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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 310, Number 2, December 1988 

GENERALIZATIONS OF CAUCHY'S SUMMATION THEOREM 
FOR SCHUR FUNCTIONS 

G. E. ANDREWS, I. P. GOULDEN AND D. M. JACKSON 

ABSTRACT. Cauchy's summation theorem for Schur functions is generalized, 
and a number of related results are given. The result is applied to a com- 
binatorial problem involving products of pairs of permuations, by appeal to 
properties of the group algebra of the symmetric group. 

1. Introduction. Although interest in the algebra of symmetric functions was 
originally prompted by work in representation theory, this algebra, the group alge- 
bra of the symmetric group and the character theory of the symmetric group play 
a significant part in combinatorial theory (see, for example, Bannai and Ito [1], 
Macdonald [6]), and related areas (Diaconis [2]). 

In this paper we prove a summation theorem (Theorem 2.1) which gives an 
explicit evaluation of 

n 
X 1(x-Oi-n + i)86 (yl,.., yn)80(wl, . ., wm), 
0 i=l 

where the sum is over all partitions 0, and se is a Schur function. This is of interest 
since it is a generalization of the classical result of Cauchy (see [6, p. 33] for a 
proof): 

n m 

Ea So(Y1,. , Yn) -90(wl * .. *,wm) = r| rl (1- YjWk) 
e j_1 k=1 

In ?3, this summation theorem is used to derive a generalization of Gessel's [3] 
result on counting 3-rowed Latin rectangles with respect to the number of cycles in 
each row, considered as permuations. We also derive (Proposition 3.2) an explicit 
expression for a useful character sum associated with the symmetric group. 

?4 contains a number of results for symmetric functions that are equivalent to 
Theorem 2.1. These include a generalization of Cauchy's summation theorem for 

E 90(Y, * * * X Yn)3j(W1,. X * ,Wm), 

and a summation theorem for 

E -go(Yi , Yn)SO(WlX* , Wm; z) 

where Se is a symmetric function related to Hall-Littlewood polynomials. 
Received by the editors October 8, 1987. 
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806 G. E. ANDREWS, I. P. GOULDEN AND D. M. JACKSON 

In ?5 we give a number of related determinant evaluations. Among the latter is 
a result due to Borchardt [10] relating the permanent and the determinant of the 
Cauchy matrix (whose ij-element is 1/(1 - yiwj)). 

We have relied heavily on properties of the algebra of symmetric functions. In 
the interest of brevity, we have not stated these, but have cited the appropriate 
pages of Macdonald [6], and our notation accords with his. 

The following notation is needed. A partition 0 = (01, 02,...) is a nonincreasing, 
possibly infinite, sequence of nonnegative integers called parts. The number of 
positive parts is denoted by 1(0), the sum of the parts is denoted by 101 and the 
number parts of size one is denoted by g(p). We say that 0 is a partition of 1G1 and 
we write 0 H N. The conjugate of 0 is denoted by 0. The partition (n - 1, n - 
2, ... , 1, 0, ..) is denoted by 6. 

Throughout this paper ek (Y1. .. . yn), hk(ylX... . Yn), Pk(Yl. ... Yn), and 
8s(yi. ... , Yn), denote the elementary, complete, power -sum and Schur symmet- 
ric functions, respectively, on the (commuting) indeterminates y, X .... X Yn. When 
n = oo, these will be abbiviated to ek (y), hk (Y), Pk (y) and so(y), respectively, 
and, when no confusion arises, to ek, hk, Pk and so. 

There is a natural bijection between the partitions of weight N and the set of 
conjugacy classes of the symmetric group, SN, on N symbols in which the number 
of parts of a partition is the number of (disjoint) cycles in an arbitrary element of 
the corresponding conjugacy class. Thus l(a) is also the number of cycles in an 
arbitrary element a of the conjugacy class, Co, corresponding to 0. Similarly, g(a) 
is the number of 1-cycles (fixed points) in an arbitrary element a of Ce. The size 
of Ce is denoted by he. Let Xe be the irreducible (ordinary) character associated 
with Cg and let fO be the degree of Xe. The value at any element of CQ is denoted 
by Xo. The signum of a permutation Xr is denoted by sgn(7x). 

