
Determinants of Random Matrices and Jack Polynomials
of Rectangular Shape

By G. E. Andrews, I. P. Goulden, and D. M. Jackson

We consider an N-dimensional real integral, indexed by a parameter that
specifies the power of a Vandermonde determinant. For two particular values
of the parameter, this integral arises from matrix integrals, over real symmetric
and complex Hermitian N × N matrices. When it is normalized, it gives the
expectation of an arbitrary power of the determinant. The results are given
as finite summations, using terminating hypergeometric series. We relate the
integral to a specific coefficient in the Jack polynomial indexed by a partition
of rectangular shape, and present data for this coefficient in terms of the
parameter α.

1. Introduction

Let x = (x1, . . . , xN ) and V (x) = ∏
1≤i< j≤N (xj − xi), and let 〈·〉N ,α be the

normalized expectation operator defined by

〈 f (x)〉N ,α =
∫

R
N |V (x)|2/α e−p2(x)/2α f (x) dx∫

R
N |V (x)|2/α e−p2(x)/2αdx

, (1)
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where p2(x) = x2
1 + · · · + x2

N , the power sum in x of degree 2. A result
conjectured by Goulden and Jackson [1] and proved by Okounkov [2] states that

〈Jθ (x; α)〉N ,α = Jθ (1N ; α)
([

pm
2

]
Jθ

)
, (2)

where 1N is the vector with N ones and θ is a partition of 2m, J θ is the Jack
symmetric function indexed by θ , and [A]B denotes the coefficient of A in the
expansion of B. By determining 〈J θ (x; α)〉N ,α we will thus obtain explicit
expressions for [pm

2 ] J θ for particular cases of θ and α.
The purpose of this paper is to examine this question in detail in the cases

α = 1, 2. We regard the details of integrating f (x) = (x1 · · · x N )u with α = 2 as
complementary to the integration carried out in [1], in which f (x) = xk

1, giving
the generating series for monopoles in nonorientable surfaces. A monopole
is a graph with a single vertex, and the generating series for monopoles in
orientable surfaces was obtained through a matrix integral in [3]. We also hope
that these integrations will provide clues to this integration for an arbitrary α,
as was carried out in [4], where α appeared in a parameterization for virtual
Euler characteristics of the moduli spaces of real and complex algebraic curves.

For a non-negative integer u, and a positive real number a, the constituent
of (1) we consider in detail is

I (u,a)
N ,α =

∫
R

N
|V (x)|2/α e−ap2(x)(x1 · · · xN )u dx, (3)

and from this we determine the normalized expectation of (x1 · · · x N )u by〈
(x1 · · · xN )u

〉
N ,α

= I (u, 1
2α

)
N ,α

/
I (0, 1

2α
)

N ,α . (4)

The main results of this paper give the evaluation of (3), and are stated in
Theorem 1 for α = 1, and in Theorems 2 and 3 for α = 2.

In [5], expressions for the normalized expectation (4) are also obtained when
α = 1, 2. In the present paper the results and their derivations are simpler than
those given in [5]. As described in [5], these normalized expectations give
the moments of the determinant distribution for Hermitian (α = 1) and real
symmetric matrices (α = 2).

2. The case α = 1

Throughout, we use the following fundamental property of the Vandermonde
determinant:

V (x) = det
[
xi−1

j

]
N×N

= det[Pi−1(x j )]N×N , (5)

where Pi−1(x) is any monic polynomial of degree i − 1, and the determinants
are indexed with i , j ∈ {1, . . . , N}. (We index all determinants in this paper
with i , j ≥ 1.)
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We now consider the evaluation of I (u,a)
N ,1 , and begin by scaling the variables,

to obtain

I (u,a)
N ,1 = (2a)−N (u+N )/2I (u, 1

2 )
N ,1 . (6)

Let Hn (x) for n ≥ 0 denote the monic Hermite polynomial of degree n in x
(see, e.g., [6], p. 133), with generating series

∑
n≥0 Hn (x) wn/n! = exw−w2/2.

