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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 291, Number 1, September 1985 

CONSTANT TERM IDENTITIES 
EXTENDING THE q-DYSON THEOREM 

BY 

D. M. BRESSOUD AND I. P. GOULDEN 

ABSTRACT. Andrews [1] has conjectured that the constant term in a certain product 
is equal to a q-multinomial coefficient. This conjecture is a q-analogue of Dyson's 
conjecture [5], and has been proved, combinatorically, by Zeilberger and Bressoud 
[15]. In this paper we give a combinatorial proof of a master theorem, that the 
constant term in a similar product, computed over the edges of a nontransitive 
tournament, is zero. Many constant terms are evaluated as consequences of this 
master theorem including Andrews' q-Dyson theorem in two ways, one of which is a 
q-analogue of Good's [6] recursive proof. 

1. Introduction. The q-Dyson theorem states that the constant term (with respect 
to xl,. ... , xJ in 

rl (1 - - q . . .( q X;i)(i - q ) 
... q ) 

is equal to 

(1 - q)(I - q2) (1 - qa,+ +an) 

(I1 q)I (1 q2) ..(I - q al,) ..(I - q ) (I q 2) ...1 an) 

This was conjectured and verified for n = 1,2, 3 by Andrews [1] in 1975. It was 
proved for n = 4 by Kadell [8] in 1983, and for all n by Zeilberger and Bressoud 
[15], later that year. 

This theorem has its origins in work in statistical mechanics by Dyson [5] in 1962. 
Specifically, in describing the statistical properties of a finite Coulomb gas of N 
particles, he found it necessary to evaluate the integral 

f2s f2 , n Iel' - elokI d12 ... doN, 
0 0 j<k 

which he conjectured to equal (2vT)NP(Nz + 1)/F(z + I)N. His approach to this 
integral was to recognize that its evaluation is equivalent to showing that the 
constant term in Hi<j(l - xl/xj)z(1 - x/xi)z is P(Nz + 1)/F(z + I)N . This con- 
stant term is easily verified for N = 2 by the binomial theorem and for N = 3 by a 
classical result of Dixon. These results led Dyson to conjecture the following 
generalization, in which the operator [1] indicates the constant term (coefficient of 1) 
in the polynomial in xl,.. .,x, x 1,. . . , x 1 to which it is applied. 
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204 D. M. BRESSOUD AND I. P. GOULDEN 

THEOREM 1.1. For nonnegative integers a,,..., an, 

[1IHic(1 Xj) - Xi ) (a,1+ ? + an)! 

Theorem 1.1 was proved independently by Gunson [7] and Wilson [13] later in 
1962. In 1970, Good [6] gave a very elementary proof using recursions. This proof is 
discussed in ?5. Zeilberger [14] gave a radically different combinatorial proof in 
1982. 

If we introduce the notation 

(x)n = (1 - x)(I - qx) * (1 - qn-x)1 (x)0 = 1, (x)1 = (1 - xql)l 

for positive integers n, then the q-Dyson theorem can be more succinctly stated, as 
follows. 

THEOREM 1.2. For nonnegative integers a1,. ..an, 

i1<< reandXi 

( Xia 
(q)a, ... 

(q)a 

It is readily verified that Theorem 1.2 becomes Theorem 1.1 in the limit as q 
approaches 1. For n = 1, 2, 3, Theorem 1.2 is either trivial or classical. Kadell's proof 
for n = 4 is modelled on Good's proof of Theorem 1.1, and the Zeilberger-Bressoud 
proof for general n is an extension of Zeilberger's proof of Theorem 1.1. 

In this paper we use the Zeilberger-Bressoud approach to prove a master theorem, 
which is stated in terms of tournaments. A tournament T on n vertices is a set of 
ordered pairs (i, j) such that 1 < i ] j < n and (i, j) e T if and only if (j, i) 4 T. 
Equivalently, T can be thought of as a directed graph with vertices 1,. . . , n and edges 
directed from i to j for all (i, j) e T. Thus we write i -j] if (i, j) E T. The 
tournament T is transitive if the relation -, is transitive. Equivalently, T is transitive 
if it contains no cycles (i - j- k -* i). Otherwise, T is nontransitive. 

THEOREM 1.3 (MASTER THEOREM). If T is a nontransitive tournament on n vertices 
and al, . . . an are nonnegative integers, then 

II] rl Xi q Xi ) . 
(i, j) eT Xj a Xi aJ-l 

?2 is devoted to consequences of our master theorem, which include deducing the 

q-Dyson theorem directly from it. Before summarizing them, we explain our nota- 
tion. 

The set { 1, 2 ... , n } is denoted by Xn. If T is a tournament on n vertices, then the 
in-degree of vertex j, 1 < j < n, is the cardinality of {i E .nAI(i, j) e T}, and the 
out-degree of vertex ] is the cardinality of { i e Xn I (j, i) e T }. Let Sn denote the set 
of permutations on .n. If T is transitive, then T defines a permutation a e Sn, called 
the winner permutation, by a(i) = ai and equals the vertex with in-degree i - 1. Thus 
if we say that i j-* means that i beats j, then a1 beats everyone, a2 beats everyone 
but a,, and an is beaten by everyone. The identity permutation is denoted by en (or e 
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CONSTANT TERM IDENTITIES 205 

if there is no ambiguity about the value of n). The transitive tournament correspond- 
ing to en (e) is denoted by En (E). The set of inversions of a is denoted by 
I(a) = {(a,, aj)Iai > aj and i < j). If S c T for any tournament T, then TS is the 
tournament obtained from T by reversing the edges of S. 

The vector (al,... ,an) is denoted by a, while (a1,... ,akl, ak+l,... an) is 
denoted by (a1,. . . ,ak,... . ,an) for k = 1,. . . ,n. The unit vector in the ith direction is 
denoted by 8,. For a E Sn, a(a) denotes (a1, . ... ,a,,). For any statement A, x(A) is 
defined to be 1 if A is true and 0 otherwise. For any set X of integers, we denote 

{(i, j) Ii < j, i, j E- XI by ( x). 
Finally, for compactness, let T be a tournament and define 

P(T; a) qH( C(T; a) 
([1]P(T; 

a), 
(i, j)eT_ Xi Xi aJ-1 

n 

r(a) = q(1 q qa)(1 - 

i=1 

The most general results of ?2 are: If Wc (-2n) and R(A) = {a E SnI if (j, i) E 
I(a), then (i, j) t _}, then 

(1.4) [1] H ( (I-X) - i ) x xi Xi 

(q)a,+ ?a, + (a1)IJ(U)Ir(a(a)). 

(q) a ... (q) an as&') 

Furthermore, if v c (x-) withfl) n = 0, then 

[1] fl ( Xi q _x ((1, j) q 
-)) 

1] <<j<n Xi a Xi) aj-X((i, j)ES') 

(1.5) ~~~~(q) al,+ ........ . ..... +an E q ..... *fa)) 

(q) a, (q) an ae (21) 

where Y2* is the sum over pairs (i, j) E I(a) such that (j, i) t M. El 
The main results of ?2 are the corollaries of these general results that involve 

choices of S'and 9 for which the summations on the RHS of (1.4) and (1.5) can be 
expressed explicitly as a product. Many of these corollaries have been conjectured by 
Kadell [8]. 

