SPECIAL K

Saturday November 3, 2012
 10:00 am - 1:00 pm

1: Let $f(x)=x^{4}+2 x^{3}$. Find the equation of a line which is tangent to the curve $y=f(x)$ at two distinct points.

2: Find the area of the region

$$
R=\left\{(x, y) \in \mathbf{R}^{2} \mid\left(x^{2}+y^{2}\right)^{2} \leq 4 x^{2} \text { and } x\left(x^{2}+y^{2}\right) \leq 2 \sqrt{3} x y\right\}
$$

3: Let x_{n} be the number of $2 \times n$ matrices with entries in $\{0,1\}$ which do not contain the 2×2 block $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Find $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}$.

4: Let $k \geq 3$ be an integer. Let $n=\frac{k(k+1)}{2}$. Let $S \subseteq \mathbf{Z}_{n}$ with $|S|=k$. Show that $S+S \neq \mathbf{Z}_{n}$. Note that $|S|$ denotes the cardinality of S and $S+S=\{x+y \mid x \in S, y \in S\}$.

5: Let $f: \mathbf{R} \rightarrow \mathbf{R}$. Suppose that $\lim _{x \rightarrow 0} f(x)=f(0)=0$ and $\lim _{x \rightarrow 0} \frac{f(2 x)-f(x)}{x}=0$. Show that f is differentiable at 0 with $f^{\prime}(0)=0$.

6: Let \mathbf{Z}^{+}be the set of positive integers. Show that there exists a bijection $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$ with the property that $\prod_{k=1}^{n} f(k)$ is an $n^{\text {th }}$ power for every $n \in \mathbf{Z}^{+}$.

BIG E

Saturday November 3, 2012 10:00 am - 1:00 pm

1: Find the volume of the region

$$
R=\left\{(x, y, z) \in \mathbf{R}^{3} \mid\left(x^{2}+y^{2}+z^{2}\right)^{2} \leq 4 x^{2} \text { and } x\left(x^{2}+y^{2}\right) \leq x z^{2}\right\} .
$$

2: Find the number of $3 \times n$ matrices with entries in $\{0,1\}$ which do not contain the 2×2 block $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

3: Let $k \geq 3$ be an integer. Let $n=\frac{k(k+1)}{2}$. Let $S \subseteq \mathbf{Z}_{n}$ with $|S|=k$. Show that $S+S \neq \mathbf{Z}_{n}$. Note that $|S|$ denotes the cardinality of S and $S+S=\{x+y \mid x \in S, y \in S\}$.

4: Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$. Suppose that f is continuous and that $\int_{0}^{1} f(a+t u) d t=0$ for every point $a \in \mathbf{R}^{2}$ and every vector $u \in \mathbf{R}^{2}$ with $|u|=1$. Show that f is constant.

5: Let \mathbf{Z}^{+}be the set of positive integers. Show that there exists a bijection $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$ with the property that $\prod_{k=1}^{n} f(k)$ is an $n^{\text {th }}$ power for every $n \in \mathbf{Z}^{+}$.

6: Let A be an $n \times n$ matrix. Let u be an eigenvector of A for the eigenvalue 1 . Suppose that all of the entries of A and all of the entries of u are positive. Show that the eigenspace for the eigenvalue 1 is 1 -dimensional.

