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Abstract. We prove that the number of natural exact covering systems of cardinality k is
equal to the coefficient of xk in the reversion of the power series

∑
k≥1 µ(k)xk, where µ(k)

is the usual number-theoretic Möbius function. Using this result, we deduce an asymptotic
expression for the number of such systems.

1. Introduction

A covering system or complete residue system is a collection of finitely many residue classes
such that every integer belongs to at least one of the classes. The concept was introduced
by Erdős [E50, E52], who used the system of 6 congruences

x ≡ 0 (mod 2) x ≡ 0 (mod 3)

x ≡ 1 (mod 4) x ≡ 3 (mod 8)

x ≡ 7 (mod 12) x ≡ 23 (mod 24)

to prove that there exists an infinite arithmetic progression of odd integers, each of which
is not representable as the sum of a prime and a power of two. Since 1950, hundreds of
papers have been written on covering systems; for surveys of the topic, see, for example
[P81, Z82, PS02, S05].

A covering system is called exact if every integer belongs to one and only one of the
given congruences. (The system of Erdős above is not exact, because the integer 19 belongs
to both residue classes 3 (mod 8) and 7 (mod 12).) Exact covering systems, or ECS, are
sometimes also called exactly covering systems or disjoint covering systems in the literature
(e.g., [N71, F72, F73, NZ74, Z75, S86]).

Among the exact covering systems, one particular subclass that has received attention
consists of the so-called natural exact covering systems, or NECS. These are the exact cov-
ering systems that can be obtained, starting from the single congruence x ≡ 0 (mod 1), by
a finite number of applications of the following transformation: for some r ≥ 2, remove a
single congruence x ≡ a (mod n) from the system and replace it with the r new congruences
x ≡ a+ jn (mod rn), j = 0, 1, . . . , r−1; the value of r can vary for the different applications
of this transformation.
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The first paper that we could find describing natural exact covering systems is Porubský [P74],
but he credits Znám with introducing them in an earlier unpublished manuscript. Since then,
they have been studied by a number of others, e.g., Burshtein [B76a, B76b], Znám [Z82] and
Korec [K84], but up to now it appears that nobody has enumerated them. Let ak denote
the number of NECS consisting of k congruences, k ≥ 1. Define the formal power series

(1) A(x) =
∑
k≥1

akx
k, M(x) =

∑
k≥1

µ(k)xk,

where µ is the usual number-theoretic Möbius function defined by µ(1) = 1 and, for n ≥ 2,

µ(n) =

{
0, if n is divisible by a square > 1;

(−1)e, if n is the product of e distinct primes.

The initial terms of these series are given by

A(x) = x+ x2 + 3x3 + 10x4 + 39x5 + 160x6 + 691x7 + 3081x8 + . . . ,

M(x) = x− x2 − x3 − x5 + x6 − x7 + x10 − x11 − x13 + x15 + . . . ,

where the coefficients in the generating series A(x) were obtained by counting the NECS
with at most 8 congruences.

Our main result is that the series A, the generating function for the number of NECS, is
the reversion (compositional inverse) of the Möbius series M . Of course, equivalently, this
means that M is the reversion of A.

Theorem 1. The series A(x) is the unique solution to the functional equation

M(A(x)) = x,

with initial condition A(0) = 0.

Remark 1. The coefficients of the reversion of the Möbius series are given by sequence
A050385 in the On-Line Encyclopedia of Integer Sequences [SL].

Remark 2. We remark that, instead of the Möbius power series M(x) defined in (1), it is more
usual to study the Dirichlet series

∑
k≥1 µ(k)k−s. Indeed Hardy and Wright [HW60, p. 257]

refer to series such as M(x) as “extremely difficult to handle”. The generating series M(e−y)
was mentioned by Hardy and Littlewood [HL16, p. 122], and its unusual analytic properties
were studied by Fröberg [F66].

Remark 3. A priori, it is not even obvious that the coefficients in the reversion of M(x) are
all positive. This fact follows from our results.

We have not been able to use Theorem 1 to determine a useful explicit expression for the
number ak of NECS with k congruences. However, we are able to determine the precise
asymptotic form for ak, as a corollary to Theorem 1.

Theorem 2. Let α be the zero of M ′ of smallest absolute value in (−1, 1), so that M ′(α) = 0.
Also, let

c =

√
− M(α)

2πM ′′(α)
, γ = M(α)−1 .
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Then the kth coefficient in the reversion of the Möbius series (which is also equal to the
number of NECS with k congruences) is asymptotically

ak ∼ c γk k−3/2.

Remark 4. Evaluations to 7 decimal places of the constants in Theorem 2 are given by
α
.
= 0.3229939, c

.
= 0.0809423 and γ

.
= 5.4874522.

In Sections 2 and 3 of this paper, we describe basic notation and terminology for ECS,
NECS and for a set of rooted trees that arises in the study of NECS. The proof of Theorem 1
is given in Section 4. Recurrences and numerical results appear in Section 5. The proof of
Theorem 2 is in Section 6. In addition, we prove related results for the number of NECS
with k congruences in which the gcd and lcm of the congruences are also specified. In
Section 7 we give some combinatorial results about the coefficients. Some open problems are
described in Section 8. We make some final remarks in Section 9.

2. Basic notation and definitions for exact covering systems

2.1. Exact covering systems. For integers n ≥ 1 and 0 ≤ a < n, let 〈a, n〉 denote the
residue class {x ∈ Z : x ≡ a (mod n)}. Let U ⊆ Z. The set of k ≥ 1 residue classes

(2) C = {〈ai, ni〉 : i = 1, . . . , k},

is called an exact covering system (ECS) of U when

• the sets 〈ai, ni〉, i = 1, . . . , k are pairwise disjoint, and
• the sets 〈ai, ni〉, i = 1, . . . , k cover the set U , i.e.,

k⋃
·
i=1

〈ai, ni〉 = U ,

where the symbol ∪· indicates a disjoint union. Given an ECS C as in (2), suppose that
gcd{ni : i = 1, . . . , k} = d, and that lcm{ni : i = 1, . . . , k} = m. Then we say that C has
size k, gcd d, and lcm m, written

|C| = k, gcd(C) = d, lcm(C) = m.

