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Abstract. Forrester and Jancovici have given sum rules for a two-dimensional 
generalized plasma with two species of particles interacting through logarith- 
mic potentials with three independent coupling constants. They have also 
found a specific one-dimensional solvable model which satisfies the analogs of 
their sum rules. A class of one-dimensional models for which the partition 
function is evaluable is given as well as a more general result evaluating multi- 
dimensional integrals. 

1. Introduction 

Forrester and Jancovici [I] have given an exactly solved model for a one- 
dimensional generalized plasma with two species of particles (roman and greek), 
interacting through logarithmic potentials, with three independent coupling 
constants. This was motivated by their discovery of sum rules for such a 
generalized plasma in two dimensions (see also Halperin [2] and Girvin [3]) and 
the desire to at least verify the one-dimensional analogs of these rules. 

The two-dimensional system with roman and greek particles of density ~R and 
0G, respectively, and independent coupling constants gRR, gR~,gGG has 
Hamiltonian 

H= --gRR ~, lnrii--g~G Y, lnr~p--gRG ~ lnri~ 
i> j o~> fl i,~ 

~- (gRRQR -{- gRGQ6) Z SIn IIR i -  ]R]d~ 
i 

q- ( g 6 a 0  O -{- gRGQR) ~, SIn [~ - N ]  dr 
g 

1 2 
- -  (~g.ReR + ½g~aog + gR~OROG) ~In [IR - N ' l d~d~ ' ,  0.1) 

where the particle-background and background-background interactions have 
been chosen in a way which compensates the remote particle-particle interactions 
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so that we can expect the system to have a well-behaved thermodynamic limit. 
Forrester and Jancovici's exactly solved model is for the system where all particles 
lie on a circle of radius R: 

zj. = Re i°j , z~ = Re i°e , 

and gRR = gRa = 2, g~a = 4. We shall consider the more general case of this one- 
dimensional model, 

gRR = gR~ = 2y, gaa = 2y + 2, y E N .  

The excess partition function is 

aN 2zr bN 2r~ 

Z=(2~Z)-(,+b)SR-~O+<y+I)b)N H ! dO~ ~=a ! dO~ 
j = l  = 

X 1-[ [ei°i--e~°k[ 2y II [ei°~--ei°a] 2y+2 [I [ei°~--ei°=] 2y. (1.2) 
j < k  a<f l  j ,  et 

We shall show that 

(ayN + b(y + 1)N) ! bN ! R - (y" + (y + 1)b)s 
z -  , (1.3) 

Y["N(Y+ 1)'bN ( ~  + l ) b  N 

where ( y ) . = y ( y + l ) . . . ( y + n - l ) .  

2. A General Identity 

Since [e i°~- ei°kl2 = (1 - e  i(°j- °k))(l - e  i(°~- 0j)), the partition function Z as defined in 
Eq. (1.2) is simply the power of R times the constant term in 

l_X~ ,+1 l_x~,  l_xo,  

Equation (1.3) follows from a proposition proved in a more general setting by the 
authors [4]. 

Proposition 2.1. Let al, ..., a, be positive integers, A be an arbitrary subset of 
{(i, 3 : 1  < i < j ~ n}, ~A be the set of permutations on { 1 ..... n} whose inversions are 
contained in A: 

~ A = { a E ~ , :  i< j and a - l ( i ) > a - l ( j )  implies ( i , j )~A},  

and let )¢( T) be the characteristic function which is 1 if T is true, 0 otherwise. I f  [1] 
denotes the constant term in the succeeding expression, then 

[1] <~.( xi/ \ - ~ /  
/ 

(at  + a2 + "" + an)! n 1 
Y~ (2.1) 

17, J t  -- ~®A z:~ (a~.)+ + % o )  
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Equation (1.3) is the special case of this proposition where n = a N + b N ,  
A={(i, j):  l<__i<j<aN or a N + l < i < j < a N + b N } ,  ~a~--~auX~bN, and 
al =. . .  = a~N= Y, aaN + 1 . . . . .  a~N + bN= y + 1. 

