A multivariate hook formula for labelled trees

Valentin Féray ${ }^{\text {a, } 1}$, I.P. Goulden ${ }^{\text {b,2 }}$
a LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33400 Talence, France
${ }^{\text {b }}$ Department of Combinatorics \& Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

A R T I C L E I N F O

Article history:

Received 13 July 2012
Available online 13 February 2013

Keywords:

Hook formula
Tree enumeration
Representation theory of symmetric groups
Finite difference operators
Multivariate Lagrange inversion

Abstract

Several hook summation formulae for binary trees have appeared recently in the literature. In this paper we present an analogous formula for unordered increasing trees of size r, which involves r parameters. The right-hand side can be written nicely as a product of linear factors. We study two specializations of this new formula, including Cayley's enumeration of trees with respect to vertex degree. We give three proofs of the hook formula. One of these proofs arises somewhat indirectly, from representation theory of the symmetric groups, and in particular uses Kerov's character polynomials. The other proofs are more direct, and of independent interest.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and the main result

Hook formulae first appeared in the context of representation theory of the symmetric groups: Frame, Robinson and Thrall [16, Theorem 1] proved that the dimension $\chi^{\lambda}\left(\left(1^{n}\right)\right)$ of the representation associated to a Young diagram λ with n boxes, (which is also the number of increasing labellings of the boxes of λ) is given by the simple ratio

$$
\chi^{\lambda}\left(\left(1^{n}\right)\right)=\frac{n!}{\prod_{\square \in \lambda} h(\square)},
$$

where $h(\square)$ is the size of the hook attached to the Box \square.
It was subsequently pointed out by D. Knuth [24, §5.1.4 Exercise 20] that the number $L(T)$ of increasing labellings of the vertices of a rooted tree T can be expressed by using the same kind of formula. In particular,

[^0]\[

$$
\begin{equation*}
L(T)=\frac{|T|!}{\prod_{v \in T} h_{T}(v)}, \tag{1}
\end{equation*}
$$

\]

where $|T|$ is the number of vertices of T and $h_{T}(v)$ is the size of the hook $\mathfrak{h}_{T}(v)$ attached to the vertex v in T (see definition below).

At this point, we fix some terminology and notation. A tree is an acyclic connected graph. Rooted means that we distinguish a vertex; then each edge can be oriented towards the root and we call respectively father and son the head and tail of the edge. With this terminology, it is easy to guess what the descendants of a vertex are: they can be defined recursively as the sons and the descendants of the sons. The hook attached to the vertex v in the tree T, denoted by $\mathfrak{h}_{T}(v)$, is the set consisting of v and its descendants.

For another consequence of the rooted tree hook formula (1), recall that there is a well-known one-to-one correspondence between increasing binary trees with n vertices, and permutations of size n, see e.g. [32, pp. 23-25]. Hence, the total number of increasing labellings of all binary trees of size n is equal to the number of permutations of size n, which yields the formula

$$
\begin{equation*}
\sum_{\substack{T \text { binary } \\ \text { tree of size } n}} \prod_{v \in T} \frac{1}{h_{T}(v)}=1 \tag{2}
\end{equation*}
$$

Despite their simplicity, both formulae (1) and (2) have been the subject of many research papers. We mention briefly five directions that these papers have taken:

- q-Analogues of formula (1) have been found where increasing labellings of a given tree are counted with respect to one (or more) statistics: see [3] and [9, Lemma 5.3];
- Formula (1) (and the q-analogues mentioned above) has been extended to more general classes of posets than trees (or forests): d-complete posets [27,28], shrubs [8, Proposition 3.6], forests with duplications [15, Theorem 1.4];
- In summation formula (2), the factor $\frac{1}{h_{T}(v)}$ can be replaced by some more complicated function of $h_{T}(v)$ such that the sum over binary trees remains nice. An example is the following formula [13, Eq. (1.2)]

$$
\begin{equation*}
\sum_{\substack{T \text { binary } \\ \text { ree of size } n}} \prod_{v \in T}\left(x+\frac{1}{h_{T}(v)}\right)=\frac{1}{(n+1)!} \prod_{i=0}^{n-1}((n+1+i) x+n+1-i) \tag{3}
\end{equation*}
$$

The case $x=0$ of course corresponds to (2), the case $x=1$ is due to A. Postnikov [26, Corollary 17.3] and the general case is due to R. Du and F. Liu, who proved a conjecture of A. Lascoux, see [13] and the references therein. Subsequently, G. Han designed an algorithm to discover such equalities, finding a generalization of Du and Liu's result, as well as many other formulae [20];

- Another direction consists in replacing in summation formula (2) (or in the generalized version (3)) binary trees by other families of trees. Formulae of this kind for plane forests or m-ary trees have been given in several papers [13,34,33,10];
- Finally, formulae (1) and (2) admit a number of higher level interpretations. In [21], it is explained how (2) (and some generalizations) arises from solving differential equations and can be lifted to the level of combinatorial Hopf algebras. Probabilistic interpretations of (2) and generalizations are presented by B. Sagan in [31]. In a different direction, interpretations of (1) and some refinements/generalizations have been given in convex geometry [5, Section 6] and commutative algebra [15].

In this paper, we follow simultaneously both the third and fourth directions above. Indeed, we present a summation formula, in which the simple ratio $\frac{1}{h_{T}(v)}$ is replaced by a more complicated expression with several parameters. Besides, we do not work with binary trees, but instead with unordered increasing rooted trees:

- unordered means that the sons of a given vertex are not ordered;

Fig. 1. An increasing unordered tree.

- increasing means that the vertices are labelled (each integer between 1 and r is used exactly once) and that the label of a son is always bigger than the label of its father (in particular, the root always gets label 1).

An example of an unordered increasing tree is given in Fig. 1. Since the sons of a given vertex are not ordered, we have chosen the convention of always drawing them in increasing order from left to right.

Our summation formula is given in the following theorem, which is the main result of this paper. We use the notation for falling factorials $(a)_{m}=a(a-1) \cdots(a-m+1)$ for positive integers m, with $(a)_{0}=1$, and $(a)_{m}=1 /(a-m)_{-m}$ for negative integers m.

Theorem 1.1. Let $r \geqslant 1$ be an integer and k_{1}, \ldots, k_{r} be formal variables, with $K=\sum_{i=1}^{r} k_{i}$. For an unordered increasing tree T with r vertices, define the weight to be

$$
\mathrm{wt}(T)=\prod_{v=2}^{r} k_{f(v)}\left(\left(\sum_{u \in \mathfrak{h}_{T}(v)} k_{u}\right)-h_{T}(v)+1\right),
$$

where $f(v)$ stands for the father of v in T. Then

$$
\begin{equation*}
\sum_{T} \mathrm{wt}(T)=k_{1} \cdots k_{r}(K-1)_{r-2}, \tag{4}
\end{equation*}
$$

where the sum runs over all unordered increasing trees on r vertices.
For example, the weight of the tree given in Fig. 1 is

$$
\begin{aligned}
& k_{1}\left(k_{2}+k_{3}+k_{5}+k_{6}+k_{8}+k_{9}-5\right) \cdot k_{2} k_{3} \cdot k_{1}\left(k_{4}+k_{7}-1\right) \\
& \quad \cdot k_{2}\left(k_{5}+k_{6}+k_{8}-2\right) \cdot k_{5} k_{6} \cdot k_{4} k_{7} \cdot k_{5} k_{8} \cdot k_{2} k_{9} .
\end{aligned}
$$

Note that, if v is a leaf, its contribution to the weight is $k_{f(v)} k_{v}$. Since each vertex is either a leaf or the father of another vertex, the quantity $\mathrm{wt}(T)$ is always divisible by $k_{1} \cdots k_{r}$ (except for $r=1$).