In the case that U = Z = 〈0, 1〉, we say more simply that C is an ECS (without mentioning
the set Z). Table 1 lists all ECS of size at most 4, together with their gcd and lcm.

Remark 5. Note that the gcd of an ECS need not equal its smallest modulus, and the lcm
need not equal its largest modulus. The smallest counterexample to both of these claims is

{〈1, 4〉, 〈3, 4〉, 〈0, 6〉, 〈2, 6〉, 〈4, 6〉},

an ECS of size 5, gcd 2, and lcm 12.
3



size exact covering system gcd lcm
1 {〈0, 1〉} 1 1
2 {〈0, 2〉, 〈1, 2〉} 2 2

{〈0, 3〉, 〈1, 3〉, 〈2, 3〉} 3 3
3 {〈0, 2〉, 〈1, 4〉, 〈3, 4〉} 2 4

{〈1, 2〉, 〈0, 4〉, 〈2, 4〉} 2 4
{〈0, 4〉, 〈1, 4〉, 〈2, 4〉, 〈3, 4〉} 4 4
{〈0, 2〉, 〈1, 6〉, 〈3, 6〉, 〈5, 6〉} 2 6
{〈0, 3〉, 〈1, 3〉, 〈2, 6〉, 〈5, 6〉} 3 6
{〈0, 3〉, 〈2, 3〉, 〈1, 6〉, 〈4, 6〉} 3 6

4 {〈1, 2〉, 〈0, 6〉, 〈2, 6〉, 〈4, 6〉} 2 6
{〈1, 3〉, 〈2, 3〉, 〈0, 6〉, 〈3, 6〉} 3 6
{〈0, 2〉, 〈1, 4〉, 〈3, 8〉, 〈7, 8〉} 2 8
{〈0, 2〉, 〈3, 4〉, 〈1, 8〉, 〈5, 8〉} 2 8
{〈1, 2〉, 〈0, 4〉, 〈2, 8〉, 〈6, 8〉} 2 8
{〈1, 2〉, 〈2, 4〉, 〈0, 8〉, 〈4, 8〉} 2 8

Table 1. The ECS of size at most 4.

We now define two constructions for ECS. First, consider an ECS

C = {〈ai, ni〉 : i = 1, . . . , k},

and a residue class 〈b, c〉. Define

(3) E〈b,c〉(C) = {〈b+ c ai, c ni〉 : i = 1, . . . , k},

which we refer to as the 〈b, c〉-expansion of C. Note that E〈b,c〉(C) is itself an ECS of 〈b, c〉.
Second, consider an ECS C, a residue class 〈a, n〉 ∈ C, and an integer r ≥ 2. Let C ′ be the

set of residue classes obtained by removing 〈a, n〉 from C and replacing it by the r residue
classes

(4) 〈a+ jn, rn〉, j = 0, 1, . . . , r − 1.

Note that the residue classes in (4) are pairwise disjoint, and that they contain between
them all integers in 〈a, n〉; indeed, they are an ECS of the residue class 〈a, n〉 of size r . An
immediate consequence of this is that C ′ is also an ECS, with size given by |C ′| = |C|+r−1.
We say that the collection of classes in (4) is the r-split of 〈a, n〉, and that C ′ is an r-split
of C. Equivalently, we say that the collection of classes in (4) is obtained by r-splitting 〈a, n〉,
and that C ′ is obtained by r-splitting C. We also use the terms split and splitting in these
same contexts, when we don’t choose to specify the value of r ≥ 2.

2.2. Natural exact covering systems. Let A be the set of exact covering systems that
can be obtained by a finite sequence (possibly empty) of splits applied to {〈0, 1〉} = {Z};
we call this a split sequence. It is important to note that if this split sequence is an r1-split,
an r2-split, . . . , an rm-split, for some m ≥ 0, then the values of r1, . . . , rm need not be the
same, and indeed can vary arbitrarily over r1, . . . , rm ≥ 2 (and m can be any non-negative
integer).
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The exact covering systems in A are called natural exact covering systems (NECS). It is
well known that in general (see, e.g., [K84, p. 392]) elements of A can be obtained by a split
sequence in more than one way. As an easy example of this, the NECS of size 6

(5) {〈0, 6〉, 〈1, 6〉, 〈2, 6〉, 〈3, 6〉, 〈4, 6〉, 〈5, 6〉}

can be obtained by 6-splitting {〈0, 1〉}, but it can also be created by the following split
sequence of length 3: first 2-split {〈0, 1〉}, then 3-split {〈0, 2〉}, then 3-split {〈1, 2〉}.

It has also long been known that not every ECS is an NECS, e.g., Porubský [P74]. The
smallest size for an ECS that is not an NECS is 13, [S15, Example 3.1], which might seem
surprisingly large when one first encounters the study of ECS. In particular, this means that
all of the ECS in Table 1 are also NECS (equivalently, the caption for Table 1 could also be
“The NECS of size at most 4.”).

3. Rooted ordered trees and NECS

3.1. Rooted ordered trees. Let T be the set of rooted ordered trees with a finite (nonempty)
set of vertices, in which each vertex has r ordered children, for some r in {0, 2, 3, 4, . . .}. The
rooted tree consisting of a single (root vertex) is in T , and we denote this rooted tree by ε.
We regard the trees in T as being embedded in the plane, with the root vertex at the bot-
tom, and the children of each vertex above that vertex, ordered from left to right. Hence
we refer to a vertex with r children as a vertex of up-degree r, where r = 0 or r ≥ 2.
We denote the set of trees in which the up-degree of the root vertex is r by T (r), so we
have T = T (0) ∪· T (2) ∪· T (3) ∪· · · · , and T (0) = {ε}.

A vertex of up-degree 0 in a tree is called a leaf. Thus the root vertex in the tree ε is a
leaf (even though it has degree 0 in the graph sense). For a tree T in T rooted at vertex w,
the height of w in T is 0, and the height of any other vertex v in T is the edge-length of the
unique path in T from the root w to v. The height of the tree T itself, denoted by ht(T ),
is equal to the maximum height among the leaves in T . Also, the number of leaves in T is
denoted by λ(T ). For example, we have ht(ε) = 0 and λ(ε) = 1, since the single vertex in ε
is a leaf at height 0.

