h∗µ, pn〉 = 0

for all µ ` n with more than one part. Combining these two expressions gives

〈h∗µ,−pn〉 = δµ,(n),

and we conclude from the definition 〈h∗µ, uλ〉 = δµ,λ of the uλ that u(n) = −pn, n ≥ 1.
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(b) From Corollary 20.2 on page 61 of the Course Notes, the required number is given by[
u(n−1)

]
um(k) = 〈h∗n−1, um(k)〉 = 〈h∗n−1, (−pk)

m〉 = (−1)m〈h∗n−1, pmk 〉
= (−1)m(−1)m(n− 1 + 1)m−1 = nm−1,

where the second equality follows from part (a), and the fourth equality follows from for-
mula (1).

3 (a) For n ≥ 1, let bn be the number of equivalence classes of factorizations of (1 2 . . . n)
into n− 1 transpositions as considered on pages 63 - 65 of the Course Notes. For n ≥ 2 and
each such factorization f , it is known that, for a unique choice of p, q with 1 ≤ p < q ≤ n,

f ≡ f1 · f2 · (1 p) · f3,

where f1 is a minimal transposition factorization of (1 (q + 1) . . . n), f2 is a minimal trans-
position factorization of (2 3 . . . p), and f3 is a minimal transposition factorization of (p (p+
1) . . . q). Deduce from this that B(x) =

∑
n≥1 bnx

n−1 satisfies the functional equation

B(x) = 1 + xB(x)3.

(b) Deduce from part (a) that

bn =
1

2n− 1

(
3n− 3

n− 1

)
, n ≥ 1.

(c) BONUS: Prove the canonical representation of equivalence classes given in part (a).

Solution: [TYPO: The range of values for p, q should be 1 < p ≤ q ≤ n.] (a) From the
equivalence given, we immediately deduce that

bn =
∑

1<p≤q≤n

bn−q+1bp−1bq−p+1 =
∑
i,j,k≥1

i+j+k=n+1

bibjbk, n ≥ 2,

where for the second equality, we have changed summation variables to i = n − q + 1,
j = p − 1, k = q − p + 1. Multiplying this equation by xn−1, and summing over n ≥ 2, we
obtain ∑

n≥2

bnx
n−1 = x

∑
i≥1

bix
i−1
∑
j≥1

bjx
j−1
∑
k≥1

bkx
k−1.

But b1 = 1, since there is a single, empty factorization of (1) into 0 transpositions. Thus
adding b1 to the left hand side of the above equation, and 1 to the right hand side, we get

B(x) = 1 + xB(x)3.

(b) Let A(x) = B(x)− 1, so B(x) = A(x) + 1. Then the cubic equation in part (a) for B(x)
becomes the cubic equation

A = x(1 + A)3,



for A = A(x). Then for n ≥ 2, Lagrange’s Implicit Function Theorem gives

bn = [xn−1]A =
1

n− 1
[zn−2]

(
(1 + z)3

)n−1
=

1

n− 1
[zn−2](1 + z)3n−3 =

1

n− 1

(
3n− 3

n− 2

)
.

But for n ≥ 2, we have 1
n−1

(
3n−3
n−2

)
= (3n−3)!

(n−1)!(2n−1)! = 1
2n−1

(
3n−3
n−1

)
, and since b1 = 1, this formula

works for all n ≥ 1, as required.