Thus, from (5) we have

|V (x)|2 = V (x)2 = det
[
xi−1

j

]
N×N

det[Hi−1(x j )]N×N ,

so, from (3) we obtain

I (u, 1
2 )

N ,1 =
∫

R
N

det
[
xi+u−1

j

]
N×N

det[Hi−1(x j )]N×N e−p2(x)/2 dx

=
∑

π∈SN

sgn (π ) det

[∫
R

xi+u−1Hπ ( j)−1 (x) e−x2/2 dx

]
N×N

= N ! det

[∫
R

xi+u−1H j−1 (x) e−x2/2 dx

]
N×N

.

But from the generating series for the Hermite polynomials above, it follows
immediately that

∫
R

xkHn (x) e−x2/2 dx =




√
πk!2

1
2 (n−k+1) 1(

1
2 (k − n)

)
!

if k ≡ n (mod 2)

and k ≥ n,

0 otherwise.

Then

I (u, 1
2 )

N ,1 = √
π

N N !

2
N
2 (u−1)

(
N∏

i=1

(i + u − 1)!

)
DN ,u,

where

DN ,u = det

[
1(

1
2 (i − j + u)

)
!

]
N×N

, (7)

with the convention that ( 1
2 (i − j + u))! is to be replaced by 0 if i − j + u is

odd. There are two cases.

Case 1: Suppose u is even. Let u = 2t and 
m,t = det[(i − j + t)!−1]m×m .
Then, by row and column permutations that bring this matrix to a block diagonal
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form, DN ,u = 
2
m,t if N = 2m and DN ,u = 
m,t
m+1,t if N = 2m + 1. Now


m,t =
(

m∏
i=1

1

(i − 1 + t)!

)
det[(i − 1 + t) j−1]m×m,

where (x)n = x(x − 1) · · · (x − n + 1) is the falling factorial. But (x) j−1 is a
monic polynomial of degree j − 1 in x, so from (5) we obtain

det[(i − 1 + t) j−1]m×m =
∏

1≤i< j≤m

( j − 1 + t − (i − 1 + t)) =
m∏

i=1

(i − 1)!

and thus we have


m,t =
m∏

i=1

(i − 1)!

(i − 1 + t)!
. (8)

Case 2: Suppose u is odd, with u = 2t + 1. Then, by row and column
permutations that bring this matrix to a block diagonal form, DN ,u =
(−1)m
m,t+1
m,t if N = 2m and DN ,u = 0 if N = 2m + 1.

Combining the two cases we obtain the following result.

THEOREM 1. Let

dN ,u =
√

π
N N !

2
N
2 (u−1)

N∏
i=1

(i + u − 1)!

and 
m,t be given by (8). Then

I (u, 1
2 )

N ,1 =




dN ,u

2
m,t if N = 2m, u = 2t,

dN ,u
m,t
m+1,t if N = 2m + 1, u = 2t,

dN ,u(−1)m
m,t+1
m,t if N = 2m, u = 2t + 1,

0 if N = 2m + 1, u = 2t + 1.

The corresponding normalizations are found, from (4), to be

〈
(x1 · · · xN )u

〉
N ,1

=




eN ,u

2
m,t if N = 2m, u = 2t,

eN ,u
m,t
m+1,t if N = 2m + 1, u = 2t,

eN ,u(−1)m
m,t+1
m,t if N = 2m, u = 2t + 1,

0 if N = 2m + 1, u = 2t + 1,

where

eN ,u = 2− Nu
2

N∏
i=1

(i + u − 1)!

(i − 1)!
. (9)
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3. The case α = 2

We now consider the evaluation of I (u,a)
N ,2 , and begin by scaling the variables,

to obtain

I (u,a)
N ,2 = (2a)−N (2u+N+1)/4I (u, 1

2 )
N ,2 . (10)

Let ψ i (x) = xi e−x2/2, and � i (x) = ∫
x
−∞ ψ i (t) dt . Let

〈 f, g〉 = 1

2

∫
−∞<y<x<∞

( f (y)g(x) − f (x)g(y)) dx dy.

