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The Enumeration of Directed Closed Euler Trails and Directed
Hamiltonian Circuits by Lagrangian Methods

I. P. GOuLDEN AND D. M. JACKSON

1. INTRODUCTION

In this paper we demonstrate that the numbers of closed directed Euler trails and
directed Hamiltonian circuits in a digraph may be obtained as coefficients in the power
series solution of a single system of functional equations. These results, separately, have
more elementary proofs, and in fact the first is the well known BEST Theorem [1].
However, it seems of interest that they may both be obtained by application of the
Lagrange Theorem to a single power series.

In a previous paper [4], we have demonstrated that the matrix tree theorem [6]and a
theorem of Good [3] may similarly be obtained as different coefficients in the power series
solution of a particular system of functional equations. In that case, the system of equations
was a multivariate generalization of the equation T =x e”, for labelled, rooted, abstract
trees.

The following notation is used. Let A be an n X n matrix whose (i, j)-element is a;. We
write A=[a;],x, and a; =[A];. We denote the determinant of A by |Al, |la;| and det(A),
and the permanent of A by per(A). The (i, j)-cofactor of A is denoted by cof;(A). If
D =[d;j]uxn then D! denotes[[;,_; d;!, and A® denotes M5 =1 ap. Leta, B<{1,...,n}=
N.. Then Al«a|B8] denotes the submatrix of A intercepted between the rows of A with
labels in a and the columns of A with labels in 8, and A(a|B) denotes ALV, \a|N,\B].
Ifx=(xy,...,x:) and k= (ky, ..., k,) then x* denotes [];_, x{* and k! denotes []]_, k;!.
If f(x) is a formal power series in the indeterminates xi, . .. , X, then [x*]f(x) denotes
the coefficient of x* in f(x). Finally 1 is the vector all of whose entries are 1s.

2. THE SYSTEM OF FUNCTIONAL EQUATIONS

Let (22’,‘3 (D), where D = [dj;].x., be the number of non-empty sequences on &, which
begin with b € ¥, and end with ¢ € 4, and have d;; occurrences of the substring ij, for

Li=1,...,x. lfn=(ny,...,n), where n; is the number of occurrences of ; in such a
sequence, then n; — 8, = Z};l dijyni—8w=Yj-1dy for i=1, ..., x, by the obvious com-
binatorial argument. Let A =[a;]cxw X=(x1, ..., x,) Where the a; and x3, ..., x. are

indeterminates, and define the power series

fo=f(A, x)= % N5 (DA K"

forb=1,..., k, where the summation is over all appropriate D, and n is determined from
D by the above equations. These power series satisfy the system of functional equations
given in the following result.

LeMmmMma 2.1
20 (D)=[A X"V (A, %)
where f; = x{8;c +Yj=1 ayfi} fori=1, ..., k.
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ProOOF. The power series f; is the generating function for non-empty sequences
beginning with i and ending with ¢, in which an occurrence of j in the sequence is marked
by the indeterminate x;, for j=1, ..., « and an occurrence of the substring j/ is marked
by ay, for j, [ =1, ..., . Such a sequence can have length one only when i = ¢, and in this
case consists of a single symbol c. Thus sequences of length one contribute 8icx; to the
generating function f. Any other such sequence has second element j, for some j=
1,..., x. These consist of the element / prefixing a non-empty sequence beginning with
j and ending with c. The latter are enumerated by f» and in addition we record the initial
i by x; and the initial substring ij by a;. Thus we have

fi = 6,-Cx,-+ z x,-aijfj, fori= 1, sy Ky
j=1

and the result follows.

The following two results will be used in the solution of this system of functional
equations. :

THEOREM 2.2 (Goop [2], TutTE [7]). Let d=(d1,...,d.) and vy be formal power

series in the indeterminates £= (&1, ..., &) and with no terms with negative exponents.
Suppose that {= ({1, . . ., L) satisfies & = {ipi(§) fori= 1,..., k. Then
& _9¢i(&)

I E0) =€), 205

The next corollary is useful in allowing us to avoid the extraction of coefficients from
the determinant in Theorem 2.2.

COROLLARY 2.3 (JACKSON AND GOULDEN [5]).  Under the conditions of Theorem 2.2
Further suppose that ¢;(£) is independent of &; for each (i, ) e S < N2 Then

K
v -1 . v,
(18 = w7 Ll —peall 11 (657 -+ - €161
113 i==
where the summation is over all non-negative integer k X k matrices such that

S wj=vi—nj=1,...,k and wi; =0 foreach (i, j)e &.
i=1 .

3. CLosED DIRECTED EULER TRAILS
We first obtain an expression for the number of closed directed Euler trails of a digraph.
This result is the BEST Theorem [1].

TueorEM 3.1. Let e be the number of closed directed Euler trails in a digraph on vertex
set{1,..., k}, with adjacency mairix D = [dij)ex« and in-degree (i) = out-degree (i) =k, for
i=1,...,k Then

e = (k—1)! cofcc[8ik: — diflixx
where k= (k1,..., ko), foranyc=1,..., k.