?3 introduces the notion of a tournamented statistic on a word. This is a 
generalization of the z-statistic used in the Zeilberger-Bressoud proof of the q-Dyson 
theorem, and is central to the proof of the master theorem, which is given in ?4. 

In ?5 we demonstrate how the master theorem can be used to prove the q-Dyson 
theorem by a method analogous to Good's proof of Theorem 1.1. This section 
concludes with a summary of the conjectures and open problems suggested by our 
work. 
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206 D. M. BRESSOUD AND I. P. GOULDEN 

It should be mentioned that Theorems 1.1 and 1.2 are only the simplest cases of 
several families of integral evaluations and constant term identities indexed by root 
systems of Lie algebras, this larger context being first observed by Macdonald [10] 
(see also Morris [12], Andrews [3] and Askey [4]). This is a field that is characterized 
by having far more conjectures than theorems. 

2. Consequences of the master theorem. In this section we deduce various 
constant-term identities from the master theorem. Frequent use is made of the 
following result. 

PROPOSITION 2.1. Let T be a tournament with S c T. Then 

P(T; a) 7l (-f) = P(TS; a). 
(i, j) es X i 

PROOF. First note that 

(- X I!(>j) (X i) x= ( L)( - x X 

I~ ~~~~~~~ J a .-1( J)a,-1 I ,_ 

Applying this for all (i, j) E S gives 

P(T; a)) f1 - ) H q ( q 
(i,j) E_S x Xi (i, j) GT- S X a, Xi a,-1(1,J)E=S Xi a, XJ a1 

= P(TS; a), as required. C 

Now we are ready to give the transitive analogue of the master theorem. 

THEOREM 2.2. If T is a transitive tournament with winner permutation C, then for 
nonnegative integers al,...,aw 

[1] rz (xi A { j (q) a,+ --- +an nI ( qa, 

(i,j)E-T Xi a, Xi Xaj-1 (q)a, ...' (q)a, i=l 1 -qa(+ a() 

PROOF. We first prove this result for a = e. Now 

(Xi) a-l ( (Xi a-2 Xi 

and applying this for i = 1, .. ,n - 1 gives, with an > 1, 

P(e; a) = P(e; a - 8n) I - qaan 1_) 

- ~ 
qIsq 

(an )p(ES; aan). 
S cXn- xn)} 
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CONSTANT TERM IDENTITIES 207 

The only nonzero contributions to the constant terms in the above expression will 
arise from S such that ES is a transitive tournament, from the master theorem. The 
only such S are of the form {(k, n),(k + 1, n),. . . ,(n - 1, n)} for k = 1,... ,n, for 
which ISI = n - k and ES has winner permutation 1 ... k - 1 n k ... n - 1. Thus, 
equating the constant term on both sides of the above expression gives 

n 

C(e; a)= q(n-k)(a- Il)C(l k. - lnk n - 1;a -n)- 
k=1 

But C(a; a) = C(e; u(a)), so for an > 1, 

n 

C(e; a) E q (n-k)(an-1)C(e; (a,,..- ,ak-1, an - 1, ak, '.an-J)) 
k=1 

giving a recurrence equation for C(e; a), the LHS of the result to be proved. The 
RHS satisfies this recurrence equation by Proposition Al of the Appendix, dividing 
both sides by (q)a,?+ ?an(q)a,. (q)an 1(q)a,,i- and settingy, = q x( 

To obtain initial conditions for C(e; a), note that 

xi X)-1 Xk ( Xk) 

so for ak = 0 

P(en; a) H (i7i( IJ)(iq 
( n ) ( <k (Xk )( Xk )(Xk )a > k (Xk )aj-1) 

xP(en-1; (al, ... ,ak, ....an))- 

Every term in this expression has negative exponents for Xk if k> 2, and the only 
terms which are constant in xk are in 1 P(en-1; a2,...,an) for k = 1. Thus initial 
conditions are 

C(en; a) = l if ak = O for k = 2,... ,n, 

en;a) Cen-1; (a2 ... **a an)) a if al = 0. 

But these initial conditions are clearly satisfied by the RHS of the result to be 
proved, and the result follows for a = e. In general, the result is obtained by 
applying C(a; a) = C(e; a(a)). C 

Theorem 2.2 has been conjectured by Kadell [8]. The expansion that we have used 
in its proof can also be used to deduce that the master theorem for a nontransitive 
tournament with some vertex with out-degree = 0 follows from the master theorem 
for nontransitive tournaments in which every vertex has out-degree 2 1. 

From Theorem 2.2 and the master theorem we now deduce the q-Dyson theorem, 
conjectured by Andrews [1] and proved by Zeilberger and Bressoud [15]. 
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208 D. M. BRESSOUD AND I. P. GOULDEN 

THEoREm 2.3. For nonnegative integers a,,. .. a, 

[1]H(.x) (qL i - 
q ,+ - a 

I<ij< XJ , i a ( ) , ..(q)an 

PROOF. Expanding (qxj/xl))j for all i < j, we have 

q- = P(e; a) H(1 - qaj?L 

= 
:qE-<j.(j-)ETajP(T; a), 

T 

where the summation is over all tournaments T, from Proposition 2.1. Now denote 
the LHS of the required result by F(a). Equating constant terms in the above 

expression yields, from the master theorem and Theorem 2.2, 

F(a) - (q)al +an 
E ),.a c a) 

(q)Xa, ) nGGS 

Now let G(a) denote the inner summation in the above expression for F(a). The 

q-Dyson theorem is equivalent to showing that G (a) =1. We prove this by induction 
on n. Clearly G(aj) = 1 and the result is true for n =1. For n > 1, we partition the 
sum over a into those a with an = k, k = 1,.., n. This yields immediately 

(1 -qak )q=k+la, 
G(a1,. an) = -a?? a G (a,,... a . . .,an) 

q n 

k=1 ~ k= 

(~?)and q a, 0 +of thefoloingreul.kl byteidconhphss 
PRoPoSITIoN 24. If A (~) then 

wher ~(5) cosist oftoea _ S .suh tatf(, i)E1()thn (ika, s/ 
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CONSTANT TERM IDENTITIES 209 

PROOF. We have 

i?7 q(t) (P) P(e; a)H(lI - qaX] 1<icjcn (Xi ),(Xi a) a- X((i, j) (--) (e; a) nZ- (l q i 

i<I 

and the result follows from Proposition 2.1 and Theorem 2.2. C 
Proposition 2.4 expresses the constant term in a large class of polynomials as a 

single sum of at most n! (independent of the size of the a1's) terms, and does 
therefore give the constant term in a reasonable form. However, we are most 
interested in finding -V for which the summation can be determined explicitly as a 
single term. A general class of -Vfor which this can be carried out is considered in 
the following result. 

THEOREM 2.5. Let O = ao < 1? < 132< -< ?ak-1 < k?< ak= n, Oa 

(a,1... *ak), 1 = (1* ... ,f3k), k ? 1, and 

u (0 
( -) 

U 
2 )) iU (X,8 Xa x (xa -4 X)) 

Then 

e U<i<cj < n ( Xi( a,( i a) j-x((iJs'j)e U(a, x)) 

(q) a? + ?-- + #an kL 1 
- q ai 

(q) a, 
. 

