Bernoulli Trials Problems for 2017

1: For all integers $n \geq 2$, we have $n=3 \bmod 6$ if and only if $n^{2}+2^{n}$ is prime.
2: For all real numbers x and y with $2 \leq x \leq y$, we have $y^{x+1} \leq x y^{y}$.
3: For every sequence $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers, if $\sum_{n=1}^{\infty} a_{n}$ converges then $\sum_{n=1}^{\infty}{a_{n}}^{3}$ converges.
4: There exist 6 open discs in \mathbf{R}^{2} such that each disc contains the point $(0,0)$ and no disc contains another disc's centre

5: There exist 99 lines in \mathbf{R}^{2} such that for all $k, l \in\{1,2, \cdots, 100\}$, one of the lines passes through the interior of the square with vertices at $(k, l),(k-1, l),(k-1, l-1)$ and $(k, l-1)$.

6: For every positive integer n there exist matrices $A, B \in M_{n}(\mathbf{R})$ such that

$$
\left\{X \in M_{n}(\mathbf{R}) \mid A X=X A \text { and } B X=X B\right\}=\{c I \mid c \in \mathbf{R}\} .
$$

7: When we rearrange the alternating harmonic series so that each positive term is followed by 4 negative terms, as shown below, the resulting series converges and its sum is zero.

$$
\frac{1}{1}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}+\frac{1}{3}-\frac{1}{10}-\frac{1}{12}-\frac{1}{14}-\frac{1}{16}+\frac{1}{5}-\frac{1}{18}-\cdots=0
$$

8: There exists a bijection $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$such that $\sum_{n=1}^{\infty} \frac{1}{n+f(n)}$ converges.
9: There exists a bijection $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$such that for every $n \in \mathbf{Z}^{+}$we have $n \mid \sum_{k=1}^{n} f(k)$.
10: There exist disjoint nonempty homeomorphic sets A and B with $A \cup B=[0,1]$.
11: Define $F: \mathbf{Z}[x] \rightarrow[0,1]$ as follows. Given a polynomial $f \in \mathbf{Z}[x]$, let $F(f)$ be the real number x with decimal representation $x=0 . a_{1} a_{2} a_{3} \cdots$ where $a_{k} \in\{0,1,2, \cdots, 9\}$ with $a_{k}=f(k) \bmod 10$. Then the range of F contains less than 12,536 elements.

12: There exists a 20 -element set $S \subseteq \mathbf{Z}_{210}$ such that $S+S=\mathbf{Z}_{210}$.
13: Five regular tetrahedra with unit side length can be arranged in space so that they all share a common edge and are otherwise disjoint.

14: Nine points can be arranged on the unit sphere so that each of the 9 points has exactly 4 equidistant nearest neighbours.

15: There exist infinitely many primes p with the property that for all $a, b \in \mathbf{Z}^{+}$with $a<b$ and $\operatorname{gcd}(a, b)=1$ such that a, b and p are distinct modulo p, the exponent of p in the prime factorization of $b^{p-1}-a^{p-1}$ is odd.