We refer to (4) as our hook formula. We point out the fact that the formula for trees of size r involves r independent parameters, while formula (3) and all formulae in [20] involve a fixed number of parameters. As mentioned above, for $r>1$, the monomial $k_{1} \cdots k_{r}$ divides all terms of the sum, but the latter do not share any other factors. Thus it is quite remarkable that the right-hand side, which is a polynomial in r parameters, can be written as a product of simple linear factors. (Note that in the case $r=1$, we have $(K-1)_{r-2}=k_{1}^{-1}$, which cancels the factor k_{1}.)

In Section 2 we present two specializations of our result: an analogue of the aforementioned hook formula of Postnikov, and the multivariate enumeration of Cayley trees with respect to vertex degree. In our opinion, this makes Theorem 1.1 interesting in itself.

Another interesting feature of this new hook formula is the connection with representation theory of the symmetric group. This link is explained in Section 3, where we give our first proof of

Theorem 1.1. This proof uses Kerov's character polynomials, and does not seem related to the Frame-Robinson-Thrall formula. The proof is quite involved, and reasonably indirect, so we also give two inductive proofs of the hook formula that are more direct. The first of these direct proofs, given in Section 4, uses elementary operators on polynomials. The second of these direct proofs is given in Section 5, and uses Lagrange's Implicit Function Theorem in many variables.

2. Two specializations of the hook formula

2.1. An analogue of Postnikov's formula

Here we consider the specialization of all variables k_{1}, \ldots, k_{r} to the same value k. Then the weight of an unordered increasing tree T in Theorem 1.1 becomes

$$
\begin{aligned}
\mathrm{wt}^{\prime}(T) & =\left.\mathrm{wt}(T)\right|_{k_{i}=k}=k^{r-1} \prod_{v=2}^{r}\left((k-1) h_{T}(v)+1\right) \\
& =\frac{k^{r-1}}{(k-1) r+1} \prod_{v \in T}\left((k-1) h_{T}(v)+1\right)
\end{aligned}
$$

Therefore, setting $x=k-1$, our hook formula becomes

$$
\begin{equation*}
\sum_{\substack{T \text { increasing } \\ \text { unordered tree } \\ \text { of size } r}} \prod_{v \in T}\left(x h_{T}(v)+1\right)=(x+1) \prod_{i=1}^{r-1}(x \cdot r+i) \tag{5}
\end{equation*}
$$

Using the fact (Eq. (1)) that there are $n!/\left(\prod_{v \in T} h_{v}(T)\right)$ increasing labellings for each binary tree T, Eq. (3) can be rewritten as

$$
\begin{equation*}
\sum_{\substack{T \text { increasing } \\ \text { binary tree } \\ \text { of size } n}} \prod_{v \in T}\left(x h_{T}(v)+1\right)=\frac{1}{n+1} \prod_{i=0}^{n-1}((n+1+i) x+n+1-i) \tag{6}
\end{equation*}
$$

Thus the specialization with equal parameters of our formula is an analogue of Postnikov's formula for another family of trees. Unfortunately, a short computer exploration suggests that Eq. (6) does not seem to have such a nice multivariate refinement as Theorem 1.1.

2.2. Multivariate enumeration of Cayley trees

By definition, a Cayley tree is a tree ${ }^{3}$ with distinguishable vertices. As early as 1860 [4], C.W. Borchardt proved that the number of trees with vertex set $[r]=\{1, \ldots, r\}$ is r^{r-2}. As noticed by A. Cayley [7], his proof also leads to the following multivariate enumeration formula for what are now called Cayley trees:

$$
\begin{equation*}
\sum_{\substack{U \text { Cayley tree } \\ \text { with vertex set }[r]}} k_{1}^{d_{1}(U)} \cdots k_{r}^{d_{r}(U)}=k_{1} \cdots k_{r} K^{r-2}, \tag{7}
\end{equation*}
$$

where $d_{i}(U)$ denotes the degree of the vertex i in a tree U.
We will show that the specialization $k_{1}, \ldots, k_{r} \rightarrow \infty$, that is the highest degree term in k of our hook formula, corresponds to (7). Hence our hook formula can be viewed as a non-homogeneous extension of the multivariate enumeration of Cayley trees.

[^1]To do this, we define a mapping φ from Cayley trees with vertex set V to increasing unordered trees with label set V, where V is a finite nonempty set of positive integers. Consider a Cayley tree U with vertex set V. The definition is inductive and produces an increasing unordered tree $T=\varphi(U)$ as follows:

- Let $\ell=\min V$. If $|V|=1$, then T has a single vertex, with label ℓ. Otherwise, remove vertex ℓ and all incident edges from U, to obtain a forest whose connected components are Cayley trees U_{1}, U_{2}, \ldots;
- Apply φ inductively to U_{1}, U_{2}, \ldots;
- Take the disjoint union of all $T_{i}=\varphi\left(U_{i}\right)$, and add a vertex (which is the root vertex of T) with label ℓ, joined to the root vertices of all T_{i}.

The mapping φ is clearly not injective in general. If T is an increasing unordered tree with label set V, then the elements U of the preimage $\varphi^{-1}(T)$ can be obtained inductively as follows:

- Let $\ell=\min V$. If $|V|=1$, then U has the single vertex ℓ. Otherwise, remove the root vertex of T (which has label ℓ), to obtain the increasing unordered trees T_{1}, T_{2}, \ldots;
- Select an element U_{i} in each set $\varphi^{-1}\left(T_{i}\right)$;
- Take the disjoint union of all U_{i}, choose one vertex in each U_{i} and add a vertex with label ℓ joined to all selected vertices.

For a given increasing unordered tree T, denote

$$
\mathrm{wt}^{\prime \prime}(T)=\sum_{U: \varphi(U)=T} \prod_{v \in V} k_{v}^{d_{v}(U)}
$$

The above description of $\varphi^{-1}(T)$ implies that

$$
\mathrm{wt}^{\prime \prime}(T)=\prod_{T_{i}} \mathrm{wt}^{\prime \prime}\left(T_{i}\right)\left(k_{\ell} \sum_{v \in T_{i}} k_{v}\right),
$$

where ℓ is the label of the root and the product is taken over the trees T_{1}, T_{2}, \ldots obtained by removing the root of T. An immediate induction yields

$$
\mathrm{wt}^{\prime \prime}(T)=\prod_{v=2}^{r} k_{f(v)}\left(\sum_{u \in \mathfrak{h}_{T}(v)} k_{u}\right),
$$

with the same notation as in Theorem 1.1. We observe that $\mathrm{wt}^{\prime \prime}(T)$ is exactly the highest degree term in $\mathrm{wt}(T)$ and therefore, as an immediate corollary of Theorem 1.1, we get

$$
\sum_{\substack{T \text { increasing } \\ \text { unordered tree } \\ \text { of size } r}} \mathrm{wt}^{\prime \prime}(T)=k_{1} \cdots k_{r} K^{r-2},
$$

which is the multivariate enumeration formula (7) for Cayley trees.

3. Kerov character polynomials

In this section, we explain how Theorem 1.1 arises from computations in representation theory of the symmetric group. In fact, the two sides of our hook formula correspond to the same coefficient of the so-called Kerov character polynomials, computed in two different ways.

In Section 3.1, we explain Kerov character polynomials and which coefficient we want to compute. Then, in Sections 3.2, 3.3 and 3.4, we give different ways to compute this coefficient, which lead to our hook formula. The first two approaches lead to the same result, but we have chosen to present both to be more comprehensive on the subject.

3.1. Definitions

Let us consider, for each n, the family of symmetric groups S_{n}. It is well-known (see, e.g., [30, Chapter 2]) that both conjugacy classes and irreducible representations of S_{n} can be indexed canonically by partitions of n, so the character table of S_{n} is a collection of numbers $\chi^{\lambda}(\mu)$, where λ and μ run over partitions of n and are, respectively, the indices of the irreducible representation and the conjugacy class.