For vertices u 6= v in tree T ∈ T , we say that u is a descendant of v when either u is a child
of v, or is (recursively) the descendant of any child of v. We denote the subtree of T whose
vertices consist of v and its descendants by Tv. For any vertex v of T ∈ T , we have Tv ∈ T .
In particular, if v has up-degree r in T , then T ∈ T (r). Finally, if v is the root vertex of T ,
then we have Tv = T .

In Figure 1 we display an example of a tree T in T with root vertex w. The root vertex
has up-degree 3 (so T ∈ T (3)), and its three children, in order, are vertices x, y, z. The
tree has λ(T ) = 10 leaves; 1 (namely y) at height 1, 3 at height 2, 4 at height 3, and 2 at
height 4. Hence the height of the tree is ht(T ) = 4. For the subtrees Tx, Ty, Tz of T rooted
at x, y, z, respectively, we have λ(Tx) = 4, ht(Tx) = 2, Ty = ε (so ht(Ty) = 0, λ(Ty) = 1),
and λ(Tz) = 5, ht(Tz) = 3.
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<2,3><0,3> x z

Figure 1. Left: a rooted ordered tree in the set T . Right: the same tree
with ρ values assigned to vertices as in §3.2.

3.2. The relationship between trees and NECS. The reason for introducing the set
of trees T is that every NECS can be represented by at least one tree in T . To see this,
consider a tree T in T , and for each vertex v in T , assign a residue class ρ(v) (which we’ll
refer to as “assigning a ρ value” to v), using the following iterative assignment procedure:

• Initially, assign ρ(w) = 〈0, 1〉, where w is the root vertex of T ;
• At every stage, find a non-leaf vertex u of T that has been assigned a ρ value, but

whose children have not, and suppose that ρ(u) = 〈a, n〉, for some 0 ≤ a < n.
Then, denoting the children of u by c1, . . . , cr, in order (i.e., u has up-degree r for
some r ≥ 2), assign

ρ(cj+1) = 〈a+ jn, rn〉, j = 0, 1, . . . , r − 1.

Stop when there is no such vertex u.

Compare the assignments ρ(cj+1) given above for the children of a vertex with up-degree r
to the r-split of residue classes defined in (4). Clearly, the successive stages for assigning ρ
values to vertices of a tree in T in the iterative assignment procedure above, starting with
assigning the ρ value 〈0, 1〉 to the root, is a realization of a split sequence (one split for each
vertex that is not a leaf) applied to 〈0, 1〉, and hence corresponds to an element of A. The
order of the splits in the split sequence corresponds to any total order of the set of non-root,
non-leaf vertices in the tree that is a linear extension of the following partial order: u ≺ v
when v is a descendant of u.

Recall that when we apply an r-split in an element of A, we replace one residue class by
a set of r residue classes. Hence, in the corresponding tree in T , when we assign a label to
a vertex u, we want the residue class ρ(u) to disappear, and to be replaced by the residue
classes of its children. This means that if the leaves in a tree T ∈ T are given by `1, . . . , `k,
k ≥ 1, then the NECS corresponding to T is exactly the set of leaf labels {ρ(`1), . . . , ρ(`k)},
and we write

χ(T ) = {ρ(`1), . . . , ρ(`k)}.
For example, for the tree T in T displayed on the left side of Figure 1, using the assignment

procedure we initially assign ρ(w) = 〈0, 1〉, then at the first stage we assign ρ(x) = 〈0, 3〉,
ρ(y) = 〈1, 3〉, ρ(z) = 〈2, 3〉. Upon completion of all stages of the assignment procedure, each

6



vertex of T has a ρ value, which is displayed beside the vertex on the right side of Figure 1.
We thus obtain

(6) χ(T ) = {〈0, 9〉, 〈3, 18〉, 〈12, 18〉, 〈6, 9〉, 〈1, 3〉, 〈2, 6〉, 〈5, 36〉, 〈23, 36〉, 〈11, 18〉, 〈17, 18〉},

where this set of 10 residue classes gives the assigned ρ values for the 10 leaves in T .
The correspondence that we have denoted by χ, between the set of rooted trees in T

and the set A of NECS, is standard, and has appeared in the literature on NECS from the
beginning, e.g., Porubský [P74] and Znám [Z82]. In [P74] each vertex is identified with the
residue class that we “assign” in our description above, and in [Z82] the trees are treated in
a slightly different but equivalent way using the notion of product-distance, and are referred
to as Z-trees.

It is also standard that this correspondence between T and A is not one-to-one; this is
simply a restatement of the fact we mentioned in Section 2.2 above, that in general the
elements of A can be obtained by a split sequence in more than one way. We summarize
this situation in the following result.

Proposition 1. The function

χ : T → A : T 7→ C

is a surjection, in which λ(T ) = |C|.

Remark 6. Proposition 1 makes it clear that the NECS of size k correspond to certain
equivalence classes of trees in T with k leaves. The problem of counting the total number of
trees in T with k leaves is well known. Let tk denote the number of trees in T with k leaves,
k ≥ 1, and T (x) =

∑
k≥1 tkx

k. Then the tk are called Schröder numbers, and the generating
function has the closed form

T (x) =
1

4

(
1 + x−

√
1− 6x+ x2

)
,

see, e.g., [FS09, p. 69, 70] for a detailed description. An asymptotic form for tk also appears
in [FS09, p. 474, 475]:

tk ∼ ω
(
3 + 2

√
2
)k
k−3/2, ω =

1

4
√
π
(
3 + 2

√
2
) .

Of course, tk is an upper bound for ak, reflecting the fact that 3+2
√

2
.
= 5.828, the asymptotic

growth rate for tk, is larger than γ
.
= 5.487, the asymptotic growth rate for ak appearing in

Theorem 2.

3.3. Subtrees rooted at children of the root and NECS. For n ≥ 2 and T ∈ T (n),
suppose that the children of the root vertex of T are x1, . . . , xn, in order. When we apply
our iterative assignment procedure to T , we obtain ρ(xi) = 〈i− 1, n〉, for i = 1, . . . , n. Then
the residue classes that are assigned to the leaves in Txi form an NECS of 〈i− 1, n〉, and it is
easy to check that this NECS is simply E〈i−1,n〉(χ(Txi)), using the expansion notation defined
in (3). Putting the residue classes for all subtrees together, we thus obtain the relationship

(7) χ(T ) =
n⋃
·
i=1

E〈i−1,n〉(χ(Txi)).