Let R be any commutative ring. Let []R be the usual coefficient operator on 
the ring R[[x]] of formal power series in the indeterminate x with R as coefficient 
ring. Clearly, this operator acts linearly on the ring. In general, the ring will be 
understood from the context, so the subscript of the coefficient operator will be 
suppressed. Similarly, to avoid unnecessary detail, we have defined mappings by 
their elementwise action, since their domain and range are clear from the context. 
Unless otherwise stated, the operand of a mapping defined on a ring is the whole 
of the expression to its right. 

Throughout, (x)k = x(x-1) ..(x-k + 1) and (x)(k) = x(x + 1) (x + k-1), 
the falling and rising factorials, respectively. If the ij-element of a matrix M is 
me.j, for i E I, j E J, then the determinant of M is denoted by 

|[mij]sE| 

When I = J = {1,. ..,k}, this is simplified to MijmkxIkXk We denote IIi4 InIxn by 
aoe(yi, I Yn), or by ao, when no confusion arises. 

2. A summation theorem for Schur functions. In this section we derive 
the main result of this paper, by showing that it is equivalent to a polynomial 
identity. This is proved by induction on n + m. 
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CAUCHY'S SUMMATION THEOREM FOR SCHUR FUNCTIONS 807 

THEOREM 2. 1. For nonnegative integers n and m, 
n 

E ii( - O-i - n + i)s9o (yl,. .. 1 Yn)80(Wl, W... m) 
0 i=i 

n m m n tjYjW 
- 71 J(1- YjWk) [tl ... tn](l+tl+* +tn)fJ ( t YE iW ) 

PROOF. First we rewrite the left-hand side by [6, p. 24] as 
n 

E J(x-Oi-n+i) a+ so(wi,...wm). 

I(0)<n 

Let Y, denote the formal partial differential operator |1i= (x - (Yi - z)a/aYi) Now 
n n 
J7(x - Oi - n + i)a6+e = 5 sgn(a) J(x - i- n + i) 0,+n-i = Yoa6+o 
__ 1TaESn i=1 

so the, left-hand side becomes 
n m 

a 1Yo E a6+eso(wj, ... I wm) = a6'Yoaf J7J(1-yjwkY- 
0 j=1 k=1 1(0)<n 

from Cauchy's summation theorem. Now multiply through by a6, which gives the 
following equivalent formulation of the result: 

n m n m 
Yoa6 11 11 (1 - yjWk) = ab J7 J7 (1 - yjWk) [tl ... tn] 

j=1 k=1 j=1 k=1 

(1) m1 + tl + + tn) I| ( + tl+ + t) 

Now replace each wk by w7 -, and then each yj by yj - z and each Wk by wk - z; 
next multiply on both sides by rjLn. fIJmL (Wk - z) '. As a result we have the 
following equivalent formulation of (1): 

n m n m 
Yza6 - 171 (wk -Yj)_ = a,f 17 fJ(Wk - yj)_)[tl tnl 

j=1 k=1 j=1 k=1 

(2) (1 + ti + + tn) r| 1 + E 

We first prove (2) in the special cases n = 0 and m = 0. 
Case (i): n = 0. Both sides are equal to 1, so (2) is true in this case. 
Case (ii): m = 0. The right-hand side is 

a6[t1 -tn](1+ t1+ * + tn)x-a () n! = a6(X)n. 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:36:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


808 G. E. ANDREWS, I. P. GOULDEN AND D. M. JACKSON 

The left-hand side is 

Yza6 = Yz |Yi n(3) 

- (x -n + j)yi + z(n - j)yi nx 
i nxn ~~nxn 

I(x n +i)Y~i ||xn = ()n ||Y ||n = (x)na6 
and (2) is true in this case. 

