MATH 136 Midterm Self-Assessment

What is this?

- This document contains a list of statements that you should be able to proclaim about your understanding of some of the things we've seen so far.

What is this?

- This document contains a list of statements that you should be able to proclaim about your understanding of some of the things we've seen so far.
- This is not meant to be an exhaustive list of everything you should know.

What is this?

- This document contains a list of statements that you should be able to proclaim about your understanding of some of the things we've seen so far.
- This is not meant to be an exhaustive list of everything you should know.
- There is no substitute to working through Chapters 1-4, attempting all of the relevant Practice Problems, re-doing any Quiz or WA problems you got wrong, and carefully studying the solutions to all of the Quiz and WA problems (even for problems you got right-since the posted solution might offer a different approach).

What is this?

- This document contains a list of statements that you should be able to proclaim about your understanding of some of the things we've seen so far.
- This is not meant to be an exhaustive list of everything you should know.
- There is no substitute to working through Chapters 1-4, attempting all of the relevant Practice Problems, re-doing any Quiz or WA problems you got wrong, and carefully studying the solutions to all of the Quiz and WA problems (even for problems you got right-since the posted solution might offer a different approach).
- This document can be used to help you identify some areas that you need to review or study more deeply.

Chapter 1: Vectors

How many of these sentences can you truthfully state about your current state of understanding?

Chapter 1: Vectors

How many of these sentences can you truthfully state about your current state of understanding?

- I can perform vector addition and scalar multiplication with vectors in \mathbb{F}^{n}.

Chapter 1: Vectors

How many of these sentences can you truthfully state about your current state of understanding?

- I can perform vector addition and scalar multiplication with vectors in \mathbb{F}^{n}.
- I know the algebraic properties that vector addition and scalar multiplication satisfy.

Chapter 1: Vectors

How many of these sentences can you truthfully state about your current state of understanding?

- I can perform vector addition and scalar multiplication with vectors in \mathbb{F}^{n}.
- I know the algebraic properties that vector addition and scalar multiplication satisfy.
- I understand vector addition and scalar multiplication geometrically.

Chapter 1: Vectors

How many of these sentences can you truthfully state about your current state of understanding?

- I can perform vector addition and scalar multiplication with vectors in \mathbb{F}^{n}.
- I know the algebraic properties that vector addition and scalar multiplication satisfy.
- I understand vector addition and scalar multiplication geometrically.
- I know what the standard basis vectors $\vec{e}_{1}, \ldots, \vec{e}_{n}$ in \mathbb{F}^{n} are.

Chapter 1: Vectors - Dot Product

- I can compute the dot product of two vectors in \mathbb{R}^{n}.

Chapter 1: Vectors - Dot Product

- I can compute the dot product of two vectors in \mathbb{R}^{n}.
- I know the algebraic properties that the dot product satisfies.

Chapter 1: Vectors - Dot Product

- I can compute the dot product of two vectors in \mathbb{R}^{n}.
- I know the algebraic properties that the dot product satisfies.
- I can determine if two vectors in \mathbb{R}^{n} are orthogonal.

Chapter 1: Vectors - Dot Product

- I can compute the dot product of two vectors in \mathbb{R}^{n}.
- I know the algebraic properties that the dot product satisfies.
- I can determine if two vectors in \mathbb{R}^{n} are orthogonal.
- More generally, I can determine the angle between any two non-zero vectors in \mathbb{R}^{n}.

Chapter 1: Vectors - Norm

- I can compute the norm (or length) of a vector in \mathbb{R}^{n}.

Chapter 1: Vectors - Norm

- I can compute the norm (or length) of a vector in \mathbb{R}^{n}.
- I know the algebraic properties that the norm satisfies.

Chapter 1: Vectors - Norm

- I can compute the norm (or length) of a vector in \mathbb{R}^{n}.
- I know the algebraic properties that the norm satisfies.
- I understand what the norm measures geometrically.

Chapter 1: Vectors - Norm

- I can compute the norm (or length) of a vector in \mathbb{R}^{n}.
- I know the algebraic properties that the norm satisfies.
- I understand what the norm measures geometrically.
- I know what a unit vector is.

