SPECIAL K

Saturday November 9, 2013 10:00 am - 1:00 pm

1: Let a, n and k be positive integers. Suppose that $m \geq 3$ and $\operatorname{gcd}(a, m)=1$. Show that $a^{k}+(m-a)^{k} \equiv 0 \bmod m^{2}$ if and only if m is odd and $k \equiv m \bmod 2 m$.

2: Find the number of positive integers k such that $k^{2}+2013$ is a square.

3: For each positive integer n, let a_{n} be the first digit in the decimal representation of 2^{n}, let b_{n} be the number of indices $k \leq n$ for which $a_{k}=1$, and let c_{n} be the number of indices $k \leq n$ for which $a_{k}=2$. Show that there exists a positive integer N such that for all $n \geq N$ we have $b_{n}>c_{n}$.

4: Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers such that $a_{n} \leq \frac{a_{n-1}+a_{n-2}}{2}$ for all $n \geq 3$. Show that $\left\{a_{n}\right\}$ converges.

5: Let $f(x)=a x^{2}+b x+c$ with $a, b, c \in \mathbf{Z}$. Suppose that $1<f(1)<f(f(1))<f(f(f(1)))$. Show that $a \geq 0$.

6: Let E be an ellipse in \mathbf{R}^{2} centred at the point O. Let A and B be two points on E such that the line $O A$ is perpendicular to the line $O B$. Show that the distance from O to the line through A and B does not depend on the choice of A and B.

BIG E

Saturday November 9, 2013 10:00 am - 1:00 pm

1: Find the number of positive integers k such that $k^{2}+10$! is a perfect square.
2: Let $f:[0,1] \rightarrow \mathbf{R}$ be continuous. Suppose that $\int_{0}^{x} f(t) d t \geq f(x) \geq 0$ for all $x \in[0,1]$. Show that $f(x)=0$ for all $x \in[0,1]$.

3: For each positive integer n, let a_{n} be the first digit in the decimal representation of 2^{n}, let b_{n} be the number of indices $k \leq n$ for which $a_{k}=1$, and let c_{n} be the number of indices $k \leq n$ for which $a_{k}=2$. Show that there exists a positive integer N such that for all $n \geq N$ we have $b_{n}>c_{n}$.

4: Let p be an odd prime. Show that $\binom{p}{p} \equiv 2 \bmod p^{2}$.
5: Let V be a vector space over \mathbf{R}. Let V^{*} be the space of linear maps $g: V \rightarrow \mathbf{R}$. Let F be a finite subset of V^{*}. Let $U=\{x \in V \mid f(x)=0$ for all $f \in F\}$. Show that for all $g \in V^{*}$, if $g(x)=0$ for all $x \in U$ then $g \in \operatorname{Span}(F)$.

6: Let a, b and c be positive real numbers. Let E be the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ in \mathbf{R}^{3}. Let $u, v, w \in E$ be such that the set $\{u, v, w\}$ is orthogonal. Show that the distance from the origin to the plane through u, v and w does not depend on the choice of u, v and w.