Now clearly 〈 f , g〉 = −〈g, f 〉 when both are defined, so 〈·, ·〉 is a skew-
symmetric bilinear form. The other properties of this bilinear form that are of
interest arise when f , g are even or odd functions.

If f , g are both even or both odd, then substituting x = −y, y = −x in the
integral gives 〈 f , g〉 = −〈 f , g〉, so we conclude that 〈 f , g〉 = 0 in this case. If
one of f , g is even and the other is odd, then the same substitution gives∫

−∞<y<x<∞
f (y)g(x) dx dy = −

∫
−∞<y<x<∞

f (x)g(y) dx dy,

and we conclude in this case that

〈 f, g〉 =
∫

−∞<y<x<∞
f (y)g(x) dx dy. (11)

Now for x in the principal cone C = {x: −∞ < x1 < · · · < xN < ∞}, we
have |V (x)| = V (x), so from (3) and (5), by symmetry we have

I (u, 1
2 )

N ,2 = N !
∫
C

det[ψi+u−1(x j )]N×N dx. (12)

We treat the even and odd cases of N separately, continuing now with the even
case, but deferring the odd case to Section 6.

Let N = 2n, where n is a positive integer. Integrating over variables with
odd index in (12), with the convention that x0 = −∞, we have

I (u, 1
2 )

N ,2 = N !
∫
C

det

[∫ x2 j

x2 j−2

ψi+u−1(x2 j−1) dx2 j−1, ψi+u−1(x2 j ) dx2 j

]
N×N

= N !
∫
C

det[�i+u−1(x2 j ) − �i+u−1(x2 j−2), ψi+u−1(x2 j ) dx2 j ]N×N ,

where the elements of the matrix are indexed by i = 1, . . . , N and j = 1, . . . ,
n (so the matrix is N × N ). Now � i+u−1(x0) = 0 for all i, so the determinant
in the integral above is equal to

det[�i+u−1(x2 j ), ψi+u−1(x2 j ) dx2 j ]N×N ,
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by elementary column operations on the columns with odd index. Then, on
resymmetrizing,

I (u, 1
2 )

N ,2 = N !

n!

∫
R

n
det[�i+u−1(x2 j ), ψi+u−1(x2 j ) dx2 j ]N×N . (13)

But the corresponding integral of the 2 × 2 subdeterminant with columns
2 j − 1, 2 j and rows i , m leads to∫ ∞

−∞
det

[
�i+u−1(x2 j ) ψm+u−1(x2 j ) dx2 j

�m+u−1(x2 j ) ψi+u−1(x2 j ) dx2 j

]
= 2〈ψi+u−1, ψm+u−1〉, (14)

which is equal to 0 if i , m have the same parity (since ψk is an even or odd
function when k is even or odd, respectively). Thus, expanding the determinant
iteratively by Laplace’s expansion with column partition ({1, 2}, . . . , {N − 1,
N}), and evaluating the 2 × 2 subdeterminants by means of (14), we have

I (u, 1
2 )

N ,2 = N !

n!

∑
σ,π∈Sn

sgn(σ )sgn(π )
n∏

j=1

2
〈
ψ2σ ( j)−1+u−1, ψ2π( j)+u−1

〉

= 2n N !
∑
ω∈Sn

sgn(ω)
n∏

j=1

〈
ψ2ω( j)+u−2, ψ2 j+u−1

〉
,

where we have set ω = σπ−1. Here σ describes the action of the column
permutation for odd indices, by sending column 2 j − 1 to row 2σ ( j) − 1, and
π describes the action for even indices, by sending column 2 j to row 2π ( j),
and there are no other non-zero terms in the expansion of the determinant.
Finally, for N = 2n, we have

I (u, 1
2 )

N ,2 = 2n N ! det[〈ψ2i+u−2, ψ2 j+u−1〉]n×n. (15)

4. Evaluation of 〈ψ2i+u−2, ψ2 j+u−1〉

We now evaluate 〈ψ2i+u−2, ψ2 j+u−1〉, the entry in the determinant (15). Let
(x)(n) = x (x + 1) · · · (x + n − 1), the rising factorial.