We prove (2) by induction on n + m where n > 0, m > 0. The case n + m = 0 
is accounted for in Cases (i) and (ii) above. The induction hypothesis is that the 
result is true for all cases n + m < N, n > 0, m > 0. We must now prove the result 
is true for n + m = N, n > 1, m > 1. (The cases n = O and m = O are already 
accounted for.) 

The left- and right-hand sides are polynomials in z of degree at most n and m, 
respectively, in z, so it is sufficient to prove that they agree on n + m values of z, 
since n + m > n and n + m > m for n > 1, m > 1, so these polynomials agree on 
more values than either of their degrees. 

First we consider z = Yn (by a permutation of the indices, this argument works 
for all of z = Yi, .. . , Yn). Substituting Yn for z in (2), then replacing Yn by ( to 
draw attention to it, and multiplying both sides by rjH1 (wk - (), gives 

k=1 

(yi - (= (y - 
... 

( -1- y - F. 

Z tI z-(8-() ) (U-() (Yn1 ()ri,n-1 1k=j(Wk 
- yj) 

(Yi ... (Yn-1 ~a6(yj, . . XYn-1) 
(3) = (Y1-6, )(8n-1 (8} 1n. 1. r1 k= 1 (Wk - Yj) 

Also, 

[ti tn]l +tl ..+ n( + tn) + + tn1 + E i(/ t.7) h 

If we apply (4) to the left-hand side of (3), and (5) to the right-hand side of (3), 
and then divide both sides by x fI = x(y - (), we obtain (2) with n replaced by 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:36:43 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CAUCHY'S SUMMATION THEOREM FOR SCHUR FUNCTIONS 809 

n - 1 and x replaced by x - 1, which we have assumed to be true by the induction 
hypothesis, so (3) is true. 

Now we consider z = wn (by a permutation of the indices this argument works 
for all of z = wl, . .. I, w). Substituting wm for z in (2), then replacing wm by a 
to draw attention to it, gives 

n m-1 

(, Y1i) (a -Yn) j=1 kF1 
n m-1 

(6) a6 ) ( Yj1 _ (a yl...a -Yn)j=1 k=1 

'[tl ... tn](l + tl + + tn-1)x+l 17 1+E k=1 ___Wk __Y 

But, for any formal power series G in Yl, . . . I yn, and i = 1 n, 

( d~~yi )a - yi, a - yi (Z+1- Yi x)d)G 
Now, apply this result to the left-hand side of (6), and multiply both sides by 
n= (a - yj). This gives (2) with m replaced by m - 1 and x replaced by x + 1, 

which is true by the induction hypothesis, so (6) is true. 
Thus (2) is true by induction on n + m for all nonnegative integers n and m, 

and so is the given result, which is equivalent to (2). 0 
Cauchy's summation theorem is obtained by applying [xn] to both sides of The- 

orem 2.1. 
Sagan [8] has pointed out that extracting the coefficient of (X)n-k from both 

sides of Theorem 2.1 yields the equivalent statement 

E (Oil + k -1) (i2 +k -2) ..(oik- I + 1) 
0 l<il<-..ik- I <n 

*(Oik 1 +1 + ***+ On)80(Yl1 * *XYn)-6 (W1i .. I Wm) 
n m 1 

i=1 j=1 il j<'''.<jk 1=1 1 Yl^ 

il 0...ik 

Can one obtain a bijective proof of Theorem 2.1 by applying a refinement of the 
Robinson-Schensted algorithm [9] to a combinatorial interpretation of this in terms 
of pairs of matrices and plane partitions? 

