1: Let a, n and k be positive integers. Suppose that $m \geq 3$ and $\gcd(a, m) = 1$. Show that $a^k + (m-a)^k \equiv 0 \mod m^2$ if and only if m is odd and $k \equiv m \mod 2m$.

2: Find the number of positive integers k such that $k^2 + 2013$ is a square.

3: For each positive integer n, let a_n be the first digit in the decimal representation of 2^n, let b_n be the number of indices $k \leq n$ for which $a_k = 1$, and let c_n be the number of indices $k \leq n$ for which $a_k = 2$. Show that there exists a positive integer N such that for all $n \geq N$ we have $b_n > c_n$.

4: Let $\{a_n\}_{n \geq 1}$ be a sequence of positive real numbers such that $a_n \leq \frac{a_{n-1} + a_{n-2}}{2}$ for all $n \geq 3$. Show that $\{a_n\}$ converges.

5: Let $f(x) = ax^2 + bx + c$ with $a, b, c \in \mathbb{Z}$. Suppose that $1 < f(1) < f(f(1)) < f(f(f(1)))$. Show that $a \geq 0$.

6: Let E be an ellipse in \mathbb{R}^2 centred at the point O. Let A and B be two points on E such that the line OA is perpendicular to the line OB. Show that the distance from O to the line through A and B does not depend on the choice of A and B.
1: Find the number of positive integers \(k \) such that \(k^2 + 10! \) is a perfect square.

2: Let \(f : [0, 1] \to \mathbb{R} \) be continuous. Suppose that \(\int_0^x f(t) \, dt \geq f(x) \geq 0 \) for all \(x \in [0, 1] \). Show that \(f(x) = 0 \) for all \(x \in [0, 1] \).

3: For each positive integer \(n \), let \(a_n \) be the first digit in the decimal representation of \(2^n \), let \(b_n \) be the number of indices \(k \leq n \) for which \(a_k = 1 \), and let \(c_n \) be the number of indices \(k \leq n \) for which \(a_k = 2 \). Show that there exists a positive integer \(N \) such that for all \(n \geq N \) we have \(b_n > c_n \).

4: Let \(p \) be an odd prime. Show that \(\binom{2p}{p} \equiv 2 \mod p^2 \).

5: Let \(V \) be a vector space over \(\mathbb{R} \). Let \(V^* \) be the space of linear maps \(g : V \to \mathbb{R} \). Let \(F \) be a finite subset of \(V^* \). Let \(U = \{ x \in V \,|\, f(x) = 0 \text{ for all } f \in F \} \). Show that for all \(g \in V^* \), if \(g(x) = 0 \) for all \(x \in U \) then \(g \in \text{Span}(F) \).

6: Let \(a, b \) and \(c \) be positive real numbers. Let \(E \) be the ellipsoid \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \) in \(\mathbb{R}^3 \). Let \(u, v, w \in E \) be such that the set \(\{u, v, w\} \) is orthogonal. Show that the distance from the origin to the plane through \(u, v \) and \(w \) does not depend on the choice of \(u, v \) and \(w \).