Chapter 1: Vectors - Norm

- I can compute the norm (or length) of a vector in \mathbb{R}^{n}.
- I know the algebraic properties that the norm satisfies.
- I understand what the norm measures geometrically.
- I know what a unit vector is.
- I know the relationship between the norm and the dot product.

Chapter 1: Vectors - Projection

- Given $\vec{v}, \vec{u} \in \mathbb{R}^{n}$, I can determine $\operatorname{proj}_{\vec{u}}(\vec{v})$ and $\operatorname{perp}_{\vec{u}}(\vec{v})$.

Chapter 1: Vectors - Projection

- Given $\vec{v}, \vec{u} \in \mathbb{R}^{n}$, I can determine $\operatorname{proj}_{\vec{u}}(\vec{v})$ and $\operatorname{perp}_{\vec{u}}(\vec{v})$.
- I know how to visualize $\operatorname{proj}_{\vec{u}}(\vec{v})$ and $\operatorname{perp}_{\vec{u}}(\vec{v})$, at least if \vec{v} and \vec{u} are in \mathbb{R}^{2} or \mathbb{R}^{3}.

Chapter 1: Vectors - Cross Product

- I know how to compute the cross product of two vectors in \mathbb{R}^{3}.

Chapter 1: Vectors - Cross Product

- I know how to compute the cross product of two vectors in \mathbb{R}^{3}.
- I know the algebraic properties that the cross product satisfies.

Chapter 1: Vectors - Cross Product

- I know how to compute the cross product of two vectors in \mathbb{R}^{3}.
- I know the algebraic properties that the cross product satisfies.
- I understand the geometric significance of the cross product.

Chapter 1: Vectors - Cross Product

- I know how to compute the cross product of two vectors in \mathbb{R}^{3}.
- I know the algebraic properties that the cross product satisfies.
- I understand the geometric significance of the cross product.
- I know how to use the cross product to find a vector in \mathbb{R}^{3} that is orthogonal to two given vectors.

Chapter 2: Linear Combinations

- I can define what it means for a vector to be a "linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{F}^{n^{\prime \prime}}$.

Chapter 2: Linear Combinations

- I can define what it means for a vector to be a "linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{F}^{n^{\prime \prime}}$.
- I can determine if a given vector is or is not a linear combination of some other given vectors.

Chapter 2: Span

- I can define the span of $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{F}^{n}$.

Chapter 2: Span

- I can define the span of $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{F}^{n}$.
-I know the difference between $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ and a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Chapter 2: Span

- I can define the span of $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{F}^{n}$.
- I know the difference between $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ and a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k}$.
- I know how to determine if a given vector $\vec{u} \in \mathbb{F}^{n}$ is in $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.

Chapter 2: Span

- I can define the span of $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{F}^{n}$.
-I know the difference between $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ and a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{k}$.
- I know how to determine if a given vector $\vec{u} \in \mathbb{F}^{n}$ is in $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.
- I know how to determine if a given set $A \subseteq \mathbb{F}^{n}$ is equal to Span $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$. (In particular, I can determine if $\mathbb{F}^{n}=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.)

Chapter 2: Lines

- I know how to represent a line \mathcal{L} in \mathbb{R}^{n} algebraically (using a vector equation and/or using parametric equations).

Chapter 2: Lines

- I know how to represent a line \mathcal{L} in \mathbb{R}^{n} algebraically (using a vector equation and/or using parametric equations).
- I know how to find equations for a line \mathcal{L} given two points that lie on \mathcal{L}.

Chapter 2: Lines

- I know how to represent a line \mathcal{L} in \mathbb{R}^{n} algebraically (using a vector equation and/or using parametric equations).
- I know how to find equations for a line \mathcal{L} given two points that lie on \mathcal{L}.
- I know how to find equations for a line \mathcal{L} given a point on \mathcal{L} and a direction vector for \mathcal{L}.