7



For example, for the tree T in T in Figure 1, the root vertex w has up-degree 3, and the
children of the root are x, y, z, in order. For the subtrees rooted at x, y, z, we have

χ(Tx) = {〈0, 3〉, 〈1, 6〉, 〈4, 6〉, 〈2, 3〉},
χ(Ty) = {〈0, 1〉},
χ(Tz) = {〈0, 2〉, 〈1, 12〉, 〈7, 12〉, 〈3, 6〉, 〈5, 6〉},

and the appropriate expansions of these NECS are given by

E〈0,3〉(χ(Tx)) = {〈0, 9〉, 〈3, 18〉, 〈12, 18〉, 〈6, 9〉},
E〈1,3〉(χ(Ty)) = {〈1, 3〉},
E〈2,3〉(χ(Tz)) = {〈2, 6〉, 〈5, 36〉, 〈23, 36〉, 〈11, 18〉, 〈17, 18〉}.

Comparing these with (6), we have

χ(T ) = E〈0,3〉(χ(Tx)) ∪· E〈1,3〉(χ(Ty)) ∪· E〈2,3〉(χ(Tz)),

confirming that relationship (7) holds for the tree T in Figure 1.
In the following results, we record some useful properties for subtrees of children of the

root that follow immediately from (7).

Proposition 2. For T ∈ T (n), n ≥ 2, suppose that the children of the root vertex of T
are x1, . . . , xn, in order, and that we have

χ(T ) = C, χ(Txi) = Ci, , i = 1, . . . , n.

Then

(a) |C| = |C1|+ · · ·+ |Cn| ,
(b) gcd(C) = n · gcd{gcd(C1), . . . , gcd(Cn)} ,
(c) lcm(C) = n · lcm{lcm(C1), . . . , lcm(Cn)} .

Proposition 3. For P,Q ∈ T (n), n ≥ 2, suppose that the children of the root vertex of P
(respectively, Q) are y1, . . . , yn (respectively, z1, . . . , zn), in order. Then χ(P ) = χ(Q) if and
only if χ(Pyi) = χ(Qzi), i = 1, . . . , n.

Now we turn to a different type of result for rooted trees T , in which we give a bijective
construction that preserves the corresponding NECS χ(T ). For compactness in stating the
result, let Ga,b denote the set of trees T ∈ T (a) such that all children of the root vertex have
up-degree b, a, b ≥ 2.

Lemma 1. For a, b ≥ 2, there is a bijection

T (ab) → Ga,b : T 7→ S

with χ(T ) = χ(S).

Proof. Consider T ∈ T (ab), and let the children of the root vertex w of T be x1, . . . , xab,
in order. We construct a tree S ∈ Ga,b as follows: The root vertex u of S, and its chil-
dren y1, . . . , ya, in order, are newly created vertices (i.e., they are not vertices in T ). For
i = 1, . . . , a, vertex yi at height 1 in S has b children, given by vertices xi, xi+a, . . . , xi+(b−1)a
of T , in order. For m = 1, . . . ab, the construction of S is completed by rooting subtree Txm
of T at vertex xm of S (to become the subtree Sxm of S).

8



Note that when we apply our iterative assignment procedure to T , we obtain ρ(xm) = 〈m−
1, ab〉, for m = 1, . . . , ab (in which xm is regarded as a vertex in T ). Also, it is easy to check
that when we apply our iterative assignment procedure to S, we obtain ρ(xm) = 〈m−1, ab〉,
for m = 1, . . . , ab (in which xm is regarded as a vertex in S). But this implies that all vertices
in the subtrees Txm = Sxm , m = 1, . . . , ab, will be assigned the same ρ values, and hence
that χ(T ) = χ(S).

This construction is clearly reversible, and thus gives the required bijection. �

We now apply Lemma 1 to prove a result that will be key for our proof of the main result
in Section 4. Again for compactness in stating the result, let Dn denote the set of trees T ∈ T
such that n | gcd(χ(T )), n ≥ 2.

Proposition 4. For n ≥ 2,

{χ(S) : S ∈ Dn} = {χ(T ) : T ∈ T (n)}.

Proof. Let Ω1 = {χ(S) : S ∈ Dn} and Ω2 = {χ(T ) : T ∈ T (n)}. We will prove that Ω1 = Ω2

by proving both containments Ω1 ⊆ Ω2 and Ω2 ⊆ Ω1.
First, to prove Ω2 ⊆ Ω1. Proposition 2(b) implies that T (n) ⊆ Dn, from which Ω2 ⊆ Ω1

follows immediately.
Second, to prove Ω1 ⊆ Ω2. It is sufficient to prove the following implication: For all n ≥ 2

and S ∈ Dn, there exists T ∈ T (n) such that χ(T ) = χ(S). We prove this by induction
on the height of S. For the base case, consider S ∈ Dn of height equal to 1. Hence, from
Proposition 2(b), S ∈ T (nb) for some b ≥ 1, in which the nb children of the root in S are
leaves. If b = 1, then S ∈ T (n), giving the result immediately. If b ≥ 2, then Lemma 1
with a = n implies that there exists a tree R ∈ Gn,b ⊆ T (n) with χ(R) = χ(S), proving the
result in this case.