LEMMA 1. Let i, j be positive integers, u a non-negative integer, and

c(i, j, u) = (−1)u√π

(
1

2

)(i+ j+u−2)

2 F1

[
1, −i + 1 − � u

2 �
−, 5

2 − i − j − u

∣∣∣∣∣ 2

]
,

a finite summation. Then, for u odd,

〈ψ2i+u−2, ψ2 j+u−1〉 = c(i, j, u),
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and, for u even,

〈ψ2i+u−2, ψ2 j+u−1〉 = c( j, i, u).

Proof : Let K ≥ 1 and M ≥ 0 be integers of opposite parity. Then, from
(11), and integrating by parts with respect to y, we have the recursion

〈ψK , ψM〉 = −√
π

(
1

2

)( K+M−1
2 )

+ (K − 1) 〈ψK−2, ψM〉 . (16)

Let m, k be non-negative integers. Substituting K = 2k + 1, M = 2m in (16),
and iterating, we obtain

〈ψ2k+1, ψ2m〉 = −√
π

(
1

2

)(m+k)

2 F1

[
1, −k

−, 1
2 − m − k

∣∣∣∣∣ 2

]
. (17)

The result follows immediately for u odd, by substitution of k = i + u−3
2 and

m = j + u−1
2 in (17). For u even, apply the skew-symmetry of the bilinear form

and the result follows by substitution of k = j − 1 + u
2 and m = i − 1 + u

2 in
(17). �

5. Evaluation of the determinant

We now return to the evaluation of the determinant in (15). Replacing K by
2i + u and M by 2 j + u − 1 in (16), and rewriting, we obtain

〈ψ2i+u−2, ψ2 j+u−1〉 − 1

2i + u − 1
〈ψ2i+u, ψ2 j+u−1〉 = √

π

(
1
2

)(i+ j+u−1)

2i + u − 1
, (18)

and applying this sequentially as a row operation, starting with row 1 of the
determinant in (15), we have

det[〈ψ2i+u−2, ψ2 j+u−1〉]n×n

=
√

π
n−1∏n−1

i=1 (2i + u − 1)
det




[(
1
2

)(i+ j+u−1)
]

(n−1)×n

[〈ψ2n+u−2, ψ2 j+u−1〉]1×n




n×n

= √
π

n−1

(
n−1∏
i=1

(
1
2

)(i+u)

2i + u − 1

)
det




[(
i + u + 1

2

)( j−1)
]

(n−1)×n

[〈ψ2n+u−2, ψ2 j+u−1〉]1×n




n×n

.
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Now multiply the ( j + 1)th column of this determinant by aj, where

a j = (−n + 1)( j)

j!
(

3
2 + u

)( j)
, j = 0, . . . , n − 1,

sum over j from 0 to n − 1, and replace column n by this sum. The ith row of
the new column n is, therefore,

n−1∑
j=0

(−n + 1)( j)
(
i + u + 1

2

)( j)

j!
(

3
2 + u

)( j)
= 2 F1

[
i + u + 1

2 , 1 − n

−, 3
2 + u

∣∣∣∣∣ 1

]

= (−i + 1)(n−1)(
3
2 + u

)(n−1)
= 0, i = 1, . . . , n − 1,

where we have applied Vandermonde’s summation to evaluate the terminating
hypergeometric series. Thus we have

det[〈ψ2i+u−2, ψ2 j+u−1〉]n×n =
√

πn−1

an−1

(
n−1∏
i=1

(
1
2

)(i+u)

2i + u − 1

)
Tn−1 An, (19)

where Tn−1 = det[(i + u + 1
2 )( j−1)](n−1)×(n−1), and

An =
n−1∑
j=0

a j 〈ψ2n+u−2, ψ2 j+u+1〉.

