SPECIAL K Saturday November 3, 2012 10:00 am - 1:00 pm

- 1: Let $f(x) = x^4 + 2x^3$. Find the equation of a line which is tangent to the curve y = f(x) at two distinct points.
- 2: Find the area of the region

$$R = \left\{ (x, y) \in \mathbf{R}^2 \, \middle| \, (x^2 + y^2)^2 \le 4x^2 \text{ and } x(x^2 + y^2) \le 2\sqrt{3} \, xy \right\}.$$

- **3:** Let x_n be the number of $2 \times n$ matrices with entries in $\{0,1\}$ which do not contain the 2×2 block $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Find $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$.
- 4: Let $k \ge 3$ be an integer. Let $n = \frac{k(k+1)}{2}$. Let $S \subseteq \mathbf{Z}_n$ with |S| = k. Show that $S + S \neq \mathbf{Z}_n$. Note that |S| denotes the cardinality of S and $S + S = \{x + y | x \in S, y \in S\}$.
- **5:** Let $f : \mathbf{R} \to \mathbf{R}$. Suppose that $\lim_{x \to 0} f(x) = f(0) = 0$ and $\lim_{x \to 0} \frac{f(2x) f(x)}{x} = 0$. Show that f is differentiable at 0 with f'(0) = 0.
- 6: Let \mathbf{Z}^+ be the set of positive integers. Show that there exists a bijection $f : \mathbf{Z}^+ \to \mathbf{Z}^+$ with the property that $\prod_{k=1}^n f(k)$ is an n^{th} power for every $n \in \mathbf{Z}^+$.

BIG E Saturday November 3, 2012 10:00 am - 1:00 pm

1: Find the volume of the region

$$R = \left\{ (x, y, z) \in \mathbf{R}^3 \, \middle| \, (x^2 + y^2 + z^2)^2 \le 4x^2 \text{ and } x(x^2 + y^2) \le xz^2 \right\}.$$

- **2:** Find the number of $3 \times n$ matrices with entries in $\{0, 1\}$ which do not contain the 2×2 block $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **3:** Let $k \ge 3$ be an integer. Let $n = \frac{k(k+1)}{2}$. Let $S \subseteq \mathbf{Z}_n$ with |S| = k. Show that $S + S \neq \mathbf{Z}_n$. Note that |S| denotes the cardinality of S and $S + S = \{x + y | x \in S, y \in S\}$.
- **4:** Let $f : \mathbf{R}^2 \to \mathbf{R}$. Suppose that f is continuous and that $\int_0^1 f(a + tu) dt = 0$ for every point $a \in \mathbf{R}^2$ and every vector $u \in \mathbf{R}^2$ with |u| = 1. Show that f is constant.
- **5:** Let \mathbf{Z}^+ be the set of positive integers. Show that there exists a bijection $f : \mathbf{Z}^+ \to \mathbf{Z}^+$ with the property that $\prod_{k=1}^n f(k)$ is an n^{th} power for every $n \in \mathbf{Z}^+$.
- 6: Let A be an $n \times n$ matrix. Let u be an eigenvector of A for the eigenvalue 1. Suppose that all of the entries of A and all of the entries of u are positive. Show that the eigenspace for the eigenvalue 1 is 1-dimensional.