Chapter 2: Lines

- I know how to represent a line \mathcal{L} in \mathbb{R}^{n} algebraically (using a vector equation and/or using parametric equations).
- I know how to find equations for a line \mathcal{L} given two points that lie on \mathcal{L}.
- I know how to find equations for a line \mathcal{L} given a point on \mathcal{L} and a direction vector for \mathcal{L}.
- I can determine when a given point in \mathbb{R}^{n} lies on a given line.

Chapter 2: Lines

- I know how to represent a line \mathcal{L} in \mathbb{R}^{n} algebraically (using a vector equation and/or using parametric equations).
- I know how to find equations for a line \mathcal{L} given two points that lie on \mathcal{L}.
- I know how to find equations for a line \mathcal{L} given a point on \mathcal{L} and a direction vector for \mathcal{L}.
- I can determine when a given point in \mathbb{R}^{n} lies on a given line.
- I can determine when two lines intersect.

Chapter 2: Planes

- I know how to represent a plane \mathcal{P} in \mathbb{R}^{n} algebraically (using a vector equation and/or a scalar equation (in \mathbb{R}^{3})).

Chapter 2: Planes

- I know how to represent a plane \mathcal{P} in \mathbb{R}^{n} algebraically (using a vector equation and/or a scalar equation (in $\left.\mathbb{R}^{3}\right)$).
- I know how to express a plane through the origin as the span of two vectors. I understand that the only planes that can be expressed as spans of vectors are planes through the origin.

Chapter 2: Planes

- I know how to represent a plane \mathcal{P} in \mathbb{R}^{n} algebraically (using a vector equation and/or a scalar equation (in $\left.\mathbb{R}^{3}\right)$).
- I know how to express a plane through the origin as the span of two vectors. I understand that the only planes that can be expressed as spans of vectors are planes through the origin.
- I know how to find equations for a plane \mathcal{P} given three points that lie on \mathcal{P}.

Chapter 2: Planes

- I know how to represent a plane \mathcal{P} in \mathbb{R}^{n} algebraically (using a vector equation and/or a scalar equation (in \mathbb{R}^{3})).
- I know how to express a plane through the origin as the span of two vectors. I understand that the only planes that can be expressed as spans of vectors are planes through the origin.
- I know how to find equations for a plane \mathcal{P} given three points that lie on \mathcal{P}.
- I know how to find equations for a plane \mathcal{P} (in \mathbb{R}^{3}) given a point on \mathcal{P} and a normal vector for \mathcal{P}.

Chapter 2: Planes

- I know how to represent a plane \mathcal{P} in \mathbb{R}^{n} algebraically (using a vector equation and/or a scalar equation (in \mathbb{R}^{3})).
- I know how to express a plane through the origin as the span of two vectors. I understand that the only planes that can be expressed as spans of vectors are planes through the origin.
- I know how to find equations for a plane \mathcal{P} given three points that lie on \mathcal{P}.
- I know how to find equations for a plane \mathcal{P} (in \mathbb{R}^{3}) given a point on \mathcal{P} and a normal vector for \mathcal{P}.
- I can determine when a given point in \mathbb{R}^{n} lies on a given plane.

Chapter 2: Planes

- I know how to represent a plane \mathcal{P} in \mathbb{R}^{n} algebraically (using a vector equation and/or a scalar equation (in $\left.\mathbb{R}^{3}\right)$).
- I know how to express a plane through the origin as the span of two vectors. I understand that the only planes that can be expressed as spans of vectors are planes through the origin.
- I know how to find equations for a plane \mathcal{P} given three points that lie on \mathcal{P}.
- I know how to find equations for a plane \mathcal{P} (in \mathbb{R}^{3}) given a point on \mathcal{P} and a normal vector for \mathcal{P}.
- I can determine when a given point in \mathbb{R}^{n} lies on a given plane.
- I can determine when two planes intersect.

Chapter 3: Systems of Linear Equations

- I can determine when a vector is a solution to a system of equations.

Chapter 3: Systems of Linear Equations

- I can determine when a vector is a solution to a system of equations.
- I can express a system of equations in augmented matrix form $[A \mid \vec{b}]$ and using matrix-vector multiplication $A \vec{x}=\vec{b}$.