Now (x)( j−1) is a monic polynomial of degree j − 1 in x, so from (5) we obtain

Tn−1 =
∏

0≤i< j≤n−2

(
j + u + 1

2
−

(
i + u + 1

2

))
=

n−2∏
i=0

i! (20)

For An, we apply Lemma 1 with i = n and j replaced by j + 1. There are
two cases; for u odd, we obtain

An = −√
π

n−1∑
j=0

(−n + 1)( j)
(

1
2

)(n+ j+u−1)

j!
(

3
2 + u

)( j)

∑
l≥0

(
3
2 − n − u

2

)(l)
2l(

3
2 − n − j − u

)(l)
.

Then, by reversing the order of these finite summations and rearranging,

An = −√
π

(
1

2

)(n+u−1) ∑
l≥0

(
3
2 − n − u

2

)(l)
2l(

3
2 − n − u

)(l)

× 2 F1

[−n + 1, − 1
2 + n + u − l

−, 3
2 + u

∣∣∣∣∣ 1

]
.
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By Vandermonde’s summation, and excluding the initial values of l correspond-
ing to terms that give zero contribution, we obtain

An = −√
π

(
1

2

)(n+u−1) ∑
l≥n−1

(
3
2 − n − u

2

)(l)
2l(

3
2 − n − u

)(l)

(2 − n + l)(n−1)(
3
2 + u

)(n−1)
,

whence, by shifting the summation range to 0 and rearranging,

An = −√
π2n−1 (n − 1)!

(
u+1

2

)(n−1) ( 1
2

)(u)(
u + 3

2

)(n−1) 2 F1

[
n, 1−u

2

−, 1
2 − u

∣∣∣∣∣ 2

]
, (21)

in the case that u is odd.
In the other case, for u even, we obtain

An = √
π

n−1∑
j=0

(−n + 1)( j)
(

1
2

)(n+ j+u−1)

j!
(

3
2 + u

)( j)

∑
l≥0

(− j − u
2

)(l)
2l(

3
2 − n − j − u

)(l)
.

Then, by reversing the order of these finite summations and rearranging,

An = √
π

(
1

2

)(n+u−1) ∑
l≥0

(− u
2

)(l)
2l(

3
2 − n − u

)(l)

× 3 F2

[−n + 1, − 1
2 + n + u − l, 1 + u

2

−, 3
2 + u, 1 + u

2 − l

∣∣∣∣∣ 1

]
.

By Saalschutz’s summation, and excluding the initial values of l corresponding
to terms that give zero contribution, we obtain

An = √
π

(
1

2

)(n+u−1) ∑
l≥n−1

(− u
2

)(l)
2l(

3
2 − n − u

)(l)

(−l)(n−1)
(

3
2 − u

2 − n
)(n−1)(

1 + u
2 − l

)(n−1)( 1
2 − n − u

)(n−1)
,

whence, by shifting the summation range to 0 and rearranging,

An = √
π (−2)n−1 (n − 1)!

(
u+1

2

)(n−1) ( 1
2

)(u)(
u + 3

2

)(n−1) 2 F1

[
n, −u

2

−, 1
2 − u

∣∣∣∣∣ 2

]
, (22)

in the case that u is even.

THEOREM 2. Let N = 2n, where n is a positive integer. Then

I (u, 1
2 )

N ,2 = (−1)nu(2
√

π )n N !

(
n−1∏
j=0

j!

(
1

2

)( j+u)
)

2 F1

[
n, −� u

2 �
−, 1

2 − u

∣∣∣∣∣ 2

]
,

a finite summation.

Proof : This follows directly from (15) and (19)–(22). �
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The corresponding normalization for N = 2n is found, from (4) and (10)
with a = 1

4 , to be

〈(x1 · · · xN )u〉N ,2 = (−1)nu u!

(
u∏

j=1

(2n + 2 j − 3)!!

(2 j − 1)!!

)� u
2 �∑

k=0

(−n

k

)(
u − 1

2 − k⌊
u
2

⌋ − k

)
2k,

(23)

where we have written the hypergeometric function as an explicit summation.