Following S.V. Kerov and G.I. Olshanski [23], for any partition μ of size k, we shall consider the function Ch_{μ} on the set \mathcal{Y} of all Young diagrams (or equivalently of all partitions of all sizes) defined by

$$
\mathrm{Ch}_{\mu}(\lambda)= \begin{cases}0 & \text { if } n<k ; \\ n(n-1) \cdots(n-k+1) \frac{\chi^{\lambda}\left(\mu \cup\left(1^{n-k}\right)\right)}{\chi^{\lambda}\left(\left(1^{n}\right)\right)} & \text { otherwise }\end{cases}
$$

where n is the size of λ.
We also consider another family of functions on Young diagrams: the free cumulants $\left(R_{k}\right)_{k} \geqslant 2$ of the transition measure (for their definition we refer to [1, Section 1]). It has been shown by S. Kerov [2, Theorem 1] (the reference given deals only with the case of a one-part partition μ, but the proof can be readily extended to the general case) that there exist polynomials K_{μ} such that, as functions on all Young diagrams,

$$
\begin{equation*}
\mathrm{Ch}_{\mu}=K_{\mu}\left(R_{2}, R_{3}, \ldots\right) \tag{8}
\end{equation*}
$$

These polynomials are called Kerov character polynomials. Their coefficients have been the subject of many research articles in the last few years, see [11] and references therein. Here we focus on the coefficient of a single R_{j} (linear coefficient) for the maximal value of j, that is

$$
j=|\mu|-\ell(\mu)+2
$$

This coefficient has a very compact expression that we prove in the next paragraph (we use throughout the notation $[A] B$ to denote the coefficient of A in the expansion of B).

Proposition 3.1. Let μ be a partition and $j=|\mu|-\ell(\mu)+2$. Then

$$
\left[R_{j}\right] K_{\mu}=(-1)^{\ell(\mu)-1}\left(\prod_{i=1}^{\ell(\mu)} \mu_{i}\right) \frac{(|\mu|-1)!}{(|\mu|-\ell(\mu)+1)!}
$$

3.2. Combinatorial interpretation of Kerov polynomials

Linear coefficients in Kerov polynomials have a quite simple combinatorial interpretation, established by P. Biane [2, Theorem 5.1] for one-part partitions μ, and by A. Rattan and P. Śniady [29, Theorem 19] for arbitrary partitions μ :
$(-1)^{\ell(\mu)-1}\left[R_{j}\right] K_{\mu}$ is the number of pairs $\left(\sigma_{1}, \sigma_{2}\right)$ such that

- σ_{1} and σ_{2} are permutations in $S_{|\mu|}$ with

$$
\begin{equation*}
\sigma_{1} \sigma_{2}=\sigma_{\mu} \tag{9}
\end{equation*}
$$

where $\sigma_{\mu}=\left(1 \cdots \mu_{1}\right)\left(\mu_{1}+1 \cdots \mu_{2}\right) \cdots$;

- σ_{2} is a long cycle;
- σ_{1} has $j-1$ cycles.

Note that the absolute lengths ${ }^{4}$ of σ_{1} and σ_{μ} are $|\mu|-(j-1)=\ell(\mu)-1$ and $|\mu|-\ell(\mu)$. These two numbers sum up to $|\mu|-1$. This allows to use a theorem of F . Bédard and A. Goupil, who counted the number of factorizations (9) where σ_{1} has a given cycle-type λ (here, $|\lambda|=|\mu|$ and $\ell(\lambda)=j-1$). They obtained the following number [6, Theorem 3.1] (see also [18, Theorem 2.2]):

$$
\frac{(\ell(\mu)-1)!(j-2)!\prod_{i} \mu_{i}}{m_{1}(\lambda)!m_{2}(\lambda)!\cdots}
$$

where $m_{i}(\lambda)$ is the number of parts of λ equal to $i, i \geqslant 1$. To obtain $\left[R_{j}\right] K_{\mu}$, we have to sum over all possible cycle-types λ :

$$
(-1)^{\ell(\mu)-1}\left[R_{j}\right] K_{\mu}=\frac{(\ell(\mu)-1)!}{j-1} \prod_{i} \mu_{i} \sum_{\substack{\lambda \vdash|\mu|, \ell(\lambda)=|\mu|-\ell(\mu)+1}} \frac{(j-1)!}{m_{1}(\lambda)!m_{2}(\lambda)!\cdots} .
$$

The term indexed by λ in the sum counts the number of sequences i_{1}, \ldots, i_{j-1} that are permutations of λ. Hence the sum is the number of sequences i_{1}, \ldots, i_{j-1} of positive integers of sum $|\mu|$, that is $\binom{|\mu|-1}{j-2}$. It is then straightforward to see that the expression above simplifies to the one in Proposition 3.1.

3.3. Macdonald symmetric functions

In this paragraph, we present another approach to Proposition 3.1, which relies on a basis of the symmetric function ring introduced by I.G. Macdonald.

Consider the center $Z\left(\mathbb{C}\left[S_{n}\right]\right)$ of the symmetric group algebra of size n. A basis is given by the conjugacy class sums, that is

$$
\mathrm{C} \ell_{\lambda}=\sum_{\operatorname{cycle}-\operatorname{type}(\sigma)=\lambda} \sigma
$$

Since $Z\left(\mathbb{C}\left[S_{n}\right]\right)$ is an algebra, there exist constants $c_{\mu, \nu}^{\lambda}$ such that, for any two partitions μ and ν of size n,

$$
\mathrm{C} \ell_{\mu} \mathrm{C} \ell_{\nu}=\sum_{\lambda \vdash n} c_{\mu, \nu}^{\lambda} \mathrm{C}_{\lambda}
$$

These constants are called structure constants or connection coefficients of $Z\left(\mathbb{C}\left[S_{n}\right]\right)$ and have been widely studied in the literature.

Macdonald [25, Exercises I.7.24, I.7.25] gave an explicit construction of a basis u_{λ} of the symmetric function ring, which can be characterized as follows:

- u_{λ} is homogeneous of degree $|\lambda|$;
- if λ has only one part, then u_{λ} is given by

$$
u_{(n)}=-p_{n},
$$

where p_{n} is the n-th power sum;

- for a partition λ, denote by $\bar{\lambda}$ the partition obtained from λ by adding one to every part. Then, for any partitions μ, v and $n \geqslant|\bar{\mu}|+|\bar{\nu}|$,

$$
\begin{equation*}
u_{\mu} u_{\nu}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\bar{\mu} 1^{n-|\bar{\mu}|} \mid, \bar{\nu} 1^{n-\mid \bar{\nu}} u_{\lambda}}^{\overline{\bar{\lambda}}} \tag{10}
\end{equation*}
$$

where c is the structure constant of the center of the symmetric group algebra defined above.

[^2]This construction can be found in paper [19] (see in particular Theorem 3.2 and Proposition 4.1, which corresponds to the properties above).

Note that it is well-known [14, Lemma 3.9] that the coefficients in the right-hand side of (10) do not depend on n (because $|\lambda|=|\mu|+|\nu|$).

We will see that Kerov polynomials contain in some sense Macdonald symmetric functions. To do this, consider, as in [12] the gradation deg_{2} on the algebra Λ generated by R_{k} (for $k \geqslant 2$) defined

$$
\operatorname{deg}_{2}\left(R_{k}\right)=k-2
$$

One can show that free cumulants are algebraically independent so the definition makes sense. Then, one has the following properties:

- The top component of K_{k} is R_{k+1}. Indeed consider a monomial $\prod_{i=1}^{t} R_{j_{i}}$ appearing to the top component of K_{k} for deg_{2}, i.e. such that

$$
\sum_{i=1}^{t}\left(j_{i}-2\right)=k-1
$$

Then we must also have $\sum j_{i} \leqslant k+1$ [2 , Section 6]. These two equations imply $t \leqslant 1$, which means that only R_{k+1} appears in the top component of K_{k} (and its coefficient is known to be 1);

- Let μ and v be two partitions. Then one has

$$
\frac{K_{\bar{\mu}}}{z_{\bar{\mu}}} \cdot \frac{K_{\bar{\nu}}}{z_{\bar{\nu}}}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\bar{\mu} 1^{n-\mid \bar{\mu}}, \bar{\nu} 1^{n-\mid \bar{\nu}} \mid}^{K_{\bar{\lambda}}^{n}} z_{\bar{\lambda}}+\text { smaller degree terms for } \operatorname{deg}_{2},
$$

where z_{π} is the classical constant $\prod_{i} i^{m_{i}} m_{i}$! if π is written as $1^{m_{1}} 2^{m_{2}} \ldots$ in exponential notation [25, Chapter 1]. This second property can be deduced from [22, Proposition 4.5]: we skip details here.

