SPECIAL K Saturday November 9, 2013 10:00 am - 1:00 pm

- **1:** Let a, n and k be positive integers. Suppose that $m \ge 3$ and gcd(a,m) = 1. Show that $a^k + (m-a)^k \equiv 0 \mod m^2$ if and only if m is odd and $k \equiv m \mod 2m$.
- **2:** Find the number of positive integers k such that $k^2 + 2013$ is a square.
- **3:** For each positive integer n, let a_n be the first digit in the decimal representation of 2^n , let b_n be the number of indices $k \leq n$ for which $a_k = 1$, and let c_n be the number of indices $k \leq n$ for which $a_k = 2$. Show that there exists a positive integer N such that for all $n \geq N$ we have $b_n > c_n$.
- 4: Let $\{a_n\}_{n\geq 1}$ be a sequence of positive real numbers such that $a_n \leq \frac{a_{n-1}+a_{n-2}}{2}$ for all $n\geq 3$. Show that $\{a_n\}$ converges.
- **5:** Let $f(x) = ax^2 + bx + c$ with $a, b, c \in \mathbb{Z}$. Suppose that 1 < f(1) < f(f(1)) < f(f(f(1))). Show that $a \ge 0$.
- **6:** Let *E* be an ellipse in \mathbb{R}^2 centred at the point *O*. Let *A* and *B* be two points on *E* such that the line *OA* is perpendicular to the line *OB*. Show that the distance from *O* to the line through *A* and *B* does not depend on the choice of *A* and *B*.

BIG E Saturday November 9, 2013 10:00 am - 1:00 pm

- 1: Find the number of positive integers k such that $k^2 + 10!$ is a perfect square.
- **2:** Let $f:[0,1] \to \mathbf{R}$ be continuous. Suppose that $\int_0^x f(t) dt \ge f(x) \ge 0$ for all $x \in [0,1]$. Show that f(x) = 0 for all $x \in [0,1]$.
- **3:** For each positive integer n, let a_n be the first digit in the decimal representation of 2^n , let b_n be the number of indices $k \leq n$ for which $a_k = 1$, and let c_n be the number of indices $k \leq n$ for which $a_k = 2$. Show that there exists a positive integer N such that for all $n \geq N$ we have $b_n > c_n$.

4: Let *p* be an odd prime. Show that $\binom{2p}{p} \equiv 2 \mod p^2$.

5: Let V be a vector space over **R**. Let V^* be the space of linear maps $g: V \to \mathbf{R}$. Let F be a finite subset of V^* . Let $U = \{x \in V | f(x) = 0 \text{ for all } f \in F\}$. Show that for all $g \in V^*$, if g(x) = 0 for all $x \in U$ then $g \in \text{Span}(F)$.

6: Let a, b and c be positive real numbers. Let E be the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ in \mathbb{R}^3 . Let $u, v, w \in E$ be such that the set $\{u, v, w\}$ is orthogonal. Show that the distance from the origin to the plane through u, v and w does not depend on the choice of u, v and w.