Bernoulli Trials Problems for 2017

- 1: For all integers $n \ge 2$, we have $n = 3 \mod 6$ if and only if $n^2 + 2^n$ is prime.
- **2:** For all real numbers x and y with $2 \le x \le y$, we have $y^{x+1} \le x y^y$.
- **3:** For every sequence $\{a_n\}_{n\geq 1}$ of real numbers, if $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} a_n^3$ converges.
- 4: There exist 6 open discs in \mathbb{R}^2 such that each disc contains the point (0,0) and no disc contains another disc's centre
- **5:** There exist 99 lines in \mathbb{R}^2 such that for all $k, l \in \{1, 2, \dots, 100\}$, one of the lines passes through the interior of the square with vertices at (k, l), (k-1, l), (k-1, l-1) and (k, l-1).
- **6:** For every positive integer n there exist matrices $A, B \in M_n(\mathbf{R})$ such that

$$\left\{X \in M_n(\mathbf{R}) \middle| AX = XA \text{ and } BX = XB\right\} = \left\{cI \middle| c \in \mathbf{R}\right\}.$$

7: When we rearrange the alternating harmonic series so that each positive term is followed by 4 negative terms, as shown below, the resulting series converges and its sum is zero.

$$\frac{1}{1} - \frac{1}{2} - \frac{1}{4} - \frac{1}{6} - \frac{1}{8} + \frac{1}{3} - \frac{1}{10} - \frac{1}{12} - \frac{1}{14} - \frac{1}{16} + \frac{1}{5} - \frac{1}{18} - \dots = 0.$$

8: There exists a bijection $f: \mathbf{Z}^+ \to \mathbf{Z}^+$ such that $\sum_{n=1}^{\infty} \frac{1}{n+f(n)}$ converges.

- **9:** There exists a bijection $f : \mathbf{Z}^+ \to \mathbf{Z}^+$ such that for every $n \in \mathbf{Z}^+$ we have $n \bigg| \sum_{k=1}^n f(k)$.
- **10:** There exist disjoint nonempty homeomorphic sets A and B with $A \cup B = [0, 1]$.
- **11:** Define $F : \mathbf{Z}[x] \to [0,1]$ as follows. Given a polynomial $f \in \mathbf{Z}[x]$, let F(f) be the real number x with decimal representation $x = 0.a_1a_2a_3\cdots$ where $a_k \in \{0, 1, 2, \cdots, 9\}$ with $a_k = f(k) \mod 10$. Then the range of F contains less than 12,536 elements.
- **12:** There exists a 20-element set $S \subseteq \mathbf{Z}_{210}$ such that $S + S = \mathbf{Z}_{210}$.
- 13: Five regular tetrahedra with unit side length can be arranged in space so that they all share a common edge and are otherwise disjoint.
- 14: Nine points can be arranged on the unit sphere so that each of the 9 points has exactly 4 equidistant nearest neighbours.
- 15: There exist infinitely many primes p with the property that for all $a, b \in \mathbb{Z}^+$ with a < b and gcd(a, b) = 1 such that a, b and p are distinct modulo p, the exponent of p in the prime factorization of $b^{p-1} a^{p-1}$ is odd.