Chapter 3: Systems of Linear Equations

- I can determine when a vector is a solution to a system of equations.
- I can express a system of equations in augmented matrix form $[A \mid \vec{b}]$ and using matrix-vector multiplication $A \vec{x}=\vec{b}$.
- I know how to multiply an $m \times n$ matrix A with a vector $\vec{x} \in \mathbb{F}^{n}$ to get the vector $A \vec{x} \in \mathbb{F}^{m}$.

Chapter 3: Gauss-Jordan

- I know how to determine when a matrix is in REF and/or in RREF.

Chapter 3: Gauss-Jordan

- I know how to determine when a matrix is in REF and/or in RREF.
- I know how to solve a system of linear equations by using elementary row operations to reduce its augmented matrix [$A \mid \vec{b}$] to RREF.

Chapter 3: Solution Sets

- I know how to describe solution sets to systems of linear equations using the appropriate technical terminology (free and basic variables/parameters).

Chapter 3: Solution Sets

- I know how to describe solution sets to systems of linear equations using the appropriate technical terminology (free and basic variables/parameters).
- I know what it means for a system of equations to be consistent or inconsistent.

Chapter 3: Solution Sets

- I know how to describe solution sets to systems of linear equations using the appropriate technical terminology (free and basic variables/parameters).
- I know what it means for a system of equations to be consistent or inconsistent.
- I understand that a system of linear equations can either have no solutions, only one solution ("unique solution") or infinitely many solutions.

Chapter 3: Rank and Nullity

- I know how to compute the rank of a given matrix.

Chapter 3: Rank and Nullity

- I know how to compute the rank of a given matrix.
- I know how to compute the nullity of a given matrix.

Chapter 3: Rank and Nullity

- I know how to compute the rank of a given matrix.
- I know how to compute the nullity of a given matrix.
- I can give the full statement of the System Rank Theorem.

Chapter 3: Rank and Nullity

- I know how to compute the rank of a given matrix.
- I know how to compute the nullity of a given matrix.
- I can give the full statement of the System Rank Theorem.
- I understand the statement of the System Rank Theorem.

Chapter 3: Rank and Nullity

- I know how to compute the rank of a given matrix.
- I know how to compute the nullity of a given matrix.
- I can give the full statement of the System Rank Theorem.
- I understand the statement of the System Rank Theorem.
- I have a conceptual understanding of how rank and nullity can be used to give information about systems of linear equations (using, e.g., the System Rank Theorem).

Chapter 3: Coefficient Matrices and Solution Sets

- Given a matrix A, I know what the homogeneous system associated to A is.

Chapter 3: Coefficient Matrices and Solution Sets

- Given a matrix A, I know what the homogeneous system associated to A is.
- I know the difference between the matrix A and a system of equations with coefficient matrix A.

Chapter 3: Coefficient Matrices and Solution Sets

- Given a matrix A, I know what the homogeneous system associated to A is.
- I know the difference between the matrix A and a system of equations with coefficient matrix A.
- Given two consistent systems $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$, I know how their solutions sets are related. I understand this relationship both algebraically and geometrically.

Chapter 3: Null Space

- I can define the null space $\operatorname{Null}(A)$ of a given matrix A.

Chapter 3: Null Space

- I can define the null space $\operatorname{Null}(A)$ of a given matrix A.
- I understand the relationship between $\operatorname{Null}(A)$ and the homogeneous system $A \vec{x}=\overrightarrow{0}$.

Chapter 3: Null Space

- I can define the null space $\operatorname{Null}(A)$ of a given matrix A.
- I understand the relationship between $\operatorname{Null}(A)$ and the homogeneous system $A \vec{x}=\overrightarrow{0}$.
- Given a vector \vec{x}, I can determine whether it is in $\operatorname{Null}(A)$.

Chapter 3: Null Space

- I can define the null space $\operatorname{Null}(A)$ of a given matrix A.
- I understand the relationship between $\operatorname{Null}(A)$ and the homogeneous system $A \vec{x}=\overrightarrow{0}$.
- Given a vector \vec{x}, I can determine whether it is in $\operatorname{Null}(A)$.
- Given A, I can find $\operatorname{Null}(A)$ and express it as the span of one or more vectors.