Consider the algebra isomorphism between the subalgebra $\mathbb{Q}\left[R_{3}, R_{4}, \ldots\right]$ of Λ and the symmetric function ring sending R_{j+2} to $-(j+1) p_{j}$. Then the top component of $\frac{K_{\bar{\lambda}}}{z_{\bar{\lambda}}}$ is sent to u_{λ} because of the two properties above.

Hence, this top component can be computed using results on u_{λ}, in particular [19, Lemmas 7.1 and 7.2]. If $j-2=|\bar{v}|-\ell(\bar{v})=|\nu|$, then

$$
\begin{aligned}
{\left[R_{j}\right] K_{\bar{v}} } & =\frac{-z_{\bar{v}}}{j-1}\left[p_{j-2}\right] u_{v}=\frac{-z_{\bar{v}}}{(j-1)(j-2)}\left[h_{v}\right]\left[s^{j-2}\right] \frac{1}{\left(\sum_{m \geqslant 0} h_{m} s^{m}\right)^{j-2}} \\
& =\frac{-z_{\bar{v}}}{(j-1)(j-2)}\binom{-(j-2)}{m_{1}(v), m_{2}(v), \ldots} \\
& =\frac{-z_{\bar{v}}}{(j-1)(j-2)}(-1)^{\ell(\nu)}\binom{j-2+\ell(v)-1}{m_{1}(\nu), m_{2}(v), \ldots}
\end{aligned}
$$

Simplifying the expression above and setting $\mu=\bar{\nu}$, we obtain Proposition 3.1.

3.4. Using the generalized Frobenius formula

The most efficient way to compute the polynomials K_{μ} with a computer is to use the generalized Frobenius formula [29, Theorem 5]. To state it, we need the notion of boolean cumulants B_{k} (for $k \geqslant 2$) of the transition measure. They are functions on the set of all Young diagrams and they form another algebraic basis of Λ such that

$$
B_{k}=R_{k}+\text { non-linear terms }
$$

This implies that $\left[B_{k}\right] \mathrm{Ch}_{\mu}=\left[R_{k}\right] \mathrm{Ch}_{\mu}$, which is by definition $\left[R_{k}\right] K_{\mu}$ (see Eq. (8)). Lastly, we denote by $H(z)$ the generating function of boolean cumulants (which has coefficients in the ring Λ):

$$
H(z)=z-B_{2} z^{-1}-B_{3} z^{-2}-\cdots
$$

The following result of A. Rattan and P. Śniady expresses the normalized character values Ch_{μ} in terms of boolean cumulants:

Theorem 3.2. (See [29].) For any integers $\mu_{1} \geqslant \cdots \geqslant \mu_{r} \geqslant 1$,

$$
\begin{align*}
(-1)^{r} \mu_{1} \cdots \mu_{r} \mathrm{Ch}_{\mu_{1}, \ldots, \mu_{r}}= & {\left[z_{1}^{-1}\right] \cdots\left[z_{r}^{-1}\right]\left[\left(\prod_{1 \leqslant u \leqslant r} H\left(z_{u}\right) H\left(z_{u}-1\right) \cdots H\left(z_{u}-\mu_{u}+1\right)\right)\right.} \\
& \left.\times \prod_{1 \leqslant s<t \leqslant r} \frac{\left(z_{s}-z_{t}\right)\left(z_{s}-z_{t}+\mu_{t}-\mu_{s}\right)}{\left(z_{s}-z_{t}-\mu_{s}\right)\left(z_{s}-z_{t}+\mu_{t}\right)}\right] . \tag{11}
\end{align*}
$$

The right-hand side of (11) should be understood as follows: we expand the expression appearing there as a power series in decreasing powers of z_{r} with coefficients being Λ-valued functions of z_{1}, \ldots, z_{r-1} and select the appropriate coefficient. We repeat this procedure with respect to $z_{r-1}, z_{r-2}, \ldots, z_{1}$.

In Proposition 3.1, we are interested in the coefficient of a single R_{j} of maximal degree. As mentioned above, it is equivalent to look at the coefficient of a single B_{j} of maximal degree. In this paragraph, we try to understand this coefficient using Theorem 3.2.

Let us first see what happens in the case $r=2$: we consider the coefficient of $B \mu_{1}+\mu_{2}$ in $\mathrm{Ch}_{\mu_{1}, \mu_{2}}$. The right-hand side of (11) can then be written as

$$
\begin{align*}
& {\left[z_{1}^{-1}\right] H\left(z_{1}\right) \cdots H\left(z_{1}-\mu_{1}+1\right)\left[z_{2}^{-1}\right] H\left(z_{2}\right) \cdots H\left(z_{2}-\mu_{2}+1\right)} \\
& \quad \times \frac{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{2}+\mu_{2}-\mu_{1}\right)}{\left(z_{1}-z_{2}-\mu_{1}\right)\left(z_{1}-z_{2}+\mu_{1}\right)} . \tag{12}
\end{align*}
$$

When we expand the fraction in decreasing powers of z_{2}, no positive powers appear. In a factor H, the maximal exponent of z_{2} is 1 . Hence, the term $B_{h} z_{2}^{-(h-1)}$ for $h \geqslant \mu_{2}+2$ will not contribute to the coefficient in z_{2}^{-1}. In particular, one cannot obtain $B_{\mu_{1}+\mu_{2}}$, which is what we are looking for. Therefore each term $H\left(z_{2}-c\right)$ can be replaced by $z_{2}-c$.

That being said, to obtain at the end the B_{j} of maximal index, we have to keep the biggest possible power of z_{1} in the coefficient of z_{2}^{-1}. To do that, we notice, that if we consider the total degree in the z-variable set

$$
\begin{aligned}
& z_{2}-c=z_{2}+\text { smaller degree terms; } \\
& \frac{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{2}+\mu_{t}-\mu_{s}\right)}{\left(z_{1}-z_{2}-\mu_{s}\right)\left(z_{1}-z_{2}+\mu_{t}\right)}=1+\frac{\mu_{2} \mu_{1} / z_{2}^{2}}{\left(1-z_{1} / z_{2}\right)^{2}}+\text { smaller degree terms. }
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& {\left[z_{2}^{-1}\right] H\left(z_{2}\right) \cdots H\left(z_{2}-\mu_{2}+1\right) \frac{\left(z_{1}-z_{2}\right)\left(z_{1}-z_{2}+\mu_{2}-\mu_{1}\right)}{\left(z_{1}-z_{2}-\mu_{1}\right)\left(z_{1}-z_{2}+\mu_{1}\right)}} \\
& \quad=\left[z_{2}^{-1}\right]\left(z_{2}^{\mu_{2}} \cdot \frac{\mu_{2} \mu_{1} / z_{2}^{2}}{\left(1-z_{1} / z_{2}\right)^{2}}\right)+\text { smaller degree terms in } z_{1} \\
& \quad=\mu_{1} \mu_{2}^{2} z_{1}^{\mu_{2}-1}+o\left(z_{1}^{\mu_{2}-1}\right) .
\end{aligned}
$$