(q)an i=1 j=, +l 1-qa,++ +l1} 

PROOF. Let p E Sm and u, v> 0. We first consider 

f(m, u, v, p; a) = E qE( ,'a1r(a(a)), 
aeS(m, u, v, p) 

where $r(m, u, v, p) consists of all permutations a in Sm+u+v such that elements 
1,...,m appear internally in the fixed order p(l) ... p(m), elements m + 1, 

m + u appear in any order, but all appear to the left of elements m + u + 1, 
m + u + v, which themselves appear in increasing order. For example, 5346127 

E8 $(3,2,2,312). Now define g(m, u, v, p; a) by 

m ( 
qaj) 

f(m, u, v, p; a) = g(m, u, v, p; a)q-( .)(P)a, 17 a ( --- 
j=i 1 q qPi?"?Pi). 

We prove, by induction on m + u + v, that 
v (1-qam+u+) 

g(m, u, v, p; a) = [1 am+l+ +am+u+? 
j= (1 -q ?m~ 

First, the result is clearly true for u = v = 0, since the only summand corresponds to 
a = p, sog(m,0,, p;a) = I bydefinition. 
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210 D. M. BRESSOUD AND I. P. GOULDEN 

For u ? 1, by considering whether the final element of a is p(m) or m + i for 
i= 1, . . ., u, we obtain 

g(m, u, 0, p; a) = 
I 

X ;g(m - , u,O0, p(l) ..p(m -l); a, a-p(M) ..aM+U) 

xqam++??-+an+u (1 -qa?+ ---+am) 

+ g(m, u - 1,0, p; a a' M+)q qa+,) 
i=1 

1 -~~m++ ,, a,a1??am~ 
- qa 

-- +am+u q 
m+q 

+ E qam+,+,+,, +arn+u(1 - am+, 

I =1 

by induction hypothesis 

1 | q~am+, + *-- +am+u_ qa,+ .-+am+u 

1a, + *-- +a [ +u 

u+1 u 

I+ 
-- 

- 
+am+U q am+i+ *- +an+u) 

i=2 i=1 

1 
{ q a r, + 1?+?+ a,,,, +au_ a,+ '*- +am+U am+, + 

- 

+a,,,+ u 

1 - ~~~~qq +~ qa~i?~ 

= 1 

and the result is true for v = 0. 
For v ? 1, by considering whether the final element of a is p(m) or m + u + v, 

we obtain 

g(m, u, v, p; a) 1 - =I,+ +am+u+,, 

x{g(m-1, u, v, p(l) ... p(m-1); a, ap(m) * am+u+v) 

x qara+,1 +a.?+u+a , 
(1 - qa,+ *-. +am ) 

+g(m' u, v - 1, p; a, 
... 

am+u+u-?)(1-q - +u+,) 

1 V (1 - qam+u+, ) 

1 al+ ,+am+u+,, rll (- am+l+ ,+am+u+l) 1 - qa1?a 1+ = 1 (1 -q 

x { qam+l+ *-- +OnI+U+Iy(l - qa?+ *- +am + (1 - qam+,+ 
,,, 

+af+u+))} 

by induction hypothesis 

- I (1 -qam+u+) 

I (1 - q +,. +a +u+l 

and the result is true for all v 2 0. 
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CONSTANT TERM IDENTITIES 211 

Now the required result, from Proposition 2.4, is 

(q) a, +-- +an Y E 

(q) al (q) an Pl(-1a-10 2(al,,82 - Cla2 -12,PI) 

E. qE(0,JI Pk)a1 r (Pk (a)) 
Pk ' '(ak - 1lk 

- 
ak - 1 ak - k, Pk -1) 

( ?a, k * (+ 
a 

fl g(ai-,, P3 - aj-1, a, - P., ea,; a, aa ) 

and the result follows immediately. C1 
Theorem 2.5 specializes to Theorem 2.2 by choosing k = 1, . = 1, and to the 

q-Dyson theorem (Theorem 2.3) by choosing k = 1, P, = n. The complete case 
k = 1 has been conjectured by Kadell [8] and is given by the following result. 

COROLLARY 2.6. For 2 < m < n + 1, 0 < t < n - 1, and nonnegative integers 
a1,. ... *a 

1 <i<j <n (Xji a, i aJ-x(j 2m ) 

(q)a??+ -a (1 - qa:) 

(q)a l=m (1 - qa,+ +a,) 

(2) [1] <i<<n( Xi) a-X(l<t)( Xi) aJ 

(q)a1?-?an (1 - qat) 

(q)a, .(q)an i (1 -q 

PROOF. (1) In Theorem 2.5, set k = 1, /31 = m - 1, so (i, j) E U(ax, /P) if and only 
ifl > m. 

(2) In (1), replace xi and ai by xn+1- i and an + 1- , respectively, for i = 1,. ..,n, 
andsett=n + 1 - m. O 

Another constant term that can be determined in a compact form is given by the 
following result, which has been conjectured by Kadell (private communication). 

THEOREM 2.7. For nonnegative integers a,,... ,an, 

[]1 <i< n (x i Xi Xi al-I Xi) a'1-I 

(q)a,+?..+a H (qa, 
- 

qaJ) 

(q) a *... (q)an 1<i<j<n (1 q+) 
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212 D. M. BRESSOUD AND I. P. GOULDEN 

PROOF. The LHS of this result can be expressed as 

[1]fl ((1 - i 
I 

- - -))(q i) (q_) 

1 <i< j <n i a,( i) aj-1( X i )ai Xi a,-1 

= q) a, + - 
+an hn(a), 

q [a,1((q) an 

where h (a) a)), from Theorems 1.3, 2.2 and 2.3. Thus the 
required result is equivalent to proving that 

h (a) = I (qa, - qa') 
1?i<j?n (1-qa~ 

We prove this by induction on n. 
First, it clearly is true for n = 1. For n > 1, by considering that the final element 

is equal to k for some k = 1, .. , n, we obtain 

hn(a) 1 a,+ +an E (-1) (1 - q k)hn i(a,. . . ,ak,. .. an) 

1 | rl ~~( q a, 
- 

q 
ai 

1- q2l? +a( H (q1< - q%) \ 
n n {1 -(qa,+ak 1 

X , (1 - qak) f ( a a , by induction hypothesis 
k=1 i=1 (q- q k 

1- q2~?...?~( HI (qa- qa') (1 a+ - +an 

q 
n I<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1i<j<n (1-qa,? a1) 

from Proposition A2, with yi = qa,, i 1,. . . ,n, and the result is true for all n ? 1. 
E 

The constant term identities given in this section up to this point have been ones 
in which we have used Proposition 2.1 together with Theorems 1.3 and 2.2 to express 
the constant term as a q-multinomial coefficient multiplied by a weighted sum of 
r(a(a))'s. Furthermore, we have been able to simplify these summations to single 
terms. There are a number of constant terms that we can treat in this way, but in 
which we cannot simplify the summation. Examples of these are given in the 
following result. 

