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A combinatorial proof of a q-analogue of Saalsch/itz's summation theorem is given by 
determining an explicit bijection between sets of integer partitions. The proof relies on the fact 
that the generating function for partitions with upper bounds on the number of parts and largest 
part is a q-analogue of the binomial coefficient. 

1. Introduction 

Saalschiitz's theorem (see [11, p. 243]) is a summation formula involving the 
ordinary hypergeometric function 3F2. A number of binomial coefficient identities 
equivalent to Saalschiitz's theorem have been obtained by various means. Com- 
binatorial proofs of such identities have been given by Cartier and Foata [4, p. 
63], Knuth [9, p. 30], Andrews [1] and Foata [5]. Andrews' [1] proof was for 
Nanjundiah's [10] form, which is 

(,,,-,-<) c,, +,, +,): ,,)(:). 
~ o  r \ g + r / \  m + n  

(1.1) 

Many biomial coefficient identities possess q-analogues involving the q- 
binomial (or Gaussian) coefficient [~], defined for positive integers j by 

( 1 - q i )  - - - ( I - q )  ' 

and [~] = 1 for all i. Saalschiitz's theorem has a q-analogue due to Jackson ([8]), 
which we call the q-Saalschiitz theorem. This can be expressed as a q-binomial 
coefficient identity in a number of ways (see [2, p. 37], [7]). For example, 
Andrews ([2, p. 37]) has proved 

+,,+,.1- <,.2> ,~o r L/x + r J L  m + n  

(We obtain (1.1) from (1.2) by letting q approach 1, so we say that (1.2) is a 
q-analogue of (1.1).) Gould's [7] form was applied by Stanley [12] to deduce an 
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enumera t ive  resul t  for permutat ions ,  with respect to grea ter  index (defined in 

Section 2). 
In this paper  we give a direct  combinator ia l  proof  of 

 13, 
k~u  k m + n m 

which is another  fo rm of the q-Saalschiitz theorem.  (Note tha t  (1.2) is obtained 

f rom (1.3) by set t ing t -- v - n, u = m - n - ~ and k -- m - ~ - r.) The proof  relies 

on the in terpre ta t ion  of the q-binomial  coefficient as a generat ing function for 

part i t ions.  
Let  ~( i ,  j) consist  of all ]- tuples p - - ( P l , . - . ,  Pj), where  i ~  p l > ~ - - -  >I Pi I>0. If 

p l + - - - + p i = s ( p ) ,  then p is called a parti t ion of s(p).  The non-zero  pk's are 

called the parts of p, so ~( i ,  j) is the set of parti t ions with largest  pa r t  at most  i, 

and  at  most  j par ts .  Define P(i ,  j) = ~ p ~ i j )  q~P), so the coefficient of q~ in P(i,  j) 

is the  number  of part i t ions of n with par ts  at most  i, and  at  most  ] parts.  

L e m m a  1.1.  P(i, j)= P(j, i) = [,~i]. 

P r o o | .  See A n d r e w s  [2] for a proof  (p. 35) and references (p. 51). [ ]  

Thus we actually prove (in Section 3) that  

~., qk~k-~')P(m -- k, k - u ) P ( n  + u - k, k ) P ( m  + n, t - k )  = P(t ,  n ) P ( t  - u, m) ,  
k ~ u  

(1.4) 

which is equivalent  to (1.3) by L e m m a  1.1. 
Par t  of our  p roof  of the q-Saalschii tz theorem involves a direct  evaluat ion of 

Stanley 's  [12] genera t ing  function for permuta t ions  with respect  to greater  index 

in a special case. In  this sense we are revers ing Stanley's  approach ,  since he gave 

an indirect eva lua t ion  of this generat ing function by applying the q-Saalschiitz 

theorem.  
Andrews  and Bressoud [3] have given a completely different  combinator ia l  

p roof  of the q-Saalschii tz theorem.  

