SPECIAL K Saturday November 7, 2015 10:00 am - 1:00 pm

- 1: Let $x_0 = -1$, $x_1 = 3$ and $x_n = 2x_{n-1} + x_{n-2}$ for $n \ge 2$. Find the product $x_{n-2}x_{n-1}x_n$ where n is the largest integer with $n \ge 2$ for which x_{n-2} , x_{n-1} and x_n are all prime.
- **2:** Let $f : [0,1] \to [0,1]$ be increasing and convex with f(0) = 0 and f(1) = 1 (f is convex means that for all $0 \le a < b \le 1$, the line segment from (a, f(a)) to (b, f(b)) lies on or above the graph of y = f(x) for $a \le x \le b$). Show that $f(x)f^{-1}(x) \le x^2$ for all $x \in [0,1]$.
- **3:** For a positive integer n, let $\tau(n)$ be the number of divisors of n and let $\sigma(n)$ be the sum of the divisors of n. Show that for all integers $n \ge 2$ we have $\frac{\sigma(n)}{\tau(n)} \le \frac{n+1}{2}$ with equality if and only if n is prime.
- 4: Triangle ABC has a right angle at B. The angle bisector at A meets BC at D and the angle bisector at C meets AB at E. Given that AD = 9 and $CE = 8\sqrt{2}$, find AC.
- **5:** Let $f_1(x) = x^2 1$ and let $f_{n+1}(x) = f_1(f_n(x))$ for $n \ge 1$. For each positive integer n, find the number of distinct real roots of the polynomial $f_n(x)$.
- **6:** Let **N** be the set of natural numbers. Let *S* be a set of subsets of **N** and let $n \in \mathbf{N}$. Suppose that for all distinct sets $A, B \in S$, the intersection $A \cap B$ has at most *n* elements. Show that *S* is finite or countable.

BIG E Saturday November 7, 2015 10:00 am - 1:00 pm

- 1: Let $x_0 = 1$ and $x_1 = 2$, and for $n \ge 1$ let $x_{2n} = x_{2n-1} + 2x_{2n-2}$ and $x_{2n+1} = 2x_{2n} 3x_{2n-1}$. Find a closed form formula for x_{2n} and x_{2n+1} .
- **2:** Let *n* be a positive integer. Find the smallest positive integer *d* such that $d = \det(A)$ for some $n \times n$ matrix whose entries all lie in $\{\pm 1\}$.
- **3:** Let $0 < a_n \in \mathbf{R}$ for all integers $n \ge 1$. Let $b_1 = 1$, and let $b_{n+1} = b_n + \frac{a_n}{b_n}$ for all $n \ge 1$. Show that $\sum a_n$ converges if and only if $\{b_n\}$ converges.
- 4: Let G be a group. Suppose the map $\phi: G \to G$ given by $\phi(x) = x^3$ is an injective group homomorphism. Show that G is abelian.
- 5: For a positive integer n, let T(n) be the product of the positive divisors of n. Show that for all positive integers n and m, if T(n) = T(m) then n = m.

6: Show that the integral $\int_0^\infty \sin(x) \sin(x^2) dx$ converges..