THEOREM 2.8. Let r(a) = f_1(1 - q a )(1 -q a + + a)-1 Then 

(1) [1] 1l7 ( Xi) _ () ) (q)a .E r(o(a)). 
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CONSTANT TERM IDENTITIES 213 

If , f C ( ) with _/W n = 0, then 

[1]~~ ~x xl (0 X) q('J),z ) xJ) 

(2) 1:! 1 <i?<U n () a, ( aj-X((i, j) Js') 

(q) al,+ *-- +an E q'*a r(a(a)), 
(q) a,l... (q) an GE (_) 

where L is the sum over pairs (i, j) E I(a) such that (j, i) 4 i. 

[1] H _ ~1-' - I qJ)(L 

(3) 1 < i<J <n I ( Xi a, -y I ( a,) qx 

(q) a,+ *-- +an E (-)( r(fa. 

(q) a, 
. 

(q)an ar ESf5 

PROOF. (1) The product on the LHS can be written as 

P(e; a) H(I - J ) = ZP(T; a) 
1 <i<j<n Xi1 T 

from Proposition 2.1, where the summation is over all tournaments T. The result 
follows immediately from Theorems 1.3 and 2.2 by equating the constant terms. 

(2) The product on the LHS can be written as 

P(e; a) 1I(1 - Xqajx((ii)z )) 
(i A )4y Xi 

and the result follows from Proposition 2.1, Theorems 1.3 and 2.2. 
(3) The product on the LHS can be written as 

i?U?n{(~)i (xi -Xi(ixi 
I < i < j < n ((xj )a(xi )aj-l Xi aj( xi 

and the result follows from Proposition 2.1, Theorems 1.3 and 2.2. C 
Theorem 2.8(1), whose LHS at first glance seems to be the most natural q- 

analogue of Dyson's conjecture, has been conjectured by Kadell (private communi- 
cation). 

It must be pointed out that, though large classes of constant terms can be deduced 
from the master theorem, there are many similar constant terms on which our 
method sheds no light. For example, 

H (L) (q) =P(e;a) I (I qa l 
I<i<j<n XJ a,+1 Xi aj-1 1<i<j<n X J 

but now Proposition 2.1 does not apply to any of the 2 2 terms in the expansion of 

F11<i<j<nG( - qa,xi/xj) except for the leading term 1. Thus the methods of this 
section do not yield any expression for 

[1], , (y j (qi 
X 
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214 D. M. BRESSOUD AND I. P. GOULDEN 

Similarly, consider the problem of deducing Theorem 2.2 from Theorem 2.3. We 
can write 

1<i<j<n () a ( I aj-1 

(1< i <J <n (Xi a _ l Xi aj-1) 1 <i < <n ( Xj 

and expand the second product on the RHS as 

fl (1 qa ) =l (q ) 
l <i<j<n Xi (C (n) (1, j) ?e a i 

But this does us no good since we have no knowledge of 

[1]( 1, ( ea xy ) )1< z< < n X 
Jy a,-1 (XI) aj-1 

unless a = 0, in which case we know the constant term by the q-Dyson theorem. 
Note also that in results 2.3 to 2.8, we have considered constant terms in products 

over 1 < i < j < n which is equivalent to (i, j) E T where T = E is the transitive 
tournament with winner permutation e. Clearly, to obtain analogous constant terms 
when T is the transitive tournament with winner permutation p, we need only to 
replace a by p(a) on the RHS. Of course, in the case of the q-Dyson theorem 
(Theorem 2.3) this results in no change, since the RHS is symmetric in a. 

However, if T is a nontransitive tournament, then we have analogous weighted 
sums of r(a(a))'s to replace results 2.4 and 2.8, but, in general, we know of no closed 
form RHS's analogous to results 2.3, 2.5, 2.6, 2.7. 

Finally, we note that our results for constant terms are equivalent in some cases to 
results for nonconstant terms in related products. For example, we have the 
following result. 

THEOREM 2.9. Let Q c T, where T is a tournament. Then 

[(1, k) eQ Xk ](i, J) GT( ij a, ( Il aj-1 

0, if TQ is nontransitive, 

(=1) IQI (q)al+?.+an (1n - qa.,) 
= (q)al 

q)*a, (q) an I-1( q 
? Z 

if TQ is transitive, with winner permutation a. 

PROOF. The LHS of this result is equal to 

foPp 21, nd P(T; a)f = [f](-r ) T QmP(m ;a) 
(l, k)eQX Xl 

from Proposition 2.1, and the result follows from Theorems 1.3 and 2.2. [17 
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3. Tournamented statistics. Let W = W1W2 ... E M(a), where M(a) is the set 
of words with al l's,.. ,an n's, and r = al + *-- + an. Two of the most useful 
statistics for studying such words were introduced by MacMahon [11], the major 
index 

r-1 

MAJ(W) = , kX(Wk > Wk+l) 
k=1 

and the inversion number 

INV(W)= L X(< > WJ) 
1?I<j<r 

For the proof of the master theorem, given in ?4, we shall need generalizations of 
these statistics indexed by a tournament T on n vertices. 

The first of these statistics is the tournamented major index MAJT( W) defined by 

MAJT(W) = E MAJW(IJ), 
11 <J ? y n 

where WJ is the subword of W consisting of all i's andj 's in W, and MAJT(W,,) is 
given by 

a, +a j-1 

MAJT(WiJ)= , kX((Vk+l,Vk) E T) 
k=1 

where WJ = V1V2 ... ?a Thus, if W = 1322132 E M(2,3,2), then W12 = 12212, 
WI3 = 1313, W23 = 32232. If T is the transitive tournament 1 -- 3 -* 2, 1 - 2, then 
MAJT(1322132) = 3 + 2 + 3 = 8. If T' is the nontransitive tournament 1 2 -> 3 
-* 1, then MAJT'(1322132)= 3 + 4 + 5 = 12. Note that MAJE is precisely the 
z-statistic used by Zeilberger and Bressoud in their proof of the q-Dyson theorem 
[15]. 

The second new statistic is the tournamented inversion number INVT(W), defined 
by 

INVT(W ) = E INVT (WIJ) E 
1i <I<j<n 

where 

INVT(WJ{) = X((V, Vk) E T 
1<k<l<a, +a1 

and WJ = V1V2 ... Va, +? . Thus for Tgiven by -* 3 2, 1 2 and T' given by 
1 -* 2 -* 3 -* 1, we have INVT(1322132) = 2 + 1 + 2 = 5 and INVT'(1322132)= 
2 + 3 + 4 = 9. Note that INVE is simply MacMahon's inversion number. 

The generating functions for MAJT and INVT are trivially deducible from the 
classical case T = E when T is transitive and are given in the following result. 