3. A combinatorial application. Consider the generating functions for pairs 
of permutations defined by 

L(t, u, v, p, q, r) = N E ult(a)V(b)pg(ab)qg(a)rg(b) 
N>O (a,b)ES2 

Thus, for example 

L(t, u, v, 1 l, 1,) = 
t 

(u) (N) (V) (N) 

N>O 
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810 G. E. ANDREWS, I. P. GOULDEN AND D. M. JACKSON 

since, from [6, p. 22] 

(U) (N) = EUl (a). 
aESN 

A three rowed reduced Latin rectangle on N columns is a 3 x N array in which 
the first row contains the identity permutation on N symbols, and the other rows 
contain permutations on N symbols, subject to the restriction that each column 
contains three distinct symbols. Then clearly, the number of three rowed reduced 
Latin rectangles on N columns is [tN/N!]L(t, 1, 1, 0, 0, 0), by letting a be row 2 and 
b-1 be row 3 in the summation defining L, and by noting that 1(b) = l(b-1) and 
g(b) = g(b-1). Goulden and Jackson [4] have shown that 

N>O (1 + t)3(N+l) 

Gessel [3] has shown by a combinatorial argument that 

L(t,u,v,O,O,O) = e N! (1 + Ut)v+N(1 + Vt)u+N(1 + t)uv+N 

is the generating function for three rowed reduced Latin rectangles with u and v 
marking cycles in rows 2 and 3 respectively, and, more generally, that 

L(t, u, v, p, O, O) = euvt(2-p) E tN (U)(N) (V)(N) 
N>O N! (1 + Ut)v+N(1 + Vt)u+N(1 + (1 - p)t)uv+N 

In this section we derive an explicit expression for L(t, u, v, p, q, r), which is denoted 
hereafter by L, as a consequence of Theorem 2.1, by first expressing it as a character 
sum. 

PROPOSITION 3.1. Let B(0, u, q) = (1/N!) ESN XaGU (a)qg(o) where N = 

101. Then 

L(t, u, v, p, q, r) = EtN E 
M. 

B(0, p)B(0, u, q)B(0, v, r) 
N>O 01-N 

where B(0, p) denotes B(0, 1, p). 

PROOF. Direct from Propositions 2.1, 2.2 and Lemma 2.4 of [5], and since 

fj = fo. O 
To evaluate B(0, p), it is convenient to use the mapping 41 such that 41(x)k = 

(1 - p)k, extended linearly to the appropriate ring. A similar linear functional has 
been considered by Rota [7]. 

PROPOSITION 3.2. Let O H N and 1(0) < n. Then 

No B(0!p) 
= 

(_l)N (1 - p)N-n l {x- k- n + k}. 
k=1 

PROOF. From [6, pp. 25, 62], 

B(0,p) =s&(p1 l P, pi 4 1, i > 2) = 11[eo,-i+j(pi H4p, pi ~-4 1, i > 2)]IlnxnI 
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CAUCHY'S SUMMATION THEOREM FOR SCHUR FUNCTIONS 811 

But Ek>oektk = expEk>l(-l)k lpktk/k from [6, p. 17], so making the above 
substitutions gives Ek>0 ektk = (1 + t)e (l P)t. Thus 

B(0 p) = (p - 1)N I(0 -i + j)!-[ + (p- )-1(Oi-i + 1)!-1llnxn, 
with the convention that k!-1 = 0 for k < 0. 

To evaluate this determinant, we first border it with a first row (1, O, ... , 0) and 
a first column (1, (i- 1)!1,..., (on - n)!-1)T. Indexing the rows and columns 
of the bordered matrix from 0, replace column j by column j plus (1 - p)-1 times 
column j - 1, first for j = 1, then for j = 2,..., and finally for j = n. These 
operations leave the determinant unchanged. Next, multiply in the kth row by 
(Ok + n - k)!, for k = 1, ... , n and divide the determinant by Ilk=1 (Ok + n-k)! to 
get 

_(lp 
(_l__N__l ___ pNn -pnj=o.,n 

B(O, p) Hin=(Ok + n-k)! |[i + n:- :n:] z=1 ...,n1 

The first row can be written in the same form as the other rows since (1_p)n- = 
(J(Oo + n)n-3 where 0o + n = x, so by the linearity of 4P and the multilinearity of 
the determinant function in its rows 