2. Def ini t ions  and notat ion 

Let  W, = { 1 , . . . ,  n}, and a = 1- • • n be the increasing pe rmuta t ion  on W,, and 

/3 = n + u + l -  • - n + l  n + u + 2 -  - . n + m ,  for  some O < - u < ~ m - 1 .  Let  ~ be the set 

of permuta t ions  on  ./¢',+,, which contain both  a and /3 as subsequences .  Thus 

19' I = ("+,'), since an  e lement  of 5e is uniquely de te rmined  by the subset  of its 
n + m positions containing the  e lements  of a in the specified (increasing) o rder  
(the complemen ta ry  positions contain the  elements  of /3  in their  specified order) .  
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For  or = or~"" "or,+m ~ ~¢, we  say tha t  o'~ is a d e s c e n t  if or~ > or~+x, and we define 

@ (or)= {i Ior~ > ori+x}, the  set  of posi t ions in or tha t  are descents,  and the greater  

i n d e x  I ( o ' ) = Y ~ ( , ) i ,  the  sum of posit ions of descents  in or. W e  denote  the  

n u m b e r  of descents  in or by d(or)= I~(or)l, and let  5¢k ={or I or~5¢, d(or)= k}, the  

set of pe rmuta t ions  in 5¢ with  k descents.  Finally,  let Sk = Y~,~e~ q~(")-(~;~). Since 

n + u + 1 , . . . ,  n + 2 are descents  in every or ~ :T, then I(or) t> 1+  • • • + u = (~1) ,  so 

I(or) - (~1)  >/0, and  Sk = 0 for k < u. 

Fix a nonnega t ive  in teger  t. We  now consider a set ~ of sequences  obta ined  by 

inser t ing t copies of 0 into each e lement  or = or1" • "or,+m of 5¢k for u ~< k ~< t, 

whereve r  we please,  at e i ther  end of or or be tween adjacent  e lements  of or, with 

the  only restr ict ion be ing  tha t  we must  insert  at least  one 0 be tween  or~ and or~+t if 

or~ is a descent.  For  any p ~ ~ constructed in this way from or, then  or is called the 

b a s e  p e r m u t a t i o n  of p. For  O ~ ,  let  N ( p ) = N ~ ( o ) + " "  + N , ( o )  and M(O) = 

MI(P) + ' ' "  +M,(p), where  N~(0) (respectively M~(0)) is the n u m b e r  of e lements  

of a ( respect ively/3)  tha t  are to the left  of the i th 0 in p (numbered  from left to 

right). Now let Z (0 )  = N ( 0 ) + M ( 0 ) ,  and define R =~p~qZ(o~- ( - -~ ,~ .  Note tha t  

M ( O )  t> 1+  + u ( " ~ )  and  N(O)/> 0, by definition, so Z(p )  /"+1~ >- ~ • " "  = - - ~ ,  2 ) ~ ' v .  

In the next  sect ion we evaluate  the generat ing function R in two ways to obta in  

ident i ty  (1.4). This  will involve three  bijections,  and each will be demons t ra ted  in 

the  specific case m = 6, n = 3, u = 2, t = 7, k = 3 for 0o = 0600501470023089  ~ ~ ,  

wi th  base pe rmu ta t i on  oro = 651472389.  Note  tha t  N(Oo)  = 

0 + 0 + 0 + 0 + 1 + 1 + 3 = 5 ,  M ( 0 o ) = 0 + 1 + 1 + 2 + 4 + 4 + 4  = 16, so Z ( O o ) - ( " ~ t )  = 

5 + 16 - 3 = 18, and  l(oro) = 1 + 2 + 5 = 8, so I(oro) - (~a)  = 5. 

3.  T h e  q-Saaischiitz t h e o r e m  

First  we show tha t  R is equal  to the  r ight hand  side of (1.4). 

T h e o r e m  3 .1 .  R = P(t, n )P( t -  u, rn). 

l~roof. In  p ~ ~ ,  suppose  tha t  there  are ai zero 's  to the r ight  of the i th e l ement  

(from the left) of a ,  for  i = 1 , . . . ,  n, and b i zero 's  to the r ight  of the  j th  e lement  of 

/3, for j = 1 , . . . ,  m. Then ,  by  definit ion of ~ ,  we have 

t ~ a l  >>- . . . > ~ a . ~ O  and t>~b l  > . . . >b.+l>~b~,+2 ~> ' ' ' ~>b , .>~O.  