PROPOSITION 3.1. If T is a transitive tournament, then 

, qINVT(W) - E qMAJT(W) - (q)a+ +an 

We M(a) WE M(a) (q) a, (q) an 
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216 D. M. BRESSOUD AND I. P. GOULDEN 

PROOF. Let the required generating functions be denoted by IT(a) (for INVT) and 

'T(a) (for MAJT). If T has winner permutation a, then clearly T(a) = E(a(a)) 
and 'T(a) = 'E(a(a)). But from MacMahon [11] and Zeilberger and Bressoud [15], 
respectively, we know 

OE(a) = E(a) 
( q 

()qal 
+ * +a 

and the result follows since the RHS of this result is symmetric in the elements of a. 
[1 

However, for nontransitive tournaments, the generating functions for INVT and 
MAJT are not identical. For example, if T is given by 1 -* 2 -* 3 -) 1, then 

q VT(W) q + 5q2 + 5q3 + q 
WeM(2,1,1) 

? qMAJT( = 2q + 4q2 + 4q + 2q 
We M(2, 1, 1) 

In general, these generating functions are not symmetric in the elements of a. It is 
easy to see (by considering the words W = W... W read in reverse order 

W,Vr- Wi) that they are both reciprocal (F is reciprocal if [q']F = [qml+ 1 -i] F for 
i ,...,[m/2], where m ? degree (F): in this case m = (n'+)). Moreover, we 

conjecture that, for any tournament, the generating functions are unimodal. 
Following the notation of [15], associate with each word W E M(a) a permutation 

v E Sn defined by: 7 (1) is the last letter of W. For i = 2,. ..,n, 7T(i) is the last letter 
of W not equal to g(1),...,s(i - 1). Thus if W= 12214334414, then 7(1) = 4, 
ST(2) = 1, v(3) = 3, S(4) = 2, so X = 4132. For ST E 5n, we denote by M,,(a) the 
subset of M(a) consisting of words associated with fixed v. 

We cannot find a representation as a rational product for the generating functions 
of M(a) with respect to INVT and MAJT for nontransitive T. However, we can find 
such a representation for the generating function of M,,(a) with respect to MAJT, 
which is the result about tournamented statistics needed in ?4. 

THEOREM 3.2. For any tournament T, and nonnegative a,,.. ., an, 

? qMAJT(W) - qCT(7T.a) (q)al+ +an n (1- q ) 

WeM, (a) (q) a, ... (q)an i= (1 -q 

where 

CT Og, a) = a? jX( -1(i) < 7T-'(j)) = ajx (7Tij=i) 
(i, j)C T (i, j)E T 

and ?Tij = i if T-1(i) < ?T-v'(j), and = j otherwise. 

PROOF. When T = E, this result is Sublemma 4.1.1 in [15], and we precisely 
parallel that proof here. 

The theorem is trivially true for n = 1, and if it is true for n = 1, then it is true for 
n when at least one of the a 's is zero. Thus we must show only that each side of the 
result satisfies the same recursion. 
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Let 7r' - 2 ... 7r T (i)7T(1)7T(i + 1) ... 7T(n) for i = 1,...,n (so T(1)= -). 

Given a word W E M(a + 8,(1)), consider removing the last letter (which must be 
7T(1)). Then we are left with a word in M(,)(a) for some i = 1,...,n, and the 
contribution to MAJT(W) which has been made by this last letter is 

(a T(l) + a(r)( -7T, rr) T). 
r=2 

Thus, if F, T(a) is the generating function on the LHS of the theorem, we obtain the 
recurrence equation 

n 

F,, T(a + 8,(1)= qE'r=2(a7() + a(r))X((X('), (r)) 
- 
T)F (a) 

i=l 

To show that the RHS satisfies the same recurrence equation, we must show that 

qCT(7T,a+8(1)) (q)al + G-- +an(7 G ) 
(q) aj-1 ..(q) a,(,) ..(q) an-1 

q (q)a1-w" q)a,++an- 

=E qH'G(7T(')) 
()l--a- 

il (q)a-1 ..(q)an-I 

where 
n 

G(7T) = H(I - (1-qa(J) ++ a(,,) 
j=2 

and 

HI= CT(7T '),a) + E (a(I) + a7T(r))X( (1), 'r(r)) e T). 
r=2 

Multiplying by (q)al ... 
(q)an-1 /(q)al+ +an-1 makes this equivalent to 

)I- qa,+?--?an) 
n 

(*) qcT(7T,a?+8())(1 (1 , q () G() = qG ( ) 

But we have 

CT 7T,a) = E aJX(7T-(i) < 7-1j)) 
(i, j)eT 

= EZajX(v-(i) <7 v-i(j))X((i, j) E T) 

- Z a(j)X(i <j)X ((,(i)),g(j)) Ee T) 

=E a.7(jX ((,g (i), g ( j)) E- T), 
i<j. 

so 

CT(7T,a) = cTCTT,a) - , a,(r)X((7T(1), g(r)) e T) 
r=2 

+ a,(1)X((7T(r),,g(1)) c= T)~ 
r=2 
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218 D. M. BRESSOUD AND I. P. GOULDEN 

and thus H, = cT(7,a) + (i-1)a,(1). Moreover, CT(7,a + 8,M) = cT(7,a), so (*) 
is equivalent to 

(1 - qa?+ +an n 

(1 - 

qa7a(,) G(7T) = E q(l-l)a'()G(77(i)), 

which is proved in [15] at the end of the proof of Sublemma 4.1.1. Thus the RHS 
satisfies the same recursion as the LHS, and the result follows. C1 

4. Proof of the master theorem. We shall prove Theorem 1.3 by exactly following 
the proof of the q-Dyson theorem given by Zeilberger and Bressoud [15] with 
appropriate modifications for the fact that instead of taking the product over pairs 
(i, j), 1 < i < j < n, the product is taken over pairs (i, j) E T, where T will be an 
arbitrary tournament. Perhaps surprisingly, the arguments are no more difficult 
when T is an arbitrary tournament. As we shall see at the end of this section, 
Theorem 2.2, which takes its product over transitive tournaments, is a corollary of 
the argument we shall use to prove Theorem 1.3. It is assumed that the reader has 
access to the Zeilberger-Bressoud proof [15], hereafter referred to as Z.-B., to which 
we shall frequently refer. 

Let us initially assume that T is an arbitrary tournament on n labelled vertices and 
begin as in Z.-B. by expanding the product under consideration by use of the 
q-binomial theorem [2, p. 36], yielding 

(Y)a(qY 1)b - 
(q)a?k(q)b-k 

-a < k < b. 

This gives us 

(,)(Xi Xli a- 

(4.1) = ql E (-1)kJq(k7+l)(q)a,?aj-lXxy ix (1, j) E T T Xi) a, +, 1q aJ+-1- 

E (-1)_*kJq (k,j+l) n 

KeY' *j(q)a,+k,j-X((J,i)E=T) 1=1X I<j 

where kji = -ki;, r' is the set of integer matrices K = (k,j) satisfying k,j = kjI 
and L* is the sum over all pairs (i, j) E T. We get the constant term if we restrict 
our matrices to the subset K C Y', those whose row sums are zero. 

As in Z.-B., the expression 

(-l)E*k''q(klj+l) 

K E-= Oj(q) a, +klJ -X((j, i) E=T) 

is the generating function for matrices of partitions P = (Pj), where P,, is empty. If 
? (P,,) denotes the number of parts in partition P,, then 

n n 

E #(P,1) = (n - I)a, - E X((i, i) ET), 
J=1 j=1 
j*i JOl 
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and 

(PlJ) + #(Pjl) = ai + a1-1. 