Assume that the implication is true for all n ≥ 2 and trees in Dn of height at most k,
for some k ≥ 1. Consider n ≥ 2 and an arbitrary tree S ∈ Dn with ht(S) = k + 1. Using
Proposition 2(b), there are three cases:

• S ∈ T (n), which gives the result immediately.
• S ∈ T (nb) for some b ≥ 2. Then Lemma 1 with a = n implies that there exists a

tree R ∈ Gn,b ⊆ T (n) with χ(R) = χ(S), proving the result in this case.
• S ∈ T (a) for some proper divisor a ≥ 2 of n, so n = ab, a, b ≥ 2. In this case, in addi-

tion, if x1, . . . , xa are the children of the root vertex of S, then from Proposition 2(b)
we have

b | gcd{gcd(χ(Sx1)), . . . , gcd(χ(Sxa))},

and hence b | gcd(χ(Sxi)) for i = 1, . . . , a. Equivalently, Sxi ∈ Db for i = 1, . . . , a.
But ht(Sxi) ≤ k for i = 1, . . . , k. Hence, for i = 1, . . . , k, from the induction hypoth-
esis, there exists Rxi ∈ T (b) (also rooted at vertex xi) such that χ(Rxi) = χ(Sxi).
Now construct a tree R by removing the subtree Sxi from S, and replacing it by
the subtree Rxi , for i = 1, . . . , a. Note that R ∈ Ga,b, and that χ(R) = χ(S), from
Proposition 3. Then, Lemma 1 implies that there exists a tree Q ∈ T (ab) = T (n)

with χ(Q) = χ(R) = χ(S), proving the result in this case.

This completes the inductive proof of the implication, and thus that Ω1 ⊆ Ω2. �
9



4. Proof of the main result

It will be convenient to partition the set A of NECS according to gcd. Hence let Am
denote the set of NECS with gcd m, for m ≥ 1. Recall that ak is the number of NECS of
size k, for k ≥ 1, and let ak,m denote the number of NECS of size k and gcd m, for k,m ≥ 1.
As in (1), we have the generating function

(8) A(x) =
∑
k≥1

akx
k =

∑
C∈A

x|C|,

and we define the additional generating functions

(9) Am(x) =
∑
k≥1

ak,mx
k =

∑
C∈Am

x|C|, m ≥ 1.

Of course, these generating functions are related by

(10) A(x) =
∑
m≥1

Am(x).

Note that the situation for C ∈ A with gcd(C) = 1 is particularly simple: We must
have C = χ(T ) for some T ∈ T (0), from Proposition 2(b). But the only tree in T (0) is the
single-vertex tree ε, and we have χ(ε) = 〈0, 1〉. Since 〈0, 1〉 has both size and gcd equal to 1,
we conclude that A1 = {〈0, 1〉}, and hence from (9) that

(11) A1(x) = x.

In part (a) of the following result, we prove a functional equation for the generating
functions A(x) and Am(x),m ≥ 1, that is a generalization of equation (10) above. The proof
that we give for part (b) of the result is to apply Möbius inversion to part (a), which is the
reason that the Möbius series M defined in (1) appears in the statement of part (b).

Theorem 3.

(a) For n ≥ 1 we have

A(x)n =
∑
d≥1

And(x).

(b) For m ≥ 1 we have
M
(
A(x)m

)
= Am(x).

Proof. (a) For n = 1, the result is given by (10) above.
For n ≥ 2, we begin the proof by defining U(A, n) = ∪· d≥1And, the set of all C ∈ A

such that n | gcd(C). Now, from Proposition 4 and Proposition 1, we have

U(A, n) = {χ(T ) : T ∈ T (n)}.
But removing the root vertex from a tree in T (n) to obtain an ordered list of n rooted
trees in T (namely, the subtrees rooted at the n children of the root vertex), yields the
usual bijection between T (n) and T n (the set of n-tuples of elements of T ). Together
with Proposition 3, as well as Proposition 1, this implies that there is a bijection be-
tween {χ(T ) : T ∈ T (n)} and the set An of n-tuples of NECS in A. Putting these pieces
together and eliminating the set {χ(T ) : T ∈ T (n)} yields a bijection

(12) U(A, n)→ An : C 7→ (C1, . . . , Cn).
10



Moreover, in the above bijection, from Proposition 2, C and its image (C1, . . . , Cn) are
related by the equations

|C| = |C1|+ . . .+ |Cn|,(13)

gcd(C) = n · gcd{gcd(C1), . . . , gcd(Cn)},(14)

lcm(C) = n · lcm{lcm(C1), . . . , lcm(Cn)}.(15)

Now we turn to generating functions. Applying bijection (12) to the range of summa-
tion below, and using relation (13), we obtain∑

C∈U(A,n)

x|C| =
∑

(C1,...,Cn)∈An

x|C1|+...+|Cn|.

But ∑
C∈U(A,n)

x|C| =
∑
d≥1

∑
C∈And

x|C| =
∑
d≥1

And(x),

from (9), and ∑
(C1,...,Cn)∈An

x|C1|+···+|Cn| =
n∏
i=1

∑
Ci∈A

x|Ci| = A(x)n,

from (8), completing the proof of the result for n ≥ 2.
(b) For fixed m ≥ 1, replace n in part (a) of this result by mn, multiply on both sides by

µ(n), and sum over n ≥ 1, to obtain∑
n≥1

µ(n)A(x)mn =
∑
n≥1

µ(n)
∑
d≥1

Amnd(x).

But the right-hand side of this equation can be rewritten as∑
n≥1

µ(n)
∑
d≥1

Amnd(x) =
∑
i≥1

Ami(x)
∑
n|i

µ(n) = Am(x),

using the standard fact (see, e.g., [HW60, p. 235]) that

(16)
∑
n|i

µ(n) =

{
1, if i = 1;

0, if i ≥ 2.

Hence we obtain the equation

(17)
∑
n≥1

µ(n)A(x)mn = Am(x),

or M
(
A(x)m

)
= Am(x), as required.

�

We are now able to prove the main result, as a simple consequence of the above Theorem.

Proof of Theorem 1. Specializing Theorem 3(b) to the case m = 1 gives M(A(x)) = A1(x).
The result follows immediately from (11). �
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5. Recurrences specifying size, gcd and lcm

In the following result we give a recurrence equation for the numbers ak,m of NECS with
size k and gcd m.

Proposition 5. For k, n, d ≥ 1,

(18)
∑

aj1,m1 · · · ajn,mn = ak,nd,

where the summation on the left-hand side is over j1, . . . , jn ≥ 1 and m1, . . . ,mn ≥ 1 such
that

(19) j1 + · · ·+ jn = k, and gcd{m1, . . . ,mn} = d.