PrOOF. If, in Lemma 2.1, we consider fi,..., f. as power series in X, . . ., X with
coefficients which are polynomials in the indeterminates a;, then

0%(D) =[A"1([x"f.),
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where f; = x; (8 +Zf=1 aifi),fori=1, ..., x. Thuswe canapply Corollary 2.3 todetermine
[x"]f., by making the following identifications:

& =fi, Li=x, wv= ny 1 =0i, ¢i=28;+ Z aijfj»
i=1
fori=1,...,x, and ¥ = . We thus obtain
x"lfe=(r1 )ty 18557: — ] Hl L - feelgl
n =

where the summation is over all p. with the column-sum restrictions Yi 1 i =n;—8; for
i=1,...,k But

" " n K w 6;?"zf=x#if
(i flele i =ny! I1 ai’ [ wi! N
i
! <ni_ 2 ,u,-i)!
i=1

s0 we have a non-zero contribution only when we have the row restrictions Yo Wij = 1y
for i # c. The column restrictions on p mean that Y1 Xici my=n1++n.—1, and thus
we deduce the final row restriction Z};l #cj =n.—1, for a non-zero contribution to the
coefficient. Accordingly,

[x"] fe=m-1)! > ”511"11' *,Umj”AM(P-!)—l

where the summation is over all i such that n; —§;. = Z,’;l Wij = Z,’;l wipfori=1,..., x.
Finally, we have

025(D) =[AP1([x"1£)
=[APYn—D)! T 1551 — g A*(l)

= (n—1)!6;m; ~ dyl|(DN) 7,

since D satisfies exactly the same restrictions as w.

Now a closed directed Euler trail in a digraph with adjacency matrix D can be
represented as a sequence, by listing the names of the vertices which are traversed in
succession, starting at an arbitrary vertex c, and terminating there as well. Such a sequence
begins and ends with ¢, has d;; occurrences of the substring ij, and 1; = k: + 8, occurrences
of i, fori,j=1,..., «, since the trail passes through each edge exactly once. Thus there
are 25(D) such sequences. Moreover, since edges in the trail are distinct, and the
sequence representation of the trail can be started at any of the k, occurrences of vertex
¢, then

e =k;' D12 (D)
=k —D)5;(k; + 8ic) — d;l.
Using row ¢ to expand the determinant, we obtain
185 (ki + 810) — i =18k — | + cOf e[ 81k — iy L
but [|8;k; —dy| = 0 since Yo dy= Y idi=kyfori=1,..., «, and the result follows.
Since from [6], cof..[8;k; — dij]x« is ., the number of out-directed Spanning arbores-

cences rooted at vertex ¢ for a digraph with adjacency matrix D, then Theorem 3.1 can
be restated as e = (k—1)!r,, a result given in van Aardenne-Ehrenfest and de Bruijn [1].
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4. DIRECTED HAMILTONIAN CIRCUITS

We now consider the enumeration of directed Hamiltonian circuits in a digraph.

THEOREM 4.1.  Let h be the number of directed Hamiltonian circuits in a digraph on k
vertices with adjacency matrix D. Then

h =% (- 1)"'(det D[a|a])(per D(ala))
where the sum is over all & < N, \(c}, for any c e N, and det D[J|F]=1.

PROOF. In the notation of Lemma 2.1, the generating function for sequences on &,
~which begin and end with ¢ € ¥, and have exactly one occurrence of each of the remaining
elements of W, is [x.x']f., where in this case [ is regarded as a power series in x4, . . ., x,,

with coefficients which are polynomials in the indeterminates a;. From Lemma 2.1 and
Theorem 2.2 we obtain

[xx'1f. = [£.8 1.8 — ayf
where ¢i(f) = 8ic + ¢i(6), yi() =%_, ayf, fori=1,..., k. Thus
[xeX'fe = [£0c/I8,: — ayf]
= (16 {1851 — aufill+ cofoc[85 0 — ayfi L,

by expanding the determinant using row c. But all the row sums in [8ihi — ai;fi)ux, are
zero, so that

[xcxl]fc = [f1]¢c{0 + COfcc [aijlﬁi - aiif}]KXK}
= [fl](l//c + 1) COfcc [Biid/i - aiifj]r( XK
= [fl]l//c COfcc [8ijl1/’i - aiif]']x XKy

since cof [ 8;¢h: — a;;f;lex« is homogeneous of degree (k — 1) infy, . . ., foand fis of degree
«. Finally, expanding the cofactor in terms involving a given subset of the ;s on the
diagonal, we obtain

rex'lfe =l L (=1t Alala)(IT ﬁ)(feﬂ\a,pi)‘

ac N \{c} Njea N

= ¥ (-1"(det Alala])(per A(a]a)),

ac N \{c}
where det A[J|D]=1.

Now a directed Hamiltonian circuit in a digraph can be represented as a sequence, by
listing the names of the vertices which are traversed in succession, starting at an arbitrary
vertex ¢, and terminating there as well. Such a sequence starts and ends with ¢, contains
no other occurrence of ¢ and has exactly one occurrence of each of the remaining
elements of ... The generating function for such sequences is accordingly [x.x']f., which
is evaluated above, and in which the occurrence of the substring i/ is marked by the
indeterminate ay, for i,j=1,..., k. The occurrence of the substring i/ in a sequence -
means that a directed edge from vertex i to vertex j is used in the corresponding directed
Hamiltonian circuit, and since such a substring occurs at most once, there are d;; choices
for which edge is used in the graph. Thus 4 is obtained by replacing a; in [xcxljfC by d;;.
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