B(O, p) = (_l)N(l _ p)N-n '11[(i + n - N-n.ni 

To complete the evaluation of B(O, p), let Oi + n - i = pi and note that (pi)j 
is a monic polynomial of degree j in pi. Thus (pui)j = EZnock34 and C = 

[Ciji]j,=o0.,n is lower triangular with unit diagonal. Thus the determinant in the 
expression for B(O, p) is equal to 

Cn kn-k.8 || = -I[,.4>Ij,k=O..nil *C = 171 (?i - ii- =. + j) 
k=0 O<i<j<n 

since the first matrix is Vandermonde, and 0CI = 1. The result follows from the 
degree formula [6, p. 64] for f8. 0 

From the Jacobi-Trudi identity [6, p. 25], another expression for B(O, p) as a 
determinant is 

lihjt_i+i(p, -4P, Pi -41, i > 2)llmxm 

where m > 01. But Ek>o hktk = exp Ek>1 Pktk/k, from [6, p. 25], so making the 
above power sum substitutions gives Zk>O hktk = (1 - t)-le-(1-P)t. Thus 

B(O,p) = 0 j ijP 
(0. - i+ j)! mxm 

where dk (p) = k! ,k o(p - 1)i/i!, and dk(O) is therefore the kth derangement 
number (the number of elements in SN with no fixed points). 

THEOREM 3.3. 
L = euvt(2-p-q-r+pqr) 

tj (u) (j) (v)t(j) 

j>0 j! (1 + u(1- q)t)j+v (1 + v(1- r)t)j+u (1 + (1 -p)t)j+uv' 
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812 G. E. ANDREWS, I. P. GOULDEN AND D. M. JACKSON 

PROOF. Let = l-p, q = 1-q, and r = 1-r. From [6, p. 62] we have 
B(0,u,q) = so(p i - qu; pi (-1)i-lu, i > 2). Thus, from Propositions 3.1 and 
3.2, 

n 
L=LAQ lim p-n ZH(x--Oi-n+i)so(y1,..*,Yn)S8(w) 

0 i=l 

where A, Q1 are commuting ring homomorphisms defined by their actions 

A: Pi(Y) tp3vr, pi(y) -(-tp)ivv i > 2, 
Q: pi(w) -qu, pi(w) -u, i > 2, 

on the power sums, which are algebraically independent [6, p. 16]. Now apply 
Theorem 2.1, to get 

n oo 
L = fl lim p'b (-1Uk 

j=1 k=1 

'[tl .. tn](l + ti + .+tn) knl i E t-yij 

Now let t2 - - = 0, which leaves the action of [t1 ... tn] unchanged, to obtain 
n 

1p b(1 + t1 + . + tn)x = pt exp{p(ti + * + tn)} = + t3). 
j=1 

Applying exp log gives 

0 n 
tjyjwkjuij( 

n t)yj 

k-1 (-E == fl exw) p (P()[>]log (1 _E yL)) 

=2 expi(-uo (w ) ) - y_ 

j=lk= j= i>1 

f~~~~ nj 
n 

= Qexp {-uZlog(1 - Y)-l +uq E yj 
j1 yj j=l 

8= [(1 _ t yj UuE -Ud YJ . 
j=l 
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CAUCHY'S SUMMATION THEOREM FOR SCHUR FUNCTIONS 813 

Combining these results yields 

n En 
L =A lim R (1 - yj)ueuq r=1 n--oo 

To assist in the application of the operator [t1 ..tn] let ilP(zt) - (u)(i), i ? 0, 
extended linearly. Then 

so, since 'I and A commute 

j=1 

*[t1 ***tn] H( +.tj)(1 -uyt) (1 + 
- 

) 

j=1~~j1 = 

= exten lim e 2.s !I|fl _jZ 

= iAeuqPi(Y) fl(i - y3)U (1 - UzY + nhZ 

j>1 p -y y 

PI ( Pexp + Zpi(y)[cil log {(1 - >u (1 - u + z ) }) 
=z 1-' exp (xzt3v 

(1 +,3t)uv(1 + uQt)v I (= yj 

= uvt(2pv-q-r+pqr) j! (U()t.zevf 
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But 

i> 

@I{ziea~z} = E .Z+ =E ((+i 

and the result follows with a = -rvt. 0 
With p = q = r = 0, Theorem 3.3 specializes to Gessel's result [3]. With 

p = q = r = 1 it speciaiizes to the generating function Ej*> ti(u)(i) (v)( )/j! for 
pairs of permutations with a specified number of cycles in each permutation. 