Moreove r  N ( p )  = a ~ +  • • • + a , ,  since a l , . . . ,  ar~i(p) count  the i th  zero from the left  

exact ly once each,  so a l + . . . + a ~ = N ~ ( p ) + . . ' + N , ( p ) .  Similarly M ( p ) =  

b ~ + - - - + b i n .  
Le t  c i = b i  for i = u + l , . . . , m  and c ~ = b ~ - ( u + l - i )  for i = l , . . . , u .  T h e n  

t - u > ~ c ~ > ~ . . . > ~ c , ~ > ~ O  and b ~ + . - - + b m = c t + ' - - + c m + ( " ~ l ) .  Thus a =  

( a l , . . . ,  a , ) e  ~(t, n), c = ( c l , . . . ,  cm)~ ~ ( t -  u, m) and Z ( O ) -  ("~ 1) = s ( a ) + s ( c ) .  

But  this p rocedure  is reversible,  since knowledge of a and c tells us how m a n y  
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elements  of a and how m a n y  e lements  of/3 to place be tween  consecut ive zero 's  in 

0. There  is a unique  such 19 since the e lements  be tween  consecutive zero 's  must  be 

in increasing order,  by defini t ion of ~ .  Thus we have  a bi ject ion be tween  ~ and 

~(t, n) x ~ ( t -  u, m), so 

g=- E / z(°)-("~l)= E qS(a) ~ qS(C) 

= P(t, n ) P ( t -  u, m). [] 

As an example  of the  b i jec t ion  in Theo rem 3.1, consider  19o given at the  end of 

Section 2. Cor responding  to p o ~  we have  ao = ( 3 , 1 , 1 )  ~ ~ (7, 3) and Co = 

(4, 3, 3, 3, 0, 0) ~ ~ ( 5 ,  6), and  indeed s(ao) + S(Co) = 5 + 13 = 18 = Z(19o) - ("~x). 

To show that  R is equal  to the left hand  side of (1.4), we give a construct ion in 

two stages. 

Theorem 3.2. R = Y~k~,, SkP(rn + n, t - k ). 

Proof. Suppose that  p c ~ has base pe rmuta t ion  or = t rx ' "  • or,+m ~ Sfk. Then  for 

i ~ ~(or), or~ and tri+a are separa ted  by at least  one  zero in p, and  we call the 

lef t -most  of these zeros an essential zero. The  remain ing  t - k zeros in O are called 
nonessent ia l .  Le t  the  i th  of the nonessent ia l  zeros (numbered  f rom left  to right) 

have e~ e lements  of or to its left, for i =  1 , . . . ,  t - k .  Then  0 ~< ex~<-- -  ~<e,_k ~< 

m + n, so e = (e,-k, • . . ,  ex) ~ ~ ( m  + n, t -  k). Moreover ,  the cont r ibut ion  of the 

nonessent ia l  zeros to Z(p )  is s(e), and the cont r ibu t ion  of the  essent ial  zeros to 

Z(p)  is I(or), by definit ion,  so Z ( p ) -  (~,~x) = s(e)+I(or)-(2)."+l 

But  this procedure  is reversible,  since knowledge  of or de te rmines  k = d (or), and 

thus allows us to place the  essential  zeros, one  immedia te ly  fol lowing each of the 

k descents  in or. T h e n  e tells us uniquely  how to distr ibute the nonessen t ia l  zeros. 

Thus we have  a b i jec t ion be tween  ~ and U k~,  Sfk x ~ ( m  + n, t -  k). Accordingly  

O ~ t  k ~ u  cr~F k e ~ ( m + n , t - - k )  

= ~ SkP(rn+n, t - k ) .  []  
k ~ u  

As an example  of the  b i jec t ion in T h e o r e m  3.2, cor responding to poe ~ we 

have oro = 651472389  ~ ~3  and eo = (7, 5, 1, 0) ~ ~ (9, 4), and indeed 

s(eo)+ I(oro)-  (~1)  = 1 3 +  5 = 1 8 =  Z ( p o ) -  ("~1). 

The  final result  involves a direct construct ion of the  e lements  of Sfk. 

Theorem 3.3. Sk = q k ( k - ' ) P ( m  -- k ,  k - u)P(n + u - k, k). 