Plugging this into Eq. (12) and setting all B_{j} to 0 , except $B_{\mu_{1}+\mu_{2}}$, we obtain

$$
\begin{aligned}
& {\left[B \beta_{\mu_{1}+\mu_{2}}\right] \mu_{1} \mu_{2} \mathrm{Ch}_{\mu_{1}, \mu_{2}}} \\
& \quad=\left[B_{\mu_{1}+\mu_{2}}\right]\left[z_{1}^{-1}\right] \prod_{i=0}^{\mu_{1}-1}\left(z_{1}-i-B_{\mu_{1}+\mu_{2}}\left(z_{1}-i\right)^{-\left(\mu_{1}+\mu_{2}-1\right)}\right)\left(\mu_{1} \mu_{2}^{2} z_{1}^{\mu_{2}-1}+o\left(z_{1}^{\mu_{2}-1}\right)\right) .
\end{aligned}
$$

When we expand the product on the right-hand side, the term containing $B_{\mu_{1}+\mu_{2}}$ of maximal degree in z_{1} is obtained by picking $\mu_{1}-1$ factors z_{1}, one factor $-B_{\mu_{1}+\mu_{2}} z_{1}^{-\left(\mu_{1}+\mu_{2}-1\right)}$ and finally the factor $\mu_{1} \mu_{2}^{2} z_{1}^{\mu_{2}-1}$ in the last parenthesis. We have μ_{1} ways to do so (corresponding to the choice of the index i from which we take the term $B_{\mu_{1}+\mu_{2}} z_{1}^{\mu_{1}+\mu_{2}-1}$) and thus

$$
\begin{aligned}
& {\left[B_{\mu_{1}+\mu_{2}}\right] \mu_{1} \mu_{2} \mathrm{Ch}_{\mu_{1}, \mu_{2}}} \\
& \quad=\left[z_{1}^{-1}\right]\left(-\mu_{1} z_{1}^{\mu_{1}-1} z_{1}^{\mu_{1}+\mu_{2}-1}\left(\mu_{1} \mu_{2}^{2} z_{1}^{\mu_{2}-1}\right)+\text { smaller degree terms in } z_{1}\right)=-\mu_{1}^{2} \mu_{2}^{2} .
\end{aligned}
$$

Since $\left[B_{\mu_{1}+\mu_{2}}\right] \mathrm{Ch}_{\mu_{1}, \mu_{2}}=\left[R_{\mu_{1}+\mu_{2}}\right] \mathrm{Ch}_{\mu_{1}, \mu_{2}}$, we recover Proposition 3.1 in the case $\ell(\mu)=2$.
Let us consider now the general case. We want to compute the coefficient of B_{j} in $\mathrm{Ch}_{\mu_{1}, \ldots, \mu_{r}}$ for $j-2=\sum_{i}\left(\mu_{i}-1\right)=K-r$. As in the case $\ell(\mu)=2$, when we extract the coefficient of some z_{t} (for $t>1$), we have to keep only the highest degree term in the z-variable set. Therefore, for a fixed index $t>1$, we can replace $H\left(z_{t}-c\right)$ by z_{t} and use the approximation

$$
\begin{equation*}
\prod_{1 \leqslant s<t} \frac{\left(z_{s}-z_{t}\right)\left(z_{s}-z_{t}+\mu_{t}-\mu_{s}\right)}{\left(z_{s}-z_{t}-\mu_{s}\right)\left(z_{s}-z_{t}+\mu_{t}\right)}=1+\sum_{1 \leqslant s<t} \frac{\mu_{t} \mu_{s} / z_{t}^{2}}{\left(1-z_{s} / z_{t}\right)^{2}}+\text { smaller degree terms. } \tag{13}
\end{equation*}
$$

So the highest degree term in z_{1} after successive extractions of the coefficients of $z_{r}^{-1}, z_{r-1}^{-1}, \ldots, z_{2}^{-1}$ is

$$
\left[z_{2}^{-1}\right] \cdots\left[z_{r}^{-1}\right]\left(\prod_{t=2}^{r} z_{t}^{\mu_{t}}\left[1+\sum_{1 \leqslant s<t} \frac{\mu_{t} \mu_{s} / z_{t}^{2}}{\left(1-z_{s} / z_{t}\right)^{2}}\right]\right)
$$

Exchanging the product and summation symbol, we get a sum over the following set: for each $t>1$, we have to choose an integer $s<t$ (we cannot choose the summand 1 in the bracket, because we would get z_{t} with a positive power, while we want to extract the coefficient of z_{t}^{-1}). These choices can be represented as an unordered increasing tree T with r vertices, in which s is the father of t. In the case $r=2$, we only had one summand.

If $f(t)$ denotes the father of t in a tree T, the summand associated to T is

$$
\begin{equation*}
A_{T}:=\left[z_{2}^{-1}\right] \cdots\left[z_{r}^{-1}\right]\left(\prod_{t=2}^{r} z_{t}^{\mu_{t}} \frac{\mu_{t} \mu_{f(t)} / z_{t}^{2}}{\left(1-z_{f(t)} / z_{t}\right)^{2}}\right) . \tag{14}
\end{equation*}
$$

We then use the expansion

$$
\frac{1}{\left(1-z_{f(t)} / z_{t}\right)^{2}}=\sum_{m_{t} \geqslant 1} m_{t}\left(z_{f(t)} / z_{t}\right)^{m_{t}-1}
$$

and rewrite Eq. (14) as

$$
\begin{equation*}
A_{T}=\left[z_{2}^{-1}\right] \cdots\left[z_{r}^{-1}\right]\left(\prod_{t=2}^{r} z_{t}^{\mu_{t}} \mu_{t} \mu_{f(t)} z_{t}^{-2} \sum_{m_{t} \geqslant 1} m_{t}\left(z_{f(t)} / z_{t}\right)^{m_{t}-1}\right) . \tag{15}
\end{equation*}
$$

A straightforward induction beginning at the leaves of T and going up to the root shows that the coefficient of $z_{2}^{-1} \cdots z_{r}^{-1}$ corresponds to the summand

$$
m_{t}=\sum_{u \in \mathfrak{h}_{T}(t)} \mu_{u}-h_{T}(t)+1,
$$

where $h_{T}(t)=\left|\mathfrak{h}_{T}(t)\right|$, and $\mathfrak{h}_{T}(t)$ is the hook of t, as defined in the introduction. So, finally Eq. (15) reduces to

$$
A_{T}=z_{1}^{K-\mu_{1}+r-1} \prod_{t=2}^{r} \mu_{t} \mu_{f(t)}\left(\sum_{u \in \mathfrak{h}_{T}(t)} \mu_{u}-h_{T}(t)+1\right)
$$

Coming back to formula (11), the coefficient [B_{j}] $\mathrm{Ch}_{\mu_{1}, \ldots, \mu_{r}}$ is given by

$$
\left[B_{K-r+2}\right](-1)^{r} \mu_{1} \cdots \mu_{r} \mathrm{Ch}_{\mu_{1}, \ldots, \mu_{r}}=\left[B_{K-r+2}\right]\left[z_{1}^{-1}\right] H\left(z_{1}\right) \cdots H\left(z_{1}-\mu_{1}+1\right)\left(\sum_{T} A_{T}\right) .
$$

As in the case $r=2$, the extraction of the coefficient of $B_{K-r+2} z_{1}^{-1}$ yields an extra factor μ_{1} and the equation above simplifies to

$$
(-1)^{r-1}\left[B_{j}\right] \mathrm{Ch}_{\mu_{1}, \ldots, \mu_{r}}=\sum_{T}\left(\prod_{t=2}^{r} \mu_{f(t)}\left(\sum_{u \in \mathfrak{h}_{T}(t)} \mu_{u}-h_{T}(t)+1\right)\right) .
$$

Together with Proposition 3.1 and the remark above that

$$
\left[B_{j}\right] \mathrm{Ch}_{\mu_{1}, \ldots, \mu_{r}}=\left[R_{j}\right] \mathrm{Ch}_{\mu_{1}, \ldots, \mu_{r}}=\left[R_{j}\right] K_{\mu_{1}, \ldots, \mu_{r}}
$$

this proves (in a very indirect way) Theorem 1.1.