6. The case N odd

We now return to the odd case of N in (12). Let N = 2n + 1, where n
is a non-negative integer. The approach is very similar to the even case.
By integrating over variables with odd index, applying elementary column
operations to the columns with odd index, and resymmetrizing, we obtain in
this case (cf. expression (13) for the even case)

I (u, 1
2 )

N ,2 = N !

n!

∫
R

n
det


[�i+u−1(x2 j ), ψi+u−1(x2 j )dx2 j ]︸ ︷︷ ︸

j=1,...,n

, �i+u−1 (∞)




N×N

.

Then, expanding the determinant iteratively by Laplace’s expansion with
column partition ({1, 2}, . . . , {N − 2, N − 1}, {N}), we obtain in this case

I (u, 1
2 )

N ,2 = 2n N ! det


[〈ψ2i+u−2, ψ2 j+u−1〉]︸ ︷︷ ︸

j=1,...,n

, �2i+u−2 (∞)




(n+1)×(n+1)

.

To evaluate this determinant, we apply (18) sequentially as a row operation, start-
ingwith row1.For the last column,wehave�2i+u−2(∞) − 1

2i+u−1�2i+u(∞) = 0,
from integrating by parts. Thus

I (u, 1
2 )

N ,2 = (2
√

π )n N !

(
n∏

i=1

(
1
2

)(i+u)

2i + u − 1

)

× det




[(
i + u + 1

2

)( j−1)
]

n×n
[0]n×1

[〈ψ2n+u, ψ2 j+u−1〉]1×n [�2n+u (∞)]1×1




(n+1)×(n+1)

= (2
√

π )n N !

(
n∏

i=1

(
1
2

)(i+u)

2i + u − 1

)
Tn�2n+u(∞).
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THEOREM 3. Let N = 2n + 1, where n is a non-negative integer. Then

I (u, 1
2 )

N ,2 = √
π

n+1
N !2n+ u+1

2

(
1

2

)( u
2 ) n∏

j=1

(
( j − 1)!

(
1

2

)( j+u)
)

if u is even and is 0 if u is odd.

Proof : Now �2n+u(∞) = √
π2n+ u+1

2

(
1
2

)(n+ u
2 )

if u is even and is 0 if u is
odd. The result follows from (20), after rearrangement. �

The corresponding normalization for N = 2n + 1 is found, from (4) and
(10) with a = 1

4 , to be

〈(x1 · · · xN )u〉N ,2 = 2
u
2 (u − 1)!!

u∏
j=1

(2n + 2 j − 1)!!

(2 j − 1)!!
(24)

if u is even and is 0 if u is odd.
Dumitriu [7] conjectured the form of the normalizations (23) and (24) for

α = 2, with an unidentified polynomial in n in place of the explicit summation
that appears in (23).

7. Jack symmetric functions

We may now obtain an expression for the coefficient of pm
2 in a zonal

polynomial or Schur function at a rectangular shape N�u = [(u)N ], where
m = Nu

2 . In view of the possibility of extending this to an expression for the
same coefficient in a Jack symmetric function of the same shape, we shall
work with Jack symmetric functions and defer specializing the Jack parameter.

Let λ = (λ1, λ2, . . .) be a partition and let λ̃ = (λ̃1, λ̃2, . . .) be the conjugate
of λ. For w = ( i , j) ∈ λ, let h(w) = λi + λ̃ j − i − j + 1, the hook-length
of w in λ. Let Hλ = ∏

w∈λh(w). Then J λ(x; 1) = Hλsλ(x), where sλ is a
Schur function, and J λ(x; 2) = Zλ(x), where Zλ is a zonal polynomial (the
normalization is such that [x1 · · · xN ]Jλ(x; α) = N !, where λ is a partition of N).

We now use (2) to obtain an explicit expression for [pm
2 ] Z N�u . Let

hλ
�(i, j) = λ̃ j − i + 1 + α(λi − j), the lower hook-length of (i , j) in λ, and let

cλ (α) =
l(λ)∏
i=1

hλ
� (i, 1) .