Proof. For n = 1, the result is simply the identity ak,d = ak,d.
For n ≥ 2, consider bijection (12). The number of elements in the set U(A, n) with size k

and gcd nd is give by ak,nd. But from the bijection, this is equal to the number of n-tuples
(C1, . . . , Cn) ∈ An in which, from (13) and (14), we have

|C1|+ · · ·+ |Cn| = k, and gcd{gcd(C1), . . . , gcd(Cn)} = d.

The result for n ≥ 2 follows immediately. �

Remark 7. Proposition 5, with d = 1, can be used to list all elements of Ak,n, the set
of NECS with size k and gcd n, and also to count their number ak,n, using either dy-
namic programming, or recursion together with memoization. We briefly describe this sec-
ond approach. The base cases of the recursion are k = n (for which the only NECS is
{〈0, k〉, 〈1, k〉, . . . , 〈k− 1, k〉}) and n = 1 (for which the only NECS is {〈0, 1〉} corresponding
to k = 1). Given k and n as input, we can easily compute all

(
k−1
n−1

)
compositions of k into

n positive parts (using, for example, the algorithm in [NW78, Chap. 5]). We now discard
those compositions whose gcd is greater than one. For each composition (j1, j2, . . . , jn) that
remains, we consider all j1j2 · · · jn of the n-tuples (m1,m2, . . . ,mn) satisfying 1 ≤ mi ≤ ji
for i = 1, 2, . . . n. For each element (ji,mi) in the list of pairs ((j1,m1), . . . , (jn,mn)) we re-
cursively compute all the NECS Ci in Aji,mi

. Using the expansion construction given in (3),
we finally create the NECS

n⋃
·
i=1

E〈i−1,n〉(Ci).

If we are only interested in counting these NECS, we sum all the products aj1,m1 · · · ajn,mn

instead.
Using an implementation of this algorithm written in APL, we computed ak,n for 1 ≤ n ≤

k ≤ 22. We report the results for 1 ≤ n ≤ k ≤ 13 in Table 2.
12



k\n 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1
2 0 1
3 0 2 1
4 0 6 3 1
5 0 22 12 4 1
6 0 88 48 18 5 1
7 0 372 207 80 25 6 1
8 0 1636 918 366 120 33 7 1
9 0 7406 4188 1700 580 170 42 8 1
10 0 34276 19488 8026 2810 864 231 52 9 1
11 0 161436 92199 38384 13710 4356 1232 304 63 10 1
12 0 771238 442056 185644 67330 21936 6454 1698 390 75 11 1
13 0 3728168 2143329 906472 332825 110562 33523 9232 2277 490 88 12 1

Table 2. Table of values for ak,n, 1 ≤ k, n ≤ 13

Now let ak,m,` denote the number of NECS of size k, gcd m and lcm `, for k,m, ` ≥ 1. Of
course, ak,m,` = 0 unless m | `. The following is a version of Proposition 5 that records the lcm
as well as size and gcd. It can be proved in the same way, by considering the bijection (12)
together with relations (13), (14) and (15).

Proposition 6. For k, n, d,D ≥ 1,∑
ai1,j1,`1 · · · ain,jn,`n = ak,nd,nD,

where the sum on the left-hand side is over i1, . . . , in ≥ 1, j1, . . . , jn ≥ 1 and `1, . . . , `n ≥ 1
such that

i1 + · · ·+ in = k, gcd{j1, . . . , jn} = d, and lcm{`1, . . . , `n} = D.

6. Asymptotic growth of coefficients

We now turn to asymptotics, and begin with the proof of Theorem 2.

Proof of Theorem 2. All coefficients in the series M(y) =
∑

k≥1 µ(k)yk have absolute value
equal to 0 or 1, so this series converges for all |y| < 1 (e.g., using comparison with the
geometric series

∑
n≥1 y

n−1, in which all coefficients are equal to 1, and which converges for
all |y| < 1). Hence M(y) is analytic for |y| < 1. Then for every real y0 ∈ (−1, 1), from the
Taylor series we obtain

(20) M(y) = M(y0) +M ′(y0)(y− y0) +
M ′′(y0)

2
(y− y0)2 +

M ′′′(y0)

6
(y− y0)3 +O((y− y0)4).

Note that the zero of M ′ of smallest absolute value in (−1, 1) is given by

α
.
= 0.32299391330283353998122564696308569320205174841752276244233373344634953499

13



(so we have M ′(α) = 0). Also, note that if we define ρ = M(α), δ = M ′′(α), then we have

ρ = M(α)
.
= 0.18223393401633630828235226904174072905168066104,

δ = M ′′(α)
.
= −4.426886252469575251674551833111186610459374194161738.

Now in (20) substitute y0 = α (noting that α ∈ (−1, 1)), and

(21) y = A(x).

Applying Theorem 1, which gives M(y) = x, we obtain

x = ρ+
δ

2
(y − α)2 + c1(y − α)3 +O((y − α)4),

where c1 is some constant. Rearranging, we get

−2ρ

δ
(1− x

ρ
) = (y − α)2 + c2(y − α)3 +O((y − α)4),

where c2 is some constant. But ρ > 0 and δ < 0, so we have −2ρ
δ
> 0, and taking square

roots, we obtain

−
√
−2ρ

δ

(
1− x

ρ

) 1
2

= y − α + c3(y − α)2 +O(y − α)3),

where we have selected the negative square root since y is increasing as x approaches ρ from
below. Solving this for y − α, and applying (21) to eliminate y, we obtain

(22) A(x)− α = −
√
−2ρ

δ

(
1− x

ρ

) 1
2

+ c4

(
1− x

ρ

)
+O

((
1− x

ρ

) 3
2

)
,

where c4 is some constant.
In order to determine the asymptotic behaviour of the coefficients in A(x) from (22),

we follow the treatment in [FS09, Chapter VI], referred to as singularity analysis. From
Theorems VI.1 on page 381 and VI.3 on page 390, we obtain

ak ∼ −
√
−2ρ

δ
ρ−k

k−
3
2

Γ(−1
2
)

(
1 +O

(1

k

))
,

where Γ is the usual Gamma function. Now, recalling that Γ
(
−1

2

)
= −2

√
π, the result

follows, with

γ = ρ−1 and c =

√
− ρ

2δπ
.