Further refinements of the counting problem can be obtained by following the 
method of proof of Theorem 3.3. Instead of marking the cycles in the second 
permutation as we have, consider marking i-cycles by an indeterminate vi, for 
i = 1,2 .... Then the action of the homomorphism A defined in Theorem 3.3 is 
modified to pi(w) ~-4 -(-t1)ivi, for i > 1. This can be carried out explicitly in 
terms of the roots ,3, a of 

2_ 1(+uq- Z)x+uq =O x 

as a quadratic in x. Then the required generating function is 

I exp {uqtpvl - Z(-tP)i t (1 - u - 
i>l 

The interested reader may wish to complete this argument. 

4. Equivalent forms and some specializations. A generalization of the 
summation theorem 

n m 

SO s(YI, * , Yn)sj(WIi .. * *,Wm) = 1[ 1 (l + Yj Wk), 
8 j=1 k=1 

also due to Cauchy (see [6, p. 35] for a proof), can be deduced from Theorem 2.1. 

COROLLARY 4.1. For nonnegative integers n and m, 

n 
l(x -oi - n + i)so (yl,. ..XYn)sj(wl, * * *X Wm) 

0 i=l 

n m m n tjYjW 

=Hfl(l+YjWk)[tl 'tnl(l+tl+'*@+tn) nI 1+El+Y3W j=I k=I k=+YjWk 

PROOF. Consider the mapping w defined on the ring of symmetric functions in 
WI, W2, ... by w(ek) = hk (the er are algebraically independent [6, p. 14]). Then 
[6, p. 14] w is an involution, and wso = sj and wpi = (-1)i-lpj for i > 1. Letting 
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CAUCHY'S SUMMATION THEOREM FOR SCHUR FUNCTIONS 815 

m oo in Theorem 2.1 and applying w to both sides of this theorem gives 
n 

E ii(x - Oi - n + i)so(yl, . .,Yn)s,9(W) 
0 i=1 

=wexp Pi(Y1, ,Yn)Pi(w) [tl tn|(1 + tl + + tn) 
i>1 

exp { Pi(w)[a log (1 l- t y)} 
i>1 = 

in which exp log has been applied to the right-hand side to obtain an expansion of 
the products. The result is obtained now by applying w to pi(w), i > 1, and then 
setting wi = 0 for i > m + 1. 0 

For any partition 0, with 1(0) < n, the power series So(w; z), which arise in 
connexion with the Hall-Littlewoood polynomials [6, p. 104], are defined by 

SO(w; z) = llqo,-i+j(w;Z)linxn 

where 
E qk (W; z)tk 

= - i 

k>O i> 1 

Then, from [6, pp. 106, 117], 
nm 

0 fJ fl~~~~~ lYjWkZ ESo(Yi, . . ., Yn)S0(W1 i .. *, Wm; z) 1 YH jWk 

A generalization of this summation theorem is contained in the following result, 
which is also deduced from Theorem 2.1. 

COROLLARY 4.2. For nonnegative integers n and m, 
n 

, r( (-Oi - n + i)so (yl, ** Yn) Sa(Wl ** Wm; z) 
0 i=1 

mf nm 

ri i [i 
. 