Moreover, if I PjI, denotes the sum of the parts in P,1 then the weight assigned to P is 

(_1)E*k Jq*(k,j+1)+1)Jply1 

where kl =i #(Pi,) a, + X (( j, i) E= T). 
We apply Algorithm 3.2 of Z.-B. to our matrix P with the following modifications: 
In step 2, order i,j so that (i, j) E T and then as before define 

J i if Bf() + k 2 B() 

IJ = j if B(') + k < B(1) 

In steps 5 and 6, replace the pairs (i, j) such that i < j with pairs (i, j) E T. The 
implication in step 6 becomes: If (W<l+1), W(')) E T, then Q(`) is strictly less than 

Ql. The same Bijection M, with the winner between i and j in T considered to be 
the smaller number, yields a new partition Q,1 satisfying IQ,ji = IQ,J1 + 

MAJT(WJjti.), where MAJT is the tournamented major index defined in ?3. 
In step 3, case 3a holds if (1, i) E Twhile 3b applies if (i, 1) E T. 
In step 4, the implication again should read that if (Wij'+1), Wi5') E T, then 

Qlji 1< Qlj and Bijection M yields Q,J satisfying IQ,JJ = lQijl + MAJT(jV). 
The key observation about this modification of Algorithm 3.2 is the following 

lemma. 

LEMMA 4.1. If #(P,J) = a, + k- x((j, i) e T) where kij = -kj,, and 2k,J = 0, 
1 ?j < n, j 0 i, and if T is nontransitive, then step 2 of the modified Algorithm 3.2 
eventually produces a nontransitive tournament S. 

PROOF. We first observe that until step 5, the number of parts in B,J is given by 

#(BIV) = a1- c + k, -x((i i) E T). 

For fixed i, this quantity is nonnegative for all j = i and thus c, is less than or equal 
to a, and equality is possible only if klj = 0 and (i, j) E T for all j 0 i. 

If vertex i has out-degree in T which is neither 0 nor n - 1, then the sequence 

(#(Pil), #(Pi2)...,I #(Pin)) cannot be constant because for any choice of 

{kij } n1} 1i satisfying kij- = 0, 1 < j < n, j 0 i, at least one P,J has at least a, parts 
and at least one has at most ai - 1 parts. Let us fix a j such that #(P,J) is the 
minimum of the set of values in the sequence. From the definition of s,J in step 2 of 
Algorithm 3.2, once B,j is empty the ith row cannot be further emptied unless 

(1) (i, j) E T and Bi is empty, or 
(2) all partitions in thejth row are empty. 
Since B,j and BJ, are empty: 

0 = a, -c + k,, O=aj -cj + kjl - 1. 

Adding these equations yields 0 = a, + aj - (c, + cJ + 1)and thusc, = a, or cj = a,. 
If (i, j) e T, then cj cannot equal aj and so c, = ai which implies that k,l = 0 for 
all m and (i, m) E T for all m 0 i. Since we assumed that i does not have out-degree 
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n - 1, this cannot happen. Thus (j, i) E T and we must be in the second case: all 
partitions in thejth row are empty. 

Thus no row can be completely vacated unless there is a row with out-degree 
n - 1 in T and that row has been completely vacated first. Once a row has been 
completely vacated we eliminate the corresponding node from all subsequent tourna- 
ments S. Since T is nontransitive we must eventually get down to a subtournament 
in which no vertex beats every other vertex and thus no more rows can be vacated. 
Since we can never completely empty all partitions in P, eventually the tournament 
S must be nontransitive. Ol 

Let us now look at what comes out of Algorithm 3.2 modified. It will always be an 
element of - as defined in ?3 of Z.-B. with the following modifications: 

(ii) We shall call our nontransitive tournament defined by the algorithm S to 
avoid confusion with the initial specified tournament T. 

(v) kij = rij + X(sij = i) - X((j, i) E T) + ci - ai. 
As in Z.-B. this implies that 

n n 

X x(si1= i) = (n - 1)(a, - c) - ? (rj - X((j, i) E T)) 
j=1 j=1 
j*i j*I 

and thus the score vector for S is completely determined by B, T, (al,...,an) and 

(C, ... * Cn) 

(vii) Replace the pair (i, j), 1 < i < j < n, by (i, j) E T. 
The weight of an element (W, S; Q, B) E E is now given by 

(4.3) Weight(W, S; Q, B) 

( l)E*kJXq** IBJI + *(IQI +(k 1) 

-kij (C + X (sjj = i)) + MAJT(WJsis))1] 

where kij = rij + X(s= i)-x((j, i) E T) + ci - ai and E* is the sum over all 
pairs (i, j) E T. 

We shall fix Q and B and sum this weight over pairs (W, S) for which 

(W, S; Q, B) E F. Theorem 1.3 will be proved if we can show this sum to be zero. 
As in Z.-B., let GAR denote anything which is constant with respect to the pairs 

(W, S) in the summation. Let us write kij = bij + X(sij = i) and therefore 

ij(ki+ 1) - kij(Ci + X(Sij = i)) 

= lb71 + = i) + = i ) + 2bj, + 2X(s1 = i) 

-(bijci + X(s= i)C + bi,x(s = i) + = i)) 

= GAR - cix(si1= i) = GAR + cix(sij =j). 
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Thus we have that 

(4.5) 

Weight(W, S; Q, B) = GAR(-1)*x(sJ=i)q**[ *(CiX(Sij =1) + MAJT(WiJ))I. 

It is thus sufficient to prove that 

(4.6) E(-1)E*x(sJ=j)q**[ *(Cix(s =j) + MAJT(WJJsjj))] = 0, 

where the outer sum is over all words W E M(cl,... ,cn) and S is over all 
nontransitive tournaments which have a fixed score vector and for which the last 
letter of W is a "spoiler" (see ?1 of Z.-B. for definition of "spoiler"). Note that if the 
word W is empty, then the sum is over all nontransitive tournaments with fixed 
score vector and equation (4.6) is trivial. 

We now specify the permutation associated to a given word and rewrite equation 
(4.6) as 

E E (-1) l*x(s'J=])qE*c,x(s,j=j) 

(4.7) 
7T GEeSn S e NonTran(n; w; g (1)) 

X qE *MAJT(WuJSJ) = 0. 

W E M,T(C1 9* sCO 

For (i, j) E T, we have that 

(4.8) MAJT(Wijsi) = MAJT(W!j) +(ci + c1)X((si,, ri,) E T). 

By Theorem 3.2, we know that 

E qE*MAJT(Wj) = qE*Cjx(7jl) (q)c?cl?+ +Cn1 

W E=M, (Cl, sCO 
(q C -1 I*. (q) Cn-1 

n 
x 171(1 - qC1T(I)??+ C* (n))-1 

i=2 

and therefore it is sufficient to prove that 

(4.9) 0 = L E (_1)E*X(SJ=) 
qr ES S e NonTrans(n; w; -r(1)) 

Xq** [cx(s = =i) ?(ci + cj)X((s,j, 7Tj) E T) + cjX(711 = 1)] 
n 

x H (1 - q 
i=2 

Equivalently, replacing q c, by Y, we must prove that 

(4.10) 0= : : (_=)Y*X(S,,= 
7T eS S S NonTrans(n; w ; g (1)) 

])i j xETy (SlJ=j) ) x((s,.T, )7 ET)yX(-7T -1) 
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If we can prove Observation 5.1.1 in Z.-B. for the modified weight function 

weight(7T, S) = (-1)E*X(s,j=) n, T )(YY) (s ' )yx(l -i) 

then the remainder of the proof in Z.-B. goes through without any modifications 
required. We are thus reduced to proving the following lemma. 

