SPECIAL K

Saturday November 7, 2015
 10:00 am - 1:00 pm

1: Let $x_{0}=-1, x_{1}=3$ and $x_{n}=2 x_{n-1}+x_{n-2}$ for $n \geq 2$. Find the product $x_{n-2} x_{n-1} x_{n}$ where n is the largest integer with $n \geq 2$ for which x_{n-2}, x_{n-1} and x_{n} are all prime.

2: Let $f:[0,1] \rightarrow[0,1]$ be increasing and convex with $f(0)=0$ and $f(1)=1(f$ is convex means that for all $0 \leq a<b \leq 1$, the line segment from $(a, f(a))$ to $(b, f(b))$ lies on or above the graph of $y=f(x)$ for $a \leq x \leq b)$. Show that $f(x) f^{-1}(x) \leq x^{2}$ for all $x \in[0,1]$.

3: For a positive integer n, let $\tau(n)$ be the number of divisors of n and let $\sigma(n)$ be the sum of the divisors of n. Show that for all integers $n \geq 2$ we have $\frac{\sigma(n)}{\tau(n)} \leq \frac{n+1}{2}$ with equality if and only if n is prime.

4: Triangle $A B C$ has a right angle at B. The angle bisector at A meets $B C$ at D and the angle bisector at C meets $A B$ at E. Given that $A D=9$ and $C E=8 \sqrt{2}$, find $A C$.

5: Let $f_{1}(x)=x^{2}-1$ and let $f_{n+1}(x)=f_{1}\left(f_{n}(x)\right)$ for $n \geq 1$. For each positive integer n, find the number of distinct real roots of the polynomial $f_{n}(x)$.

6: Let \mathbf{N} be the set of natural numbers. Let S be a set of subsets of \mathbf{N} and let $n \in \mathbf{N}$. Suppose that for all distinct sets $A, B \in S$, the intersection $A \cap B$ has at most n elements. Show that S is finite or countable.

BIG E

Saturday November 7, 2015
 10:00 am - 1:00 pm

1: Let $x_{0}=1$ and $x_{1}=2$, and for $n \geq 1$ let $x_{2 n}=x_{2 n-1}+2 x_{2 n-2}$ and $x_{2 n+1}=2 x_{2 n}-3 x_{2 n-1}$. Find a closed form formula for $x_{2 n}$ and $x_{2 n+1}$.

2: Let n be a positive integer. Find the smallest positive integer d such that $d=\operatorname{det}(A)$ for some $n \times n$ matrix whose entries all lie in $\{ \pm 1\}$.

3: Let $0<a_{n} \in \mathbf{R}$ for all integers $n \geq 1$. Let $b_{1}=1$, and let $b_{n+1}=b_{n}+\frac{a_{n}}{b_{n}}$ for all $n \geq 1$. Show that $\sum a_{n}$ converges if and only if $\left\{b_{n}\right\}$ converges.

4: Let G be a group. Suppose the map $\phi: G \rightarrow G$ given by $\phi(x)=x^{3}$ is an injective group homomorphism. Show that G is abelian.

5: For a positive integer n, let $T(n)$ be the product of the positive divisors of n. Show that for all positive integers n and m, if $T(n)=T(m)$ then $n=m$.

6: Show that the integral $\int_{0}^{\infty} \sin (x) \sin \left(x^{2}\right) d x$ converges..