4. Elementary operators on polynomials

The purpose of this section is to give the first of our two direct proofs of the hook formula (Theorem 1.1), which uses operators on polynomials. We proceed by induction on r, with base case $r=1$, for which the theorem is trivially true.

In the induction, we will consider trees whose label sets are not necessarily an interval $[r]=$ $\{1, \ldots, r\}$. Thus we use the notation $X(T)$ for the label set of a tree T. We shall use the following construction on trees.

Definition 4.1. Let T_{1} and T_{2} be two unordered increasing trees with disjoint sets of labels. Assume that the label of the root of T_{1} is smaller than the label of the root of T_{2}. Then, we can construct a new unordered increasing tree, called grafting of T_{2} on T_{1}, denoted $T_{2} \bullet T_{1}$, defined as follows:

- its set of labels is $X\left(T_{1}\right) \sqcup X\left(T_{2}\right)$;
- its root label is the root label of T_{1};
- the vertex with the root label of T_{2} is a son of the root;
- every non-root vertex of T_{1} (resp. T_{2}) has the same father in $T_{2} \bullet T_{1}$ as in T_{1} (resp. T_{2}).

This construction is illustrated in Fig. 2.
Now consider an arbitrary (unordered increasing) tree T of size $r>1$. The vertices labelled 1 and 2 must be joined by an edge because T is increasing, so T can be obtained in a unique way by grafting a tree T_{2} with root 2 on a tree T_{1} with root 1 .

Let us denote, for a subset X of $[r], K_{X}=\sum_{i \in X} k_{i}$. The weight of the tree $T_{2} \bullet T_{1}$ obtained by grafting is given by the formula

$$
\operatorname{wt}\left(T_{2} \bullet T_{1}\right)=\operatorname{wt}\left(T_{2}\right) \operatorname{wt}\left(T_{1}\right) k_{1}\left(K_{X\left(T_{2}\right)}-\left|X\left(T_{2}\right)\right|+1\right),
$$

so summing over all trees $T=T_{2} \bullet T_{1}$, we obtain

$$
\sum_{\substack{T \text { tree, } \\ X(T)=[r]}} \mathrm{wt}(T)=\sum_{T_{1}, T_{2}} \mathrm{wt}\left(T_{2}\right) \mathrm{wt}\left(T_{1}\right) k_{1}\left(K_{X\left(T_{2}\right)}-\left|X\left(T_{2}\right)\right|+1\right) .
$$

Fig. 2. A tree T as a grafting of T_{2} on T_{1}.
The sum on the right-hand side runs over pairs of trees such that $X\left(T_{1}\right)$ contains $1, X\left(T_{2}\right)$ contains 2 and the sets $X\left(T_{1}\right)$ and $X\left(T_{2}\right)$ form a partition of $[r]$. Splitting the sum according to the sets $X_{h}=X\left(T_{h}\right) \backslash\{h\}$ (for $h=1,2$), we obtain

$$
\begin{align*}
\sum_{\substack{T \text { tree, } \\
X(T)=[r]}} w t(T)= & \sum_{\substack{X_{1}, X_{2}, X_{1} \sqcup X_{2}=\{3, \ldots, r\}}} k_{1}\left(k_{2}+K_{X_{2}}-\left|X_{2}\right|\right) \\
& \times\left(\sum_{\substack{T_{1}, X\left(T_{1}\right)=\{1\} \sqcup X_{1}}} w t\left(T_{1}\right)\right)\left(\sum_{\substack{T_{2}, X\left(T_{2}\right)=\{2\} \sqcup X_{2}}} \mathrm{wt}\left(T_{2}\right)\right) . \tag{16}
\end{align*}
$$

We now apply the induction hypothesis on the right-hand side to get, for $h=1,2$,

$$
\sum_{\substack{T_{h}, X\left(T_{h}\right)=\{h\} \sqcup X_{h}}} w t\left(T_{h}\right)=k_{h}\left(\prod_{i \in X_{h}} k_{i}\right)\left(k_{h}+K_{X_{h}}-1\right)_{\left|X_{h}\right|-1} .
$$

Plugging this into (16), we obtain

$$
\sum_{\substack{T \text { tree, } \\ X(T)=[r]}} \mathrm{wt}(T)=\left(\prod_{i=1}^{r} k_{i}\right) P\left(k_{1}, \ldots, k_{r}\right)
$$

where

$$
\begin{equation*}
P\left(k_{1}, \ldots, k_{r}\right):=\sum_{\substack{X_{1}, X_{2}, X_{1} \sqcup X_{2}=\{3, \ldots, r\}}} k_{1}\left(k_{1}+K_{X_{1}}-1\right)_{\left|X_{1}\right|-1}\left(k_{2}+K_{X_{2}}-1\right)_{\left|X_{2}\right|} \tag{17}
\end{equation*}
$$

In order to complete the inductive proof of our hook formula, we now prove that, for $r \geqslant 2$, $P\left(k_{1}, \ldots, k_{r}\right)$ is equal to

$$
Q\left(k_{1}, \ldots, k_{r}\right)=(K-1)_{r-2}
$$

It is clear that both $\left\{P\left(k_{1}, \ldots, k_{r}\right)\right\}_{r \geqslant 2}$ and $\left\{Q\left(k_{1}, \ldots, k_{r}\right)\right\}_{r \geqslant 2}$ are families of multivariate polynomials, and that, for each $r \geqslant 2, Q$ satisfies the following two properties:

- As a polynomial in k_{1}, the constant term is

$$
\begin{equation*}
Q\left(0, k_{2}, \ldots, k_{3}\right)=\left(K_{\{2, \ldots, r\}}-1\right)_{r-2} \tag{18}
\end{equation*}
$$

- It satisfies the finite difference equation

$$
\begin{equation*}
\Delta_{k_{1}} Q\left(k_{1}, \ldots, k_{r}\right)=\sum_{i=3}^{r} Q\left(k_{1}+k_{i}, k_{2}, \ldots, \widehat{k_{i}}, \ldots, k_{r}\right) . \tag{19}
\end{equation*}
$$

Here $\Delta_{k_{1}}$ stands for the finite difference operator with respect to k_{1}, that is, $\Delta_{k_{1}} f\left(k_{1}\right)=$ $f\left(k_{1}+1\right)-f\left(k_{1}\right)$, and the notation $\widehat{k_{i}}$ means that k_{i} does not appear as an argument.

These two properties completely determine the family of multivariate polynomials $\left\{Q\left(k_{1}, \ldots, k_{r}\right)\right\}_{r} \geqslant 2$ (by immediate induction on r). We now complete the proof that $P=Q$ by proving that the family $\left\{P\left(k_{1}, \ldots, k_{r}\right)\right\}_{r} \geqslant 2$ also has these two properties.

Constant term: If $X_{1} \neq \emptyset$, then $\left(k_{1}+K_{X_{1}}-1\right)_{\left|X_{1}\right|-1}$ is a polynomial in k_{1}, which implies that the summand corresponding to X_{1} in Eq. (17) is a multiple of k_{1}. Thus, the constant term of P corresponds to the summand indexed by $X_{1}=\emptyset$, which implies immediately that P satisfies Eq. (18).