LEMMA 4.1.1. Let r = 7(1), let r' satisfy 7 = rn', and let a be the transitive 
tournament obtained when the spoiler r = 7(1) is removed from S. We then have that 

weight(7, S)j weight(7T, a) | (Y1Y2 ... * Yr Y)Yr 

1 yr(2) .. 7( n) 

As before, LrS is the in-degree of vertex r in tournament S. 

PROOF. 

weight( 7T,S )I = _ |weight(7T', a) H yx(s =r)(yy)X((sX) T) 

(1 
- 

Y(2) Y(n) ) (i, r) E T 

X frX(',r =i) S yx( =J) X 
y ((s rj , 7rj) E T) y X ("r = r) 

(r, j)e T 

weight(7 na) r 171 ylX(Sq=yl 

Y'(2) .*.. Y,(n)) (i, r) GT (r, j)ET 

|wiht(7', aJ) (Y ***Y ***Y)Y 

(1 - Y',(2) 
. 

Y /y(n) 
r 

r) 

This concludes the proof of Theorem 1.3. It should be pointed out that we have 
effectively also proved Theorem 2.2, for if T is transitive the only piece of the proof 
which is affected is Lemma 4.1. From the proof of Lemma 4.1 we see that we can 
completely vacate our original matrix of partitions only if T is transitive and K is the 
zero matrix. If T corresponds to the permutation a, then for all i, 1 < i < n, row 
a(i - 1) must be completely vacated before row a(i) can be vacated. The word that 
is created will have a,(1) a(l)'s, aa(2) a(2)'s,...,aa(n-1) a(n - 1)'s but only a,(n) - 1 

a(n)'s. If we append a(n) to the end of this word we necessarily get a word in M,(a) 
where 7T(i) = a(n + 1 - i), 1 < i < n. Within those constraints, the word is arbi- 

trary. 
Thus, if T is transitive, then the partition matrices P which are not taken to an 

element of , by Algorithm 3.2 modified correspond to a Cartesian product of an 
arbitrary word E M,(a) weighted by the tournamented major index and an upper 
triangular matrix of partitions with a, + a1 - 1 parts in position (i, j), i < j. By 
Theorem 3.2, the generating function for words in M,(a) weighted by qMAJT(W) with 
7(i) = a(n + 1 - i) is 

(q) al-I 
... 

(q)an-1 j=2 

concluding the proof of Theorem 2.2. C 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:37:56 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CONSTANT TERM IDENTITIES 223 

5. Alternative methods of proof. In this section we examine other methods of proof 
for constant term identities. First we give Good's [6] proof of the Dyson conjecture. 
Then a q-analogue of this proof will be obtained to give an alternative proof of the 
q-Dyson theorem. 

Good's proof of Dyson's conjecture. Let f(a; x) = (I H jxj 1 (- and 
F(a) = [I]f(a; x). Now note that 

J 1( j) k=1{y1( = ) |j= 1 - 

i*j j*k i=k 
i*j 

Since both sides are polynomials of degree < n - 1 in x, and have the same value 
for the n distinct choices x = 

Xl... . , xn. Now let x = 0, so 

(*) -nl= Xi k-1 -,J=1 Xj 

i*j i*k 
i:*j 

Multiplying (*) by f(a - 1; x), we obtain f(a; x) = :lf(a-8k; X) for a ? 1, 

and equating constant terms gives 
n 

F(a)= EF(a-8k), a>1. 
k=l 

Also F(a) = F(a1,...,ak-,..,an) if ak = 0, and F(O) = 1. These initial conditions 

and the above recurrence uniquely identify F(a) as the multinomial coefficient 

al + + an'1- 
a1+ = (al + + an))!/a! ... an!' r 

We now give a q-analogue of this proof to obtain the q-Dyson theorem. Like the 
proof of Theorem 2.3, this proof relies on the master theorem. However, it does not 
require Theorem 2.2. 

Alternate proof of Theorem 2.3. Let F(a) = [1]HJ1<i<j?n(x1/xj)a,(qxJ/xj)a, We 

prove that F(a) = (q)a, + a,/(q)a, .. . 
(q)a, by induction on a, + + an. 

Clearly 

F(a) = F(al,.. . ,ak, ... ,an) if ak = 0, k = 1,...,nv 

and F(O) 1, so the result is true for a, + * + an = 0. Now for a,,.. .,an ? 1 we 
have F(a) [1IP(e; a)Hl, c 

<j n(1 - qajx/x,). But 

( X) 
n 

(n X)( X) 
(**) - ~~qa, =k={1? qaj~~ [1( -qaift 

1<i<j<5n Xi k=1 j=k+l Xk 1 <i<j<n Xi 
i, j* k 

+ E rl (qaJi 
xj 

TE g,:n (Jj,. ) E T Xi 

J>i 

where .Yn consists of all tournaments on n vertices such that no vertex has in-degree 
equal to n - 1. This follows by identifying each of the 2 2 terms in the expansion of 
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the LHS with a tournament, in which choosing the "1" from 1 - qajxj/x, corre- 
sponds to the edge (i, j), and choosing ;-qajxjlx, corresponds to the edge (j, i). 
The k th term in the RHS of ( * * ) corresponds to the tournaments in which vertex k 
has in-degree equal to n - 1. These tournaments are disjoint for k = 1,.. , n and n 
contains all other tournaments on n vertices. 

Thus, multiplying both sides of (* *) by P(e; a) and equating constant terms, we 
have 

n 

F(a) = E qEy=k+lajF(aj, ... ak -1, ak+l?,. ,an, ak -1) 
k=1 

+ E Hr qa )[I]P(T; a). 
TeAn {( > i)eT 

J>i 

But all tournaments T in )n are nontransitive, so [1] P(T; a) = 0 from the master 
theorem, and 

n 

F(a) = E qEJ=k+laiF(al,. .. ak- ak+1,.. ,an, ak -1) 

k=1 

(q) )al*??an-1 qEyn k+laJ(1 - qak), byinductionhypothesis 
(q) al (q) an k=1 

= (q)a?.?i f n( Eq aZ - E q - 

(q)a (qan =1 k=1 J 

(q) al +*-- +an -1 {I - q a,+*---+an q ()al,+ *-- +an 

(q) a- (q) an (q)a ,= (q)an 

the result is true for all a. C1 

Kadell [8] has obtained the case n = 4 of the q-Dyson theorem by a q-analogue of 
Good's method, without using the master theorem. He has also shown [9] by a 
q-analogue of Good's method that the q-Dyson theorem is true for all n if the 
required constant term can be assumed to be a symmetric function of the a,'s. 
However, this symmetry has never been established independently of actually 
proving the q-Dyson theorem, as Z.-B. and we have done. It is one of the most 
tantalizing features of the q-Dyson theorem that a constant term which seems most 
asymmetric is in fact symmetric. A proof of this symmetry which is not equivalent to 
actually proving the q-Dyson theorem would be very desirable. 

Now we apply Good's method to prove the case q = 1 of Theorems 1.3 and 2.2. 
This will allow us to consider the possibility of finding a q-analogue of these proofs, 
which would lead to an algebraic proof of the master theorem, and hence all of our 
results. 