._t__l__t_ t nY3Wk 
j=1k=1 IYjWk t n(++k +n) 

rI n1 tjYjWk A n1 tjYjWkZA 
fJ ~1 - ZlYWk - 

-YjWkZ) 
k=1 j=l1 y k) j 1= -jwz 

PROOF. Follow the proof of Corollary 4.1, but use the homomorphism which 
maps so onto So. This homomorphism also maps pi onto (1 - zt)pi, and the result 
follows. 0 

Theorem 2.1 can also be used to derive a result for applying the formal partial 
differential operator HLn= (x - yi39/'9yi) to a special type of anti-symmetric function 
in Yi,... X Yn. This operator was denoted by Yo in the proof of Theorem 2.1. For the 
following result, let A * B = Ei>0 aibi where A = pi>o aia& and B = Ei>o bia& 
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THEOREM 4.3. Let F(y) be a formal power series in y with constant term equal 
to 1. Then 

?i (x-Yi7j) a6 F(yi) * F(yn ) 

=a6flyj) ..F (Yn)[t I.. tn](l + tl + ***+ tn)x 

exp (&a log F(a)* log - E it7) } 

PROOF. Equation (1) in the proof of Theorem 2.1 is equivalent to Theorem 2.1 
itself. Let m -f xo and apply exp log to the products on both sides of this equation 
to obtain 

I (x-Yi )a6 exp 4 Pi (Y1. .Yn)Pi (w) 

= a6 exp {Z.Pi(Y1,i ..Yn)Pi(w)} [ti .tn(l + ti + +tn) 

ep E Pi(w) [aei]log (1 _E tiui ) 

But the power sum symmetric functions are algebraically independent (see [6, p. 
16]) so pi(w) in the above equality can be replaced by the indeterminate ci, for 
i > 1. If we carry out this replacement, we obtain 

exppE -Pi,(Yl, Yn)pi(w) = expZE Pi(yi.... Yn)= J7exp (EIy2) 
i>1 i>1 j=1 _ > 

Now let F(y) = exp(Ei>l ciyt/i) and the result follows, since 

Eciai = a& i logF(a). 0 
i>1 

Many specializations of Theorem 4.3 are possible. We give one such result as an 
example. 

COROLLARY 4.4. For nonnegative integers n, k, 

I| (-Yi a ) a6(y, + + Yn)k 

k 

= a6 E(-)(k)j(x)n-j(Yi + .. Yn n)kiej(yl,.** Yn)X 
j=O 
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PROOF. Let F(y) = ezy in Theorem 4.3 to obtain 

[I - Yi-) a6ez(Yi++Yfn) = a6ez(y.+ +Yn)[t, .tn](l + tl + + t) 

*exp { (az) * log 1 - E I U)} 

But 

(az) * log (I 1- t YI ) = _z E tjy 

and the result follows by equating coefficients of zk/k! a 
Theorem 4.3, as stated, allows us to evaluate the given left-hand side in the form 

[t1 ... tn]G for some power series G. The proof is indirect, relying on induction and 
interpolation. There are, however, a number of ways of writing the left-hand side 
directly in this form, but for different choices of G. One such way is given in the 
next result. 

THEOREM 4.5. Let F(y) be a power series in y with constant term 1. Then 
for any nonnegative integer n 

I(X-Yi , a 6( Y ,.* *, Yn )F (y 1) ... F( Yn ) 

- [tl .. . tn]ex(tl+ +tn)a6(yi - tlyl. .. * Yn - tnYn) 

* F(y, - tiyi) ... F(yn - tnYn). 

PROOF. Clearly, the action of the differential operator on the left-hand side is 
the same as the action of the operator 

n= k,? [tl ... tn]' r E ti { i ( i cly, 
i= i=1 

n 
= [tl . . tn.]ex(tl+-- +tn) f te-tyii8/8Yi 

i=l 

since a/lyi and a/lyj commute for all i and j. But, for any power series G(y) 

etYa/aYG(y) = G(ety). 

