Bernoulli Trials Problems for 2015

1: The number of positive integers whose digits occur in strictly decreasing order is $2\left(2^{9}-1\right)$.
2: Let n be the smallest positive integer such that $7^{n} \equiv 1 \bmod 2015$. Then $n \geq 100$.
3: The number $\sqrt[3]{7+5 \sqrt{2}}+\sqrt{11-6 \sqrt{2}}$ is rational.
4: For every field F and every square matrix A with entries in $F, \operatorname{Row}(A) \cap \operatorname{Null}(A)=\{0\}$.
5: For each $n \in \mathbf{Z}^{+}$, let x_{n} be the number of matrices $A \in M_{3 \times n}\left(\mathbf{Z}_{3}\right)$ with no two horizontally or vertically adjacent entries equal. Then there exists $n \in \mathbf{Z}^{+}$such that x_{n} is a square.

6: $\prod_{k=1}^{50} \frac{2 k}{2 k-1}>12$.
7: $\int_{0}^{\pi / 2} \sqrt{2 \tan x} d x>\pi$.
8: A light at position $(0,0,4)$ shines down on the sphere of radius 1 centered at $(3,0,2)$ casting a shadow on the $x y$-plane. The area of the shadow is greater than 33 .

9: There exists a continuous function $f:[0,1] \rightarrow[0,1]$ such that for every $y \in[0,1]$ the number of $x \in[0,1]$ for which $f(x)=y$ is finite and even.

10: There exists a polynomial $f \in \mathbf{Q}[x, y]$ such that the map $f: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ is bijective.
11: There exists a bijective map $f: \mathbf{Z}^{+} \rightarrow[0,1] \cap \mathbf{Q}$ such that $\sum_{n=1}^{\infty} \frac{f(n)}{n}$ converges.
12: For every sequence of real numbers $\left\{a_{n}\right\}$, if $\sum_{n=1}^{\infty} a_{n}$ converges then so does the series $a_{1}+a_{2}+a_{4}+a_{3}+a_{8}+a_{7}+a_{6}+a_{5}+a_{16}+a_{15}+\cdots+a_{9}+a_{32}+a_{31}+\cdots+a_{17}+a_{64}+\cdots$

13: Initially, $n=2$. Two players, A and B, take turns with A going first. At each turn, the player whose turn it is can either replace n by $n+1$ or by $2 n$. The first player to replace n by a number larger than 130 loses. In this game, player A has a winning strategy.

