Bernoulli Trials Problems for 2015

- 1: The number of positive integers whose digits occur in strictly decreasing order is $2(2^9-1)$.
- **2:** Let n be the smallest positive integer such that $7^n \equiv 1 \mod 2015$. Then $n \geq 100$.
- **3:** The number $\sqrt[3]{7+5\sqrt{2}} + \sqrt{11-6\sqrt{2}}$ is rational.
- 4: For every field F and every square matrix A with entries in F, $Row(A) \cap Null(A) = \{0\}$.
- **5:** For each $n \in \mathbb{Z}^+$, let x_n be the number of matrices $A \in M_{3 \times n}(\mathbb{Z}_3)$ with no two horizontally or vertically adjacent entries equal. Then there exists $n \in \mathbb{Z}^+$ such that x_n is a square.

6:
$$\prod_{k=1}^{50} \frac{2k}{2k-1} > 12.$$

7: $\int_0^{\pi/2} \sqrt{2 \tan x} \, dx > \pi.$

- 8: A light at position (0, 0, 4) shines down on the sphere of radius 1 centered at (3, 0, 2) casting a shadow on the *xy*-plane. The area of the shadow is greater than 33.
- **9:** There exists a continuous function $f : [0,1] \to [0,1]$ such that for every $y \in [0,1]$ the number of $x \in [0,1]$ for which f(x) = y is finite and even.
- 10: There exists a polynomial $f \in \mathbf{Q}[x, y]$ such that the map $f : \mathbf{N} \times \mathbf{N} \to \mathbf{N}$ is bijective.
- **11:** There exists a bijective map $f : \mathbf{Z}^+ \to [0,1] \cap \mathbf{Q}$ such that $\sum_{n=1}^{\infty} \frac{f(n)}{n}$ converges.
- 12: For every sequence of real numbers $\{a_n\}$, if $\sum_{n=1}^{\infty} a_n$ converges then so does the series $a_1 + a_2 + a_4 + a_3 + a_8 + a_7 + a_6 + a_5 + a_{16} + a_{15} + \dots + a_9 + a_{32} + a_{31} + \dots + a_{17} + a_{64} + \dots$
- 13: Initially, n = 2. Two players, A and B, take turns with A going first. At each turn, the player whose turn it is can either replace n by n + 1 or by 2n. The first player to replace n by a number larger than 130 loses. In this game, player A has a winning strategy.