SPECIAL K

Saturday November 1, 2014
 10:00 am - 1:00 pm

1: Three circles, of radii 1,2 and 3 , are tangent in pairs at the points A, B and C. Find the area of triangle $A B C$.

2: Find the number of ways to represent 10 ! as a sum of consecutive positive integers.

3: Given $a \geq 1$, find the area of the square with one vertex at $(a, 0)$, one vertex above the curve $y=\sqrt{x}$, and the other two vertices on the curve $y=\sqrt{x}$.

4: Let n be an odd integer with $n>3$. Let k be the smallest positive integer such that $k n+1$ is a square, and let l be the smallest positive integer such that $l n$ is a square. Show that n is prime if and only if $n<\min \{4 k, 4 l\}$.

5: A zigzag is a set of the form $Z=\{t a+(1-t) b \mid 0 \leq t \leq 1\} \cup\{a+t u \mid t \geq 0\} \cup\{b-t u \mid t \geq 0\}$ for some $a, b, u \in \mathbf{R}^{2}$ with $u \neq 0$ (Z is the union of the line segment between a and b with a ray at a in the direction of u and a ray at b in the direction $-u)$. Given a positive integer n, find the maximum number of regions into which n zigzags divide the plane.

6: Let $\left\{a_{n}\right\}$ be a sequence of real numbers with the property that for every $r \in \mathbf{R}$ with $r>1$, we have $\lim _{k \rightarrow \infty} a_{\left\lfloor r^{k}\right\rfloor}=0$. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.

BIG E

Saturday November 1, 2014
 10:00 am - 1:00 pm

1: Given $a \geq 1$, find the area of the square with one vertex at $(a, 0)$, one vertex above the curve $y=\sqrt{x}$, and the other two vertices on the curve $y=\sqrt{x}$.

2: There are n closed (non-degenerate) line segments in \mathbf{R}^{3}. The sum of the lengths of the line segments is equal to 2014. Show that there is a plane in \mathbf{R}^{3}, which is disjoint from all of the line segments, such that the distance from the plane to the origin is less that 600 .

3: Let n be an odd integer with $n>3$. Let k be the smallest positive integer such that $k n+1$ is a square, and let l be the smallest positive integer such that $l n$ is a square. Show that n is prime if and only if $n<\min \{4 k, 4 l\}$.

4: Let $f:[0,1] \rightarrow \mathbf{R}$. Suppose f is continuous on $[0,1]$ with $f(0)=f(1)=0$ and $f(x)>0$ for all $x \in(0,1)$, and $f^{\prime \prime}$ exists and is continuous in (0,1). Show that

$$
\int_{0}^{1}\left|\frac{f^{\prime \prime}(x)}{f(x)}\right| d x>4
$$

5: Let $\left\{a_{n}\right\}$ be a sequence of real numbers with the property that for every $r \in \mathbf{R}$ with $r>1$, we have $\lim _{k \rightarrow \infty} a_{\left\lfloor r^{k}\right\rfloor}=0$. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.

6: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be bijective. Suppose that f maps connected sets to connected sets and that f maps disconnected sets to disconnected sets. Prove that f and f^{-1} are both continuous.