Alternative proof of Theorems 1.3 and 2.2 when q = 1. Multiplying P(T, a - ) I q 

by (*) yields 
n 

P(T; a)Iq=1 = E P(T; a - 8k)|q=l1 
k=1 
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Equating the constant terms in this equation gives the recurrence equation, where 
a 1 

n 

C(T; a)jq=i = E C(T; a -k)|q=1 
k=1 

The argument given in the proof of Theorem 2.2 enables us to obtain initial 
conditions. If ak = 0, then 

C(T -k; al,...,a'k 5... 9an)jq=1, 
C(T; a) Iq= = if vertex k has in-degree = 0 in T, 

kO, otherwise, 

where T - k is the tournament on vertices {l,...,k,... ,n} obtained by deleting 
vertex k and all incident edges. Also C(T; 0)1 q= 1 = 1, where T is the (empty) 
tournament on 1 vertex. 

It is easy to verify that the unique solution to this recurrence is (we have already 
done this for transitive T in Theorem 2.2) 

[1] 7(1 - ' 
I 

xi- aJl) 

0 
= ?al + ++ an' aa2 an 

= A,,...,an ]a,j(aa + a ) . . . 
(a + * + aO) 

if T is transitive with winner permutation a. [1 

The transitive case of the above result has been given by Kadell [8]. Now we 
consider the possibility of finding a q-analogue of the above proof to obtain a proof 
of Theorems 1.3 and 2.2. The q-analogue of (*) which allowed us to prove the 
q-Dyson theorem is obtained by multiplying (* *) by ll ijn( - x,l/x), and is 

(***) n?I7H (1 - I)( - qa I) 
1<i<j<n, Xi X 

n 
-qk1"a 

n 
- xa air 

k=1 i=1 X l) 1<i<n ( 

qi( T k i, ) 

+ E qY"(j,fGT j>aj 1 x1_i ) 
T e gn (i *J ) E T Xi 

Suppose we replace a1 by a1 - 1,1 = 1,.. , n, multiplying both sides of *** *) by 

H q?x qx 1 <i<j<n J a-1 ( Xl a -2 

and then equate constant terms. Then on the LHS we have C(e; a), which is 
considered in Theorem 2.2. However, none of the summands on the RHS are 
recognizable as constant terms that we have dealt with. 
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Similarly, we might try proving the master theorem by constructing an analogue 
of (***) in which the product on the LHS is taken over (i, j) E T for a nontransitive 
tournament T. However, we have been unable to find such an expansion in which 
the terms on the RHS yield recognizable constant terms. It certainly would be useful 
to find an analogue of (*) which allows us to deduce the master theorem, though it 
appears to be a difficult task. 

A final approach that we mention is to try to prove that the constant term in the 
master theorem is equal to the negative of itself, and hence must be zero. This 
"asymmetry" approach can be carried out for special values of a, as given in the 
following result. 

THEOREM 5.1. The master theorem is true for a such that ak = a, for some pair of 
vertices k and I with equal out-degrees in T. 

PROOF. Suppose, w.l.o.g. that k < I and (k, 1) E T. There are unique vertices 
vl,... .,vmnl and ul,... ,urn for some m = 1,... ,[(n - 1)/2], such that (k, vj) e T 
and (1, VJ) 0 T, j = l, . . . , m -1, and (k, UJ) X4 T and (1, UJ) E- T, j = l,. . . ., m. Now 
let S = {(k, 1), (k, vj),. . .,(k, v,-_1), (Vl, l),..* *(vn,-_j 1), (ul, k),...(um1 k), 
(1, ul),... ,(1, um)). Clearly Hji J)Es(-xJ/x,) = (-1)lsl = -1, so 

-P(T; a) =P(T; a) I)S (- ) = P(TS; a) 
(i, j) es Xi 

from Proposition 2.1, since S c T. Thus equating constant terms gives -C(T; a) = 

C(TS; a). 
But the tournament TS is isomorphic to T, under interchanging vertices k and 1. 

Thus 

-C(T; al,, ak,...,a,,. ..,an) = C(T; a,,...,a,,..ak9... an) 

and the result follows immediately. El 

The choice of S in the above proof was found by N. Alon (private communica- 
tion). One corollary of this result is worth mentioning. 

COROLLARY 5.2. The master theorem is true when a, = a2 = = an. 

PROOF. The result follows from Theorem 5.1 since a nontransitive tournament 
must have at least one pair of vertices with equal out-degrees. The a,'s corresponding 
to such a pair of vertices must be equal since all a,'s are equal. El 

Note that Corollary 5.2 does not imply the truth of the q-Dyson theorem for 

a, = * = an, at least not by the techniques of this paper. 
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Appendix. 

PROPOSITION Al. For n > 1, 

n k-1 n 

(1 - yn) E yn-k H (1 -Y1 ... y)- H (1 ... y-IYn) 
k=1 1 i=k 

n-i 

= H (1 - Y1 ... Y') 
1=1 

PROOF. Let the expression on the LHS of the above result be denoted by 
L (y1,... yn). We prove the identity by induction on n. Clearly 

L (y1) = (1 -yl)(I -1Y1' = 1 

and the result is true for n = 1. Now 
n-1 k- 1 

n-1 n 

X FI (I - Y1 . .. Yl-lYn)- +l (1 Yn) rl (1 Y1 . Yi) 
i=k = 

n 

=yn(I -Y1 .. **Yn)-' L(Yl, * Yn - 2 Yn) + (1 _-Yn) rI (I - Y1 .. Yi) 
i=l 

n 

-H(i y1 . Yi) { Yn( Y1 ... Yn-1) + -Yn)}) 

by the induction hypothesis 
n-1 

- H (1Y ...Y)-9 
i=i 

and the result is true for n ? 1. [1 

PROPOSITION A2. For n > 1, 
n n YY 

E ( - Yk)H Y1k_1 Y1... Yn 
k= i=I1 y y - Yk 

i=*k 

PROOF. Denote the LHS of the required result by L(yl,. .. Yn). Then 
n n n 

L(y9119yn 
= 

I 
H (i YiYk) H 

k=1 + Yk i=1 = 1 Y- Yk 
i*k 

- (=1 +( ~ : ~ (1 YiYk) (-i) Y1 2nk (1 + Yk)} 

+... ynyn') f 
+i= Y1 Yk 

i*k 

k=1 i=1 Y, Yk k=i i=i g ( Y 
i=*k i=*k 
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where 
n n 

f(x) = H(1 + Y1) -y1x) -(-i) .. yn(xn + x? ) 

z = -1, g(x) = 1, w = 0. But f(x) and g(x) are polynomials in x of degree at most 
n - 1. Thus 

f(X) = f (Yk) H )I X 

k= =1 Y1 Yk 
i=*k 

since both sides are equal for the n choices x = Yl,... ,yn. Similarly 

g(X) = E g(ykj) H Yk (YiX -1 
k=1 1=1 yi 

- Yk 
i=*k 

since both sides are equal for the n choices x = Y 1,... ,y-J. Combining these results, 
we have L(yl,. ,yn) = (-l)-xl ... xng(O) = 1 - * ... xn, as required. Z 
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