For A = ((i, j): 1 ~ i < j < n}, one observes that 

Y, I~ 1 _ 1 (2.2) 
~ ,  l=~ (a~m+ ... +a~¢l)) a~a 2 • . . . .a , "  

This can be proved by induction on n. For  the inductive step, we observe that the 
only term involving a(n) is 

(a~(1) + ... + a~(,)) -1 =(al  + ... +a,)  -1 , 

which can be factored out of the summation. The sum is now rewritten as a sum 
over possible images of n of the sum over all permutations of the remaining n -  1 
elements. 

Proposition 2.1 thus implies an identity conjectured by Dyson [5] and proved 
by Gunson [6] and Wilson [7]: 

[1] 1-[ l - X i  ~ 1 - x J ~  ~J=(a l+a2+ "'" +a.)! (2.3) 
l<=i<j<n XjJ XiJ al!a2! ...an! 

In fact, the proof of Proposition 2.1 will essentially follow Good's proof [8] of 
Eq. (2.3). 

3. Proof 

To prove this proposition, we shall need a lemma. Let T be a tournament (a 
complete directed graph) on n vertices, 

TC__{(i,j): l<=ioej<=n}, ( i , j ) eT  ~ ( j , i ) ¢T .  

We say T is transitive if it contains no cycles and thus corresponds to a 
permutation, a, of {1,..., n}, where a(i) is the vertex with in-degree i - 1 .  

Lemma 3.1. Let a=(a 1, ...,a,), T be a tournament on n vertices, then 

~i,j)~T \ x j /  \ x i /  

(al+ ... +a,)! rI I 
= (a~: l ) ! . . . ( a , - l ) !  t=la~¢l)+-- +a,~i)' 

O, 

~" T is transitive, 

otherwise. (3.1) 

Proof of Lemma. By the Lagrange interpolation formula (see Good [8]) we have 
that 

i = l  j = l  X i 
j,i I 

xj 

(3.2) 
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a~ a j -  1 
Let C(T, a)= [1] [I  (1- -x~]  ( 1 - x J ]  . Multiplying both sides of Eq. (3.2) 

(i,D~r \ x j /  \ x , /  
/ h • { x . 'V ~ - 1 

by I t  / 1 - x ~ f  ' 1 - J ]  and taking constant terms yields 
(i,j)~r \ x j j  \ x i /  

C(Z a)= ~ C(T, a-<S,), (3.3) 
i = l  

where 6~ is the unit vector in the i th direction. We also have the initial conditions 
that if a k = 0, then 

1, if k = n = l ,  

C(T, a)= C(rkk, a 1, ...,ak_l,a~+ 1 ..... a,), if vertex k has in-degree0,(3.4) 

0, otherwise, 

where Tkk means the tournament obtained by removing vertex k and all incident 
edges. It is readily verified that the right-hand side of Eq. (3.1) also satisfies this 
recurrence (3.3) and set of initial conditions (3.4). []  

Proof of Proposition. We begin the proof of Eq. (2.1) by observing that 

[" XiX~ ai 1 f X •~aj--z((i, j)*A) ;,)?-7,) 
=iO,(1-xi~'(1-x-i~'-' ri (1-xs~. (3.5) 

x j /  \ x U (I,~)~A \ x U 

We now consider the formal expansion of 

n (,- 
(i,j)~A \ X i J  

For each pair (i, j) ~ A, choosing the first term, 1, will leave the product to the left 
unchanged. Choosing the second term, -x j /x i ,  yields 

(1-x~---~:'(l-X'~'-l(--~)--(1--x'~J(1-x'~ ~'-' (3.6) 
x s /  x u  x u  xs/  

Thus, choosing the second term has the affect of reversing the order of i and j in the 
corresponding term of the product. Thus we get that 

xs) k x l /  = ~ I]  1 - - -  1 -  , (3.7) i T ( i , j )~T Xj/I X i J  

where the sum is over all tournaments on n vertices such that if (i, j) ~ T and j < i 
then (j,/) ~ A. The proposition follows by taking the constant term of each side of 
Eq. (3.7) and using Lemma 3.1. 
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