Finite difference equation: A simple computation gives

$$
\Delta_{k_{1}}\left(k_{1}\left(k_{1}+K_{X_{1}}-1\right)_{\left|X_{1}\right|-1}\right)=\left(\left|X_{1}\right| k_{1}+K_{X_{1}}\right)\left(k_{1}+K_{X_{1}}-1\right)_{\left|X_{1}\right|-2} .
$$

Therefore, from (17) we obtain

$$
=\sum_{\substack{X_{1}, X_{2}, X_{1} \cup X_{2}=\{3, \ldots, r\}}}^{\Delta_{k_{1}} P\left(k_{1}, \ldots, k_{r}\right)}\left(\left|X_{1}\right| k_{1}+K_{X_{1}}\right)\left(k_{1}+K_{X_{1}}-1\right)_{\left|X_{1}\right|-2}\left(k_{2}+K_{X_{2}}-1\right)_{\left|X_{2}\right|} .
$$

Also, directly from (17), we have

$$
\begin{aligned}
& \sum_{i=3}^{r} P\left(k_{1}+k_{i}, k_{2}, \ldots, \widehat{k_{i}}, \ldots, k_{r}\right) \\
& \quad=\sum_{i=3}^{r} \sum_{\substack{\left.Y_{1}, Y_{2}, Y_{1} \sqcup Y_{2}=\{3, \ldots, r\} \backslash i\right\}}}\left(k_{1}+k_{i}\right)\left(k_{1}+k_{i}+K_{Y_{1}}-1\right)_{\left|Y_{1}\right|-1}\left(k_{2}+K_{Y_{2}}-1\right)_{\left|Y_{2}\right|} \\
& \quad=\sum_{i=3}^{r} \sum_{\substack{X_{1}, X_{2}, X_{1} \sqcup X_{2}=\{3, \ldots, r\}, i \in X_{1}}}\left(k_{1}+k_{i}\right)\left(k_{1}+K_{X_{1}}-1\right)_{\left|X_{1}\right|-2}\left(k_{2}+K_{X_{2}}-1\right)_{\left|X_{2}\right|} \\
& =\sum_{\substack{X_{1}, X_{2}, X_{1} \sqcup X_{2}=\{3, \ldots, r\}}}\left(\sum_{i \in X_{1}}\left(k_{1}+k_{i}\right)\right)\left(k_{1}+K_{X_{1}}-1\right)_{\left|X_{1}\right|-2}\left(k_{2}+K_{X_{2}}-1\right)_{\left|X_{2}\right|},
\end{aligned}
$$

where we have changed summation indices from the first equation above to the second by setting $X_{1}=Y_{1} \sqcup\{i\}$ and $X_{2}=Y_{2}$. Comparing this with (20) implies immediately that P satisfies Eq. (19), which completes the proof that $P=Q$, and hence the first direct proof of our hook formula.

5. Multivariate Lagrange inversion

For the second direct proof of our hook formula (Theorem 1.1), we apply Lagrange inversion in many variables. We again proceed by induction on r, with base case $r=1$, for which the theorem is trivially true. Now consider an arbitrary (unordered increasing) tree T of size $r>1$. The root vertex labelled 1 has degree j for some $j \geqslant 1$, and the tree decomposes into j sub-trees, whose vertex sets form a partition of $\{2, \ldots, r\}$. From this analysis we immediately obtain the following recurrence relationship for the combinatorial sum on the left-hand side of the hook formula in Theorem 1.1:

$$
\begin{equation*}
\sum_{T} \mathrm{wt}(T)=\sum_{j \geqslant 1} \frac{k_{1}^{j}}{j!} \sum_{X_{1} \sqcup \ldots \sqcup X_{j}=\{2, \ldots, r\}} \prod_{i=1}^{j}\left(K_{X_{i}}-\left|X_{i}\right|+1\right) \sum_{T_{i}: X\left(T_{i}\right)=X_{i}} \mathrm{wt}\left(T_{i}\right) . \tag{21}
\end{equation*}
$$

We complete the proof by showing that the algebraic expression on the right-hand side of the hook formula in Theorem 1.1 also satisfies this recurrence equation. To do so, we apply the following multivariate form of Lagrange's Implicit Function Theorem, as given in Goulden and Jackson [17, Theorem 1.2.9(1)].

Theorem 5.1. Suppose that $w_{i}=t_{i} \phi_{i}(\mathbf{w})$, where ϕ_{i} is a formal power series with constant term 1 , for $i=$ $1, \ldots, r$, with $\mathbf{w}=\left(w_{1}, \ldots, w_{r}\right)$. Then for integers n_{1}, \ldots, n_{r} and formal Laurent series f, we have

$$
\left[t_{1}^{n_{1}} \cdots t_{r}^{n_{r}}\right] f(\mathbf{w})=\left[\lambda_{1}^{n_{1}} \cdots \lambda_{r}^{n_{r}}\right] f(\lambda) \phi_{1}(\lambda)^{n_{1}} \cdots \phi_{r}(\lambda)^{n_{r}} \operatorname{det}\left(\delta_{i j}-\frac{\lambda_{j}}{\phi_{i}(\lambda)} \frac{\partial \phi_{i}(\lambda)}{\partial \lambda_{j}}\right)_{1 \leqslant i, j \leqslant r}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$.
Applying this form of Lagrange's Theorem, we obtain the following identity.
Theorem 5.2. For $r \geqslant 2$, we have

$$
k_{1} \cdots k_{r}(K-1)_{r-2}=\sum_{j \geqslant 1} \frac{k_{1}^{j}}{j!} \sum_{X_{1} \sqcup \cdots \cup X_{j}=\{2, \ldots, r\}} \prod_{i=1}^{j}\left(\prod_{\ell \in X_{i}} k_{\ell}\right)\left(K_{X_{i}}-1\right)_{\left|X_{i}\right|-1} .
$$

Proof. Consider $\phi_{i}(\mathbf{w})=\left(1+w_{1}+\cdots+w_{r}\right)^{k_{i}}$, for $i=1, \ldots, r$. Then we have

$$
\begin{aligned}
\operatorname{det}\left(\delta_{i j}-\frac{\lambda_{j}}{\phi_{i}(\lambda)} \frac{\partial \phi_{i}(\lambda)}{\partial \lambda_{j}}\right) & =\operatorname{det}\left(\delta_{i j}-\frac{\lambda_{j} k_{i}}{1+\lambda_{1}+\cdots+\lambda_{r}}\right) \\
& =1-\frac{\sum_{i=1}^{r} \lambda_{i} k_{i}}{1+\sum_{i=1}^{r} \lambda_{i}},
\end{aligned}
$$

since $\operatorname{det}(I+M)=1+$ trace M when rank $M \leqslant 1$.
We now calculate $\left[t_{1} \cdots t_{r}\right] w_{1}$ in two ways. First, directly from Theorem 5.1, with $n_{1}=\cdots=n_{r}=1$, and $f(\mathbf{w})=w_{1}$, we obtain

$$
\begin{aligned}
{\left[t_{1} \cdots t_{r}\right] w_{1} } & =\left[\lambda_{1} \cdots \lambda_{r}\right] \lambda_{1}\left(1+\sum_{i=1}^{r} \lambda_{i}\right)^{K}\left(1-\frac{\sum_{i=1}^{r} \lambda_{i} k_{i}}{1+\sum_{i=1}^{r} \lambda_{i}}\right) \\
& =(r-1)!\binom{K}{r-1}-\left(K-k_{1}\right)(r-2)!\binom{K-1}{r-2} \\
& =k_{1}(K-1)_{r-2} .
\end{aligned}
$$

Second, applying the functional equation $w_{1}=t_{1} \phi_{1}(\mathbf{w})$, we obtain

$$
\begin{aligned}
{\left[t_{1} \cdots t_{r}\right] w_{1} } & =\left[t_{1} \cdots t_{r}\right] t_{1}\left(1+\sum_{i=1}^{r} w_{i}\right)^{k_{1}} \\
& =\left[t_{2} \cdots t_{r}\right] \sum_{j \geqslant 0} \frac{k_{1}^{j}}{j!}\left(\log \left(1+\sum_{i=1}^{r} w_{i}\right)\right)^{j} \\
& =\sum_{j \geqslant 1} \frac{k_{1}^{j}}{j!} \sum_{X_{1} \cup \cdots X_{j}=\{2, \ldots, r\}} \prod_{i=1}^{j}\left(\left[\prod_{x \in X_{i}} t_{x}\right] \log \left(1+\sum_{i=1}^{r} w_{i}\right)\right) .
\end{aligned}
$$