Chapter 4: Column Space

- I can define the column space $\operatorname{Col}(A)$ of a given matrix A.

Chapter 4: Column Space

- I can define the column space $\operatorname{Col}(A)$ of a given matrix A.
- I understand the relationship between $\operatorname{Col}(A)$ and systems of equations with coefficient matrix A.

Chapter 4: Column Space

- I can define the column space $\operatorname{Col}(A)$ of a given matrix A.
- I understand the relationship between $\operatorname{Col}(A)$ and systems of equations with coefficient matrix A.
- Given a vector \vec{x}, I can determine whether it is in $\operatorname{Col}(A)$.

Chapter 4: Column Space

- I can define the column space $\operatorname{Col}(A)$ of a given matrix A.
- I understand the relationship between $\operatorname{Col}(A)$ and systems of equations with coefficient matrix A.
- Given a vector \vec{x}, I can determine whether it is in $\operatorname{Col}(A)$.
- Given A, I can find $\operatorname{Col}(A)$ and express it as the span of one or more vectors.

Chapter 4: Matrix Algebra

- I know how to perform algebraic operations with matrices, including addition, subtraction, scalar multiplication, and matrix multiplication. I know when matrix multiplication is not defined.

Chapter 4: Matrix Algebra

- I know how to perform algebraic operations with matrices, including addition, subtraction, scalar multiplication, and matrix multiplication. I know when matrix multiplication is not defined.
- I know how to find the transpose of a given matrix.

Chapter 4: Matrix Algebra

- I know how to perform algebraic operations with matrices, including addition, subtraction, scalar multiplication, and matrix multiplication. I know when matrix multiplication is not defined.
- I know how to find the transpose of a given matrix.
- I know all of the basic algebraic properties that are satisfied by the operations mentioned above.

Chapter 4: Matrix Algebra

- I know how to perform algebraic operations with matrices, including addition, subtraction, scalar multiplication, and matrix multiplication. I know when matrix multiplication is not defined.
- I know how to find the transpose of a given matrix.
- I know all of the basic algebraic properties that are satisfied by the operations mentioned above.
- I am aware of the differences between real number multiplication and matrix multiplication. I know to be careful about generalizing results from the former to the latter (e.g. I can prove that $(A+B)^{2}=A^{2}+2 A B+B^{2}$ is false for matrices).
- I know that two matrices $A, B \in M_{m \times n}(\mathbb{F})$ are equal if and only if $A \vec{x}=B \vec{x}$ for all $\vec{x} \in \mathbb{F}^{n}$.

Chapter 4: Elementary Matrices

- I know what an elementary matrix is.

Chapter 4: Elementary Matrices

- I know what an elementary matrix is.
- Given a matrix, I am able to identify if it is or is not an elementary matrix.

Chapter 4: Elementary Matrices

- I know what an elementary matrix is.
- Given a matrix, I am able to identify if it is or is not an elementary matrix.
- Given an elementary matrix E and an arbitrary matrix A, I am able to compute the product $E A$ by performing an appropriate row operation on A.

Chapter 4: Invertibility

- I know what it means for an $n \times n$ matrix to be invertible.

Chapter 4: Invertibility

- I know what it means for an $n \times n$ matrix to be invertible.
- I can state several criteria that guarantee that an $n \times n$ matrix is invertible.

Chapter 4: Invertibility

- I know what it means for an $n \times n$ matrix to be invertible.
- I can state several criteria that guarantee that an $n \times n$ matrix is invertible.
- Given $A \in M_{n \times n}(\mathbb{F})$, I am able to quickly test whether A is or is not invertible. If A is invertible, I am also able to find its inverse A^{-1}.

Chapter 4: Invertibility

- I know what it means for an $n \times n$ matrix to be invertible.
- I can state several criteria that guarantee that an $n \times n$ matrix is invertible.
- Given $A \in M_{n \times n}(\mathbb{F})$, I am able to quickly test whether A is or is not invertible. If A is invertible, I am also able to find its inverse A^{-1}.
- If A is 2×2, I am aware that there is a particularly quick test of invertibility, and a particularly simple formula for the inverse (when the matrix is invertible).