Thus the left-hand side of the result is equal to 

[tl . tnlex(tl + +tn)a6s(e-tl Yi ... I ,e-tnyn)F(e-tlyl * I .. , e-tnYn)- 

The result follows by replacing e-ti with 1 - ti for i = 1,... , n, since this leaves 
the action of [t1 ... tn] unchanged. o 

Combining Theorems 4.3 and 4.5 gives a pair of different power series in which 
the coefficient of t, * * tn is identical. As an example, we now give one of the many 
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results which can be obtained as special cases of the identity. The result involves 
the Stirling numbers of the first kind, defined by s(n, k) = [xk](x)" (see [6, p. 22]). 
This is equal to (_l)n-k times the number of permutations on n symbols with 
exactly k cycles. 

COROLLARY 4.6. For all O < k < n, 

s(n, k) = [tl .* tn]ek(t1.*.,tn) ijj (- Yt i- / 
1<i<j<njY 

PROOF. Equate the right-hand sides of Theorem 4.5 and 4.3, with F(y) =_ 1, to 
obtain 

a6(yl,.*,Yn)[tl* * tn(l +tl + *+tn)x 
= [tl ... tn]expx(tI+ +tn) a6(y,-tlY . Yn-tnYn). 

The result follows by equating coefficients of xk, and by dividing on both sides by 
a6(yj,.-,yn)- ? 

5. Some related determinants. Closely related to Cauchy's theorem from 
Schur functions is Cauchy's determinant formula: 

11 1 || _ a6(y1,. . . , yn)a6 (w1, * . * Wn) 
1 - ~jW3 - H 17 H71(1 -yt, ||1YiWj lnxn It=, =1(l- Yi Wj) 

(see [6, p. 38] for a proof). As a corollary of Theorem 2.1, we obtain Borchardt's 
[10] striking result involving Cauchy's determinant. Throughout this section, all 
matrices are n x n unless otherwise stated. The permanent of the matrix whose 
ij-element is mij is denoted by llmijll+. 

COROLLARY 5.1. 

yiWjF21 _ W1 *1 - +,w 
PROOF. Equation (1) in the proof of Theorem 2.1 is equivalent to Theorem 2.1. 

In this equation, let x = 0 and m = n, multiply on both sides by a6 and then apply 
Cauchy's determinant formula to obtain 

(-Yt || | = || | [t_ *... tn] H (1 - tE )w P(-= aYi 1- ,j 1 1-YuWj) 

But 

P(-Yi j-) ||- w| = -Yi iy (1 -1w) 

(1 -yiw,)2 
and 

n 
n 

t_____ 1/jWj + [tl. tn ]l t(1 - E 1iii)=11-jj1 
j=1 i=1 

_ yi 1-yiwj 
Combine these results, and divide both sides by (_l)ny ... *YnWl * . wn to obtain 
the result. 0 

The left-hand side of Theorem 4.3 can be written as a determinant also, and this 
is given in the next result. 
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THEOREM 5.2. Let F(y) be a power series with constant term 1. Then for n, 
a nonnegative integer, 

fi ( - Yi -) a6F(y1) . F(Yn) 

=F (yl) .. F (yn) x - (zn + j-ia { log F (Yi ) I y,i| | 

PROOF. We have 

a6F(ly) ... F(yn) = F(yi) * **F(Yn)IIynjII = 11yj'F(yi)II, 
so 

I (x - Yi y) a6F(yl) ... F(yn) = - Yi a) Yt F(yi) 

and the result follows immediately. 0 
The authors have been unable to exploit Theorem 5.2 to obtain a direct proof of 

Theorem 4.3. However, Theorem 5.2 does yield a linear recurrence for the left-hand 
side of Theorem 4.3. This is stated in the next result, and we give it since it may 
suggest a more direct proof. 

COROLLARY 5.3. Let F(y) be a power series with constant term 1. Let 

Hn(y,x) = 171 (x-Yi8y) a6F(y1) * .F(yn). 

Then 

H (Y, X) = Y1 ... YnLE(_)n y 1 F(yi) (x-Yi logF(yi)) Hn l ( YiX 1) 

where y/yi = (Yi,. . . ,Yi-iYi,l+**Yn) 
PROOF. The result follows straightforwardly from Theorem 5.2 by a cofactor 

expansion in the last column of the determinant on the right-hand side. 0 
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