But, for any $X \subseteq\{2, \ldots, r\}$, with $|X|=m \geqslant 1$, Theorem 5.1 gives

$$
\begin{aligned}
& {\left[\prod_{x \in X} t_{x}\right] \log \left(1+\sum_{i=1}^{r} w_{i}\right)} \\
& \quad=\left[\prod_{x \in X} \lambda_{x}\right] \log \left(1+\sum_{i=1}^{r} \lambda_{i}\right)\left(1+\sum_{i=1}^{r} \lambda_{i}\right)^{K_{X}}\left(1-\frac{\sum_{i=1}^{r} \lambda_{i} k_{i}}{1+\sum_{i=1}^{r} \lambda_{i}}\right) \\
& \quad=\left[\prod_{x \in X} \lambda_{x}\right] \log \left(1+\sum_{x \in X} \lambda_{x}\right)\left(1+\sum_{x \in X} \lambda_{x}\right)^{K_{X}}\left(1-\frac{\sum_{x \in X} \lambda_{x} k_{x}}{1+\sum_{x \in X} \lambda_{x}}\right) \\
& =m!\left[z^{m}\right] \log (1+z)(1+z)^{K_{X}}-K_{X}(m-1)!\left[z^{m-1}\right] \log (1+z)(1+z)^{K_{X}-1} \\
& =(m-1)!\left[z^{m-1}\right]\left\{\frac{d}{d z}\left(\log (1+z)(1+z)^{K_{X}}\right)-\log (1+z) \frac{d}{d z}(1+z)^{K_{X}}\right\} \\
& \quad=(m-1)!\left[z^{m-1}\right] \frac{1}{1+z}(1+z)^{K_{X}}=(m-1)!\binom{K_{X}-1}{m-1}=\left(K_{X}-1\right)_{m-1} .
\end{aligned}
$$

The result follows by equating the two expressions for $\left[t_{1} \cdots t_{r}\right] w_{1}$, and then multiplying by $k_{2} \cdots k_{r}$.

It follows immediately from Theorem 5.2 that the algebraic expression on the right-hand side of the hook formula in Theorem 1.1 also satisfies recurrence Eq. (21), and this completes the second direct proof of our hook formula.

Acknowledgment

We thank an anonymous referee for pointing out some references.

References

[1] P. Biane, Representations of symmetric groups and free probability, Adv. Math. 138 (1) (1998) 126-181.
[2] P. Biane, Characters of symmetric groups and free cumulants, in: Asymptotic Combinatorics with Applications to Mathematical Physics, St. Petersburg, 2001, in: Lecture Notes in Math., vol. 1815, Springer, Berlin, 2003, pp. 185-200.
[3] A. Björner, M.L. Wachs, q-Hook length formulas for forests, J. Combin. Theory Ser. A 52 (2) (1989) 165-187.
[4] C.W. Borchardt, Über eine der Interpolation entsprechende Darstellung der Eliminations-Resultante, J. Reine Angew. Math. 1860 (57) (1860) 111-121.
[5] A. Boussicault, V. Féray, A. Lascoux, V. Reiner, Linear extension sums as valuations on cones, J. Algebraic Combin. (2012) 1-38, http://dx.doi.org/10.1007/s10801-011-0316-2.
[6] F. Bédard, A. Goupil, The poset of conjugacy classes and decomposition of products in symmetric group, Canad. Math. Bull. 35 (2) (1992) 152-160.
[7] A. Cayley, A theorem on trees, Q. J. Math. 23 (1889) 376-378.
[8] F. Chapoton, Une opérade anticyclique sur les arbustes, Ann. Math. Blaise Pascal 17 (1) (2010) 17-45.
[9] F. Chapoton, F. Hivert, J.-C. Novelli, J.-Y. Thibon, An operational calculus for the Mould operad, Int. Math. Res. Not. 2008 (2008), 22 pp .
[10] W. Chen, O. Gao, P. Guo, On Han’s hook length formulas for trees, Electron. J. Combin. 18 (2011) P155.
[11] M. Dołęga, V. Féray, P. Śniady, Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations, Adv. Math. 225 (1) (2010) 81-120.
[12] M. Dołęga, V. Féray, On Kerov polynomials for Jack characters, arXiv:1201.1806, 2012.
[13] R. Du, F. Liu, (k, m)-Catalan numbers and hook length polynomials for plane trees, European J. Combin. 28 (4) (2007) 1312-1321.
[14] H. Farahat, G. Higman, The centres of symmetric group rings, Proc. R. Soc. Lond. Ser. A 250 (1959) 212-221.
[15] V. Féray, V. Reiner, P-partitions revisited, J. Commut. Algebra 4 (1) (2012) 101-152.
[16] J.S. Frame, G.d.B. Robinson, R.M. Thrall, The hook graphs of the symmetric group, Canad. J. Math. 6 (1954) 316-324.
[17] I.P. Goulden, D.M. Jackson, Combinatorial Enumeration, Wiley-Intersci. Ser. Discrete Math., J. Wiley and Sons, New York, 1983, Dover reprint 2004.
[18] I.P. Goulden, D.M. Jackson, The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group, European J. Combin. 13 (5) (1992) 357-365.
[19] I.P. Goulden, D.M. Jackson, Symmetrical functions and Macdonald's result for top connexion coefficients in the symmetrical group, J. Algebra 166 (2) (1994) 364-378.
[20] G. Han, Discovering hook length formulas by an expansion technique, Electron. J. Combin. 15 (1) (2008), R133.
[21] F. Hivert, J.-C. Novelli, J.-Y. Thibon, Trees, functional equations, and combinatorial Hopf algebras, European J. Combin. 29 (7) (2008) 1682-1695.
[22] V. Ivanov, G. Olshanski, Kerov's central limit theorem for the Plancherel measure on Young diagrams, in: Symmetric Functions 2001: Surveys of Developments and Perspectives, in: NATO Sci. Ser. II Math. Phys. Chem., vol. 74, Kluwer Acad. Publ., Dordrecht, 2002, pp. 93-151.
[23] S.V. Kerov, G.I. Olshanski, Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Ser. I 319 (1994) 121126.
[24] D. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, Addison-Wesley, 1973.
[25] I. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford Univ. Press, 1995.
[26] A. Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. 2009 (6) (2009) 1026-1106.
[27] R. Proctor, Dynkin diagram classification of λ-minuscule Bruhat lattices and of d-complete posets, J. Algebraic Combin. 9 (1) (1999) 61-94.
[28] R. Proctor, Minuscule elements of Weyl groups, the numbers game, and d-complete posets, J. Algebra 213 (1) (1999) 272303.
[29] A. Rattan, P. Śniady, Upper bound on the characters of the symmetric groups for balanced Young diagrams and a generalized Frobenius formula, Adv. Math. 218 (3) (2008) 673-695.
[30] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, second ed., Springer, New York, 2001.
[31] B. Sagan, Probabilistic proofs of hook length formulas involving trees, Sémin. Lothar. Comb. 61 (2009), B61Ab.
[32] R. Stanley, Enumerative Combinatorics, vol. I, Wadsworth \& Brooks/Cole, 1986.
[33] Y. Sun, H. Zhang, Two kinds of hook length formulas for complete m-ary trees, Discrete Math. 309 (8) (2009) $2584-2588$.
[34] L. Yang, Generalizations of Han's hook length identities, arXiv:0805.0109, 2008.

[^0]: E-mail addresses: feray@labri.fr (V. Féray), ipgoulden@uwaterloo.ca (I.P. Goulden).
 ${ }^{1}$ V.F. supported by ANR project PSYCO (ANR-11-JSO2-001).
 2 I.P.G. supported by a Discovery Grant from NSERC.

[^1]: ${ }^{3}$ Cayley trees are not embedded in the plane and have no root, they are only specified by an adjacency matrix.

[^2]: 4 The absolute length of a permutation is the minimal number of factors needed to write it as a product of transpositions. It should note be confused with its Coxeter length.