Decimal approximations to the constants γ and c follow:

γ
.
= 5.48745218829746214756744529323030925532004291024

c
.
= 0.08094229418609730035861577123355531751035381267.

�

Remark 8. We have found that M ′(x) has two real zeros in the open interval (−2
3
, 2
3
), which

are α given in the proof above, and

β
.
= −0.562976540744649358189645954216416402249939799218087618317349878994076506622.

Eight-digit approximations were previously given by Fröberg [F66].
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Theorem 3(b) gives a closed form for the generating series Am(x) =
∑

k≥1 ak,mx
k, in

terms of the series A(x) and M(x). Once again, we have not been able to use this result
to determine a useful explicit expression for the kth coefficient ak,m in Am(x). However, in
the next result, we are able to determine a precise asymptotic form for the coefficients ak,m,
following on from the proof of Theorem 2 above.

Theorem 4. For each fixed m ≥ 2, the number ak,m of NECS of size k with gcd m is
asymptotically

ak,m ∼ mαm−1M ′(αm) c γk k−3/2,

where α
.
= 0.3229939, c

.
= 0.0809423 and γ

.
= 5.4874522.

Proof. From (22), taking the mth power, we have

(23) A(x)m = αm −mαm−1
√
−2ρ

δ

(
1− x

ρ

) 1
2

+ c5

(
1− x

ρ

)
+O

((
1− x

ρ

) 3
2

)
,

where c5 is some constant, and α, ρ, δ are specified in the proof of Theorem 2. In particular,
since α ∈ (0, 1), then αm ∈ (0, 1) for every positive integer m. Now using the linear expansion

M(a+ z) = M(a) +M ′(a)z +O(z2),

and (23), we obtain

M(A(x)m) = M(αm)−mαm−1M ′(αm)

√
−2ρ

δ

(
1− x

ρ

) 1
2

+ c6

(
1− x

ρ

)
+O

((
1− x

ρ

) 3
2

)
,

where c6 is some constant. But M
(
A(x)m

)
= Am(x) from Theorem 3(b), and we now

determine the asymptotic behaviour of the coefficients in Am(x) from the above expansion.
We again use the technique of singularity analysis as described in [FS09, Chapter VI]. From
Theorems VI.1 on page 381 and VI.3 on page 390, we thus obtain

ak,m ∼ −mαm−1M ′(αm)

√
−2ρ

δ
ρ−k

k−
3
2

Γ(−1
2
)

(
1 +O

(1

k

))
,

where Γ
(
−1

2

)
= −2

√
π. The result follows, with

γ = ρ−1 and c =

√
− ρ

2δπ
.

�

Remark 9. Comparing the asymptotic forms in Theorems 2 and 4, we observe that

ak,m ∼ mαm−1M ′(αm) ak.

But
∑

m≥2 ak,m = ak for k ≥ 2, so we should have

(24)
∑
m≥2

mαm−1M ′(αm) = 1.
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Here is a direct proof of (24) (which therefore provides a consistency check on our asymptotic
results): A well known series identity (see, e.g., [HW60, p. 258]) that follows immediately
from (16) is given by ∑

k≥1

µ(k)
xk

1− xk
= x.

The summation on the left-hand side is referred to as the Lambert series for the Möbius
function. Rewriting the left-hand side in terms of the series M itself, we obtain∑

m≥1

M(xm) = x.

Differentiating on both sides of this equation with respect to x gives

(25)
∑
m≥1

mxm−1M ′(xm) = 1,

and this holds for any x ∈ (−1, 1). Our proof of (24) is then completed by substituting x = α
in (25), and noting that M ′(α) = 0.

Remark 10. Along similar lines, note that Theorem 4 also holds for m = 1, but the result is
trivial in this case, since M ′(α) = 0. Hence the result for m = 1 states that the number ak,1 is
asymptotically 0. This is consistent with (11), which states that A1(x) =

∑
k≥1 ak,mx

k = x,
and hence ak,1 = 0 for all k ≥ 2.

7. A formula for ag+n,n

Inspection of the downward-sloping diagonals in Table 2 suggests that for each n there is
a polynomial fn(x) such that ag+n,n = fn(g) for g > n. Furthermore, it seems that fn(x) is
a polynomial of degree n, with leading coefficient xn/n! and constant term 0, and all other
coefficients positive. The first few such polynomials seem to be as follows (expressed in the
basis of binomial coefficients):

f1(x) =

(
x

1

)
f2(x) =

(
x

2

)
+ 3

(
x

1

)
f3(x) =

(
x

3

)
+ 6

(
x

2

)
+ 10

(
x

1

)
f4(x) =

(
x

4

)
+ 9

(
x

3

)
+ 29

(
x

2

)
+ 39

(
x

1

)
f5(x) =

(
x

5

)
+ 12

(
x

4

)
+ 57

(
x

3

)
+ 138

(
x

2

)
+ 160

(
x

1

)
f6(x) =

(
x

6

)
+ 15

(
x

5

)
+ 94

(
x

4

)
+ 324

(
x

3

)
+ 654

(
x

2

)
+ 691

(
x

1

)
.

Furthermore it appears that the `’th differences of the coefficients of the `’th column above
is 3`.
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We now explain these empirical observations. We start with the following lemma about
formal power series.

Lemma 2. Suppose F (x) = 1 + c1x + c2x
2 + · · · is a formal power series with constant

coefficient 1. The coefficient of xm in F (x)n equals
m∑
k=1

cm,k

(
n

k

)
where cm,k is the coefficient of xm in (F (x) − 1)k. We have cm,m = cm1 and cm,1 = cm.
Furthermore, if cj ≥ 0 for all j, then cm,k > 0 for all k, 1 ≤ k ≤ m.

Proof. We have

F (x)n = (1 + (F (x)− 1))n =
n∑
k=0

(
n

k

)
(F (x)− 1)k.

As F (x)− 1 begins with an x-term, we see that the coefficient of xm in (F (x)− 1)k is 0 for
all k > m. The first part of the result follows . By the multinomial theorem,

cm,k =
∑

r1,r2,...,rm∈N
r1+2r2+···+mrm=m

r1+···+rm=k

(
k

r1, . . . , rm

) m∏
j=1

c
rj
j .