Then, from Proposition 5.1 of [8],

JN�u (x; α) =
(

u∏
j=1

cN� j (α)

)
(x1 · · · xN )u ,
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so, from (2) we have

[
pm

2

]
JN�u (x; α) =

∏u
j=1 cN� j (α)

JN�u (1N ; α)

〈
(x1 · · · xN )u 〉

N ,α
.

But Theorem 5.4 of [8] gives the principal specialization of the Jack symmetric
function

JN�u (1N ; α) =
N∏

i=1

u∏
j=1

(N − i + 1 + α ( j − 1)) ,

and Proposition 5.5 of [8] gives cN� j ( α) = ∏N
i=1(N − i + 1 + α ( j − 1)),

whence [
pm

2

]
JN�u (x; α) = 〈

(x1 · · · xN )u 〉
N ,α

, (25)

which is given explicitly for α = 2 by (23) and (24), and for α = 1 at the end
of Section 2.

For α = 1, as a check on our normalization formulas, note that from the
Jacobi–Trudi formula for Schur functions, we obtain[

pm
2

]
sN�u(x) = 2− Nu

2 DN ,u,

where DN ,u is defined in (7). Thus[
pm

2

]
JN�u(x; 1) = 2− Nu

2 HN�u DN ,u, (26)

where the hook product H N�u is found straightforwardly to be

HN�u =
N∏

i=1

(i + u − 1)!

(i − 1)!
.

Now observe that

2− Nu
2 HN�u = eN ,u,

where eN ,u is defined in (9), and we conclude that (26) is equivalent to the
normalizations given at the end of Section 2, by applying (25) with α = 1.

For α = 2, we obtain checks on our normalization formulas (23) and (24)
in the Appendix, from the table of coefficients of pm

2 in Jack functions for
rectangular shapes given there.

Appendix. Table of [pm
2 ]J N�u(x; α)

The following table was computed by John Stembridge, using his symmetric
function package (SF) in Maple.
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N u [pm
2 ] J N�u(x; α)

1 2 α

1 4 3α2

1 6 15α3

1 8 105α4

2 1 −1
2 2 1 + α + α2

2 3 −1 − 3α − 5α2

2 4 1 + 6α + 17α2 + 12α3 + 9α4

2 5 −1 − 10α − 45α2 − 80α3 − 89α4

2 6 1 + 15α + 100α2 + 315α3 + 574α4 + 345α5 + 225α6

2 7 −1 − 21α − 196α2 − 945α3 − 2674α4 − 3759α5 − 3429α6

3 2 5α + 3α2 + α3

3 4 75α2 + 198α3 + 267α4 + 108α5 + 27α6

4 1 3
4 2 9 + 12α + 17α2 + 6α3 + α4

4 3 27 + 108α + 267α2 + 198α3 + 75α4

4 4 81 + 648α + 2718α2 + 5076α3 + 6579α4 + 5076α5 + 2718α6

+ 648α7 + 81α8

5 2 89α + 80α2 + 45α3 + 10α4 + α5

6 1 −15
6 2 225 + 345α + 574α2 + 315α3 + 100α4 + 15α5 + α6

7 2 3429α + 3759α2 + 2674α3 + 945α4 + 196α5 + 21α6

8 1 105
8 2 11025 + 18480α + 33970α2 + 23212α3 + 9779α4 + 2380α5 + 350α6

+ 28α7 + α8

9 1 1 + 28α + 350α2 + 2380α3 + 9779α4 + 23212α5 + 33970α6

+ 18480α7 + 11025α8

REMARK A.1. In each case[
pm

2

]
JN�u(x; 2) = (RHS (Theorem 2) or RHS (Theorem 3)).

From Proposition 2.2(b) of [8], or (17.8.5) in [9],

[
pt

2

]
J1�u(x; α) = αt (2t)!

2t t!
,

where u = 2t , in agreement for α = 2 with (24) specialized to N = 1.
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In addition, with u = 1, (23) gives[
pn

2

]
Z2n�1(x) = (−1)n(2n − 1)!!

This is a result obtained by Ullah [10].
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