Proof .  Le t  x = (xk_., • • •, xl) a ~ ( m  - k, k - u) and Y --- (Yk, - • -, Yl) 

~ ( n  + u -  k, k). T h e n  we construct  or a .9'k f rom x and y, as follows, by  choosing 

the e lements  of or f rom left  to right. We  begin by tak ing  the first Yl (t>0) e lements  
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of a,  fol lowed by the first e l ement  of/3.  Then,  for i = 2 , . . . ,  u, a l ternate  successive 

blocks of the  next  y~-  Y~-I (/>0) e lements  of a ,  followed by the ith e l emen t  of/3.  
Thus we have  obta ined the first Yu + u elements  of cr f rom the first Yu e lements  of 
a and the first u e lements  (namely n + u + 1 , . . . ,  n + 2) of /3. We cont inue by 

taking the next  Y~+I-Yu (>t0) e lements  of a ,  followed by the next x l +  1 (>0)  

elements  of /3.  Then  for j = 2 , . . . ,  k - u, a l ternate  blocks of Y-÷i - Yu+,-I+ 1 (>0)  

elements  of a and x i - x i _ l +  1 (>0)  elements  of /3. To finish, t ake  the final 
n + u + 1 - k - Yk (>0)  e lements  of a ,  followed by the final m - k - x k - ,  (>10) 

elements  of /3. 

Now for  tr constructed in this way,  we have ~ ( ~ r ) = { y , + l ,  . . . ,  y , + u ,  

y , + ~ + u + l + x x ,  y , , + 2 + u + 2 + x 2 + l ,  . . . ,  y k + k + X k _ u + k - - u - - 1 }  so d ( t r ) = k  
and I ( o ' ) = s ( x ) + s ( y ) + ( l + . . . + k ) + ( l + . . . + ( k - u - 1 ) ) .  Simplifying gives 
I ( o ' ) -  ( " ;  1) = s ( x ) +  s ( y ) +  k ( k  - u ) .  

But  this p rocedure  is reversible since, for any tr ~ 9°k, the k descents of tr must  

include the  first u e lements  of/3,  as well as k - u of the o ther  n - u e lements  of/3, 

which are descents in tr if and only if they are immediate ly  fol lowed by an 

e lement  of a .  Thus x and y are uniquely recoverable  f rom tr, so we have  a 
bijection, be tween  9°k and ~ ( m  - k, k - u) x ~ ( n  + u - k, k), which yields 

t r  ~ S f  k x ~ ( m - - k , k - - u  ) ~ ~ (rt + u - - k , k  ) 

= q k ( k - u ~ P ( m  -- k ,  k - u ) P ( n  + u - k ,  k ) .  []  

As an example  of the bi ject ion in Theo rem 3.3, consider tro given at  the  end of 

Section 2. Cor responding  to tr0~ 9°3 we have Xo = (1) ~ 9 ( 3 ,  1) and Yo = (1, 0, 0) 

~ ( 2 ,  3), and  indeed s ( x o )  + S(yo) + k ( k  - u )  = 1 + 1 + 3 = 5 = I ( t ro)  - (u-~l). 

The three  results of this section yield an immediate  proof  of (1.4). 

Proof of the  q-Smdsdaiitz t h eo rem.  Theorems  3.1, 3.2 and 3.3 demons t r a t e  that  
the left- and  r ight -hand sides of (1.4) are both expressions for R. The  q- 
Saalschiitz t h eo rem  (1.3) follows by applying L e m m a  1.1. [ ]  

We say tha t  this is a bijective proof  because it follows from the bijection 
be tween 

and 

U ~ ( m - k , k - u ) x ~ ( n + u - k , k ) x ~ ( m + n , t - k )  
k, ~ . u  

(3.1) 

n) x u, m), (3.2) 

obta ined  by combining the  bijections used to prove Theorems  3.1, 3.2 and  3.3. 
For  example ,  combining the examples  following Theorems  3.1, 3.2 and  3.3, we 
find tha t  ((1), (1, 0, 0), (7, 5, 1, 0)) in (3.1) corresponds under  this bi ject ion to 

((3, 1, 1), (4, 3, 3, 3, 0, 0)) in (3.2). 
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