When k = m then r1 = m and the other rj = 0, so cm,m = cm1 . When k = 1 then rm = 1
and the other rj = 0, so cm,1 = cm. �

Now let fn(g) = ag+n,g, the number of NECS of size g + n and gcd g, so that∑
n≥0

fn(g)xn = Ag(x)/xg =
∑
m≥1

µ(m)(A(x)m/x)g,

where we have used Eq. (17). Now A(x) equals x plus higher order terms. Hence, if m ≥ 2
and g > n, then the coefficient of xn in (A(x)m/x)g is 0. Therefore

If g > n then fn(g) is the coefficient of xn in (A(x)/x)g.

Now A(x)/x = 1 + x + 3x2 + · · · has all positive coefficients (cf. Remark 3). Therefore we
may apply Lemma 2 with F (x) = A(x)/x to obtain the following:

Corollary 1. Fix an integer n ≥ 1. If g > n then the number of NECS with size g + n and
gcd g is given by a polynomial

n∑
k=1

cn,k

(
g

k

)
.

in which the coefficients cn,k are all positive and, written as a polynomial, the leading term
is gn/n! and the constant term is 0. We also have cn,1 = ak+1.

Let us now turn to a better formula for cm+`,m for fixed ` ≥ 1, and with m ≥ `. To do
so, we write A(x)/x = 1 + x+ xB(x) where x divides B(x). Now cm+`,m is the coefficient of

xm+` in (A(x)
x
− 1)m = (x(1 +B(x)))m, which equals the coefficient of x` in (1 +B(x))m. As

x divides B(x) this implies that

cm+`,m equals the coefficient of x` in
∑`

h=0

(
m
h

)
B(x)h.
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The `th backward difference of (cm+`,m) is∑̀
j=0

(
`

j

)
(−1)jcm+`−j,m−j,

which equals the coefficient of x` in∑̀
j=0

(
`

j

)
(−1)j

∑̀
h=0

(
m− j
h

)
B(x)h =

∑̀
h=0

(∑̀
j=0

(
`

j

)
(−1)j

(
m− j
h

))
B(x)h.

From the theory of finite differences we know, for all m, that∑̀
j=0

(
`

j

)
(−1)j

(
m− j
h

)
=

{
0, if 0 ≤ h < l;

1, if h = l.

Therefore the `th backward difference of (cm+`,m) equals the coefficient of x` in B(x)`, which
is the leading coefficient, and so equals c`2. In our special case this gives, if ` ≥ 1 and m ≥ `,
then ∑̀

j=0

(
`

j

)
(−1)jcm+`−j,m−j = 3`,

as observed in the data.

8. Open Problems

In this section we list three related problems for which we currently have no solution.

Problem 1. Suppose that, instead of counting distinct NECS of size k, we count equivalence
classes under “shift”. That is, we consider two NECS to be identical if one can be transformed
into the other by a transformation of the form x = x′+C, for some integer constant C. How
many equivalence classes are there? We list the number s(k) for 1 ≤ n ≤ 12:

k 1 2 3 4 5 6 7 8 9 10 11 12
s(k) 1 1 2 4 10 26 75 226 718 2368 8083 28367

What is a good formula for s(k)? What is the asymptotics of s(k)?

Problem 2. Suppose we consider those NECS of size k, and ask how many distinct values
of the lcm parameter they can take on. Call the resulting sequence t(k). The first few values
are given below.

k 1 2 3 4 5 6 7 8 9 10 11 12
t(k) 1 1 2 3 6 8 15 18 31 35 56 62

What is a good formula for t(k)? What is the asymptotics of t(k)?

Problem 3. Suppose we consider the enumeration of ECS instead of NECS. Hence let bk
denote the number of ECS of size k, k ≥ 1, and bk,m denote the number of ECS of size k
and gcd m, k,m ≥ 1. Define the generating functions

B(x) =
∑
k≥1

bkx
k, Bm(x) =

∑
k≥1

bk,mx
k, m ≥ 1.
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It is reasonably straightforward to prove that the analogue of Theorem 3(a) holds for these
series, so we have B(x)n =

∑
d≥1Bnd(x), for n ≥ 1. Then, applying Möbius inversion, we

obtain M(B(x)m) = Bm(x), m ≥ 1, the analogue of Theorem 3(b). Specializing to the
case m = 1 gives

(26) M(B(x)) = B1(x),

where B1(x) is the generating function for the ECS with gcd equal to 1. But it turns out
that

B1(x) = x+ 30x13 +O
(
x14
)
,

a substantially different situation from the NECS, where we had A1(x) = x. In fact,
the b13,1 = 30 ECS with gcd 1 are the only ECS of size at most 13 that are not also ECS.
Thus, in Table 2, the values of ak,n that appear in row k and column n are equal to bk,n
everywhere except for row 13 and column 1. However, for larger values of k the gap between
the numbers of ECS and NECS grows rapidly, though we have no idea how rapidly. What
would we have to know about the growth rate for the coefficients of B1(x) in order to deduce
asymptotics for the numbers bk from the functional equation (26)? Is it possible that the
asymptotics for bk is the same as for ak?

9. Comments

This paper was originally motivated by a problem dealing with infinite periodic sequences
of constant gap. These are maps from N to a finite alphabet of size k, say Σk := {0, 1, . . . , k−
1}, with the property that for each i ∈ Σk there exists a constant ci such that the occurrences
of i lie in an arithmetic progression of difference ci. For example, the infinite periodic
sequence (0102)ω = 010201020102 · · · is of constant gap with k = 3. These sequences have
been studied, e.g., in [G73, H96, H00, AGH00].

David W. Wilson [W17] and JS independently conjectured, on the basis of numerical
evidence, that the reversion of the Möbius series M counts the number of ECS. This is
incorrect; as we have seen, this reversion instead counts the (strict) subclass of NECS. The
first place where these two sequences differ is at k = 13, where the number of NECS is
7266979 (e.g., this is the total of the entries in row k = 13 of Table 2), but the number of
ECS is 7267009 (which is 30 larger—see the discussion in Problem 3 above).
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[P81] S. Porubský, Results and problems on covering systems of residue classes, Mitt. Math. Sem. Giessen

150 (1981), 1–85.
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