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A combinatorial proof of a g-analogue of Saalschiitz’s summation theorem is given by
determining an explicit bijection between sets of integer partitions. The proof relies on the fact
that the generating function for partitions with upper bounds on the number of parts and largest
part is a g-analogue of the binomial coefficient.

1. Introduction

Saalschiitz’s theorem (see [11, p. 243]) is a summation formula involving the
ordinary hypergeometric function ;F,. A number of binomial coefficient identities
equivalent to Saalschiitz’s theorem have been obtained by various means. Com-
binatorial proofs of such identities have been given by Cartier and Foata [4, p.
63], Knuth [9, p. 30], Andrews [1] and Foata [5]. Andrews’ [1] proof was for
Nanjundiah’s [10] form, which is
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Many biomial coefficient identities possess g-analogues involving the g-
binomial (or Gaussian) coefficient [}], defined for positive integers j by

[i] _(1-4)---(0-g""

j (1-q")---(1-q) °

and [{]=1 for all i. Saalschiitz’s theorem has a g-analogue due to Jackson ([8]),
which we call the g-Saalschiitz theorem. This can be expressed as a g-binomial

coefficient identity in a number of ways (see [2, p. 37], [7]). For example,
Andrews ([2, p. 37]) has proved
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(We obtain (1.1) from (1.2) by letting q approach 1, so we say that (1.2) is a
g-analogue of (1.1).) Gould’s [7] form was applied by Stanley [12] to deduce an
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enumerative result for permutations, with respect to greater index (defined in
Section 2).
In this paper we give a direct combinatorial proof of

Z qk(k_u)[m—u][n+u][m+n+t—k] _ [n+t][m —u+t] , (1.3)
K>u k—u k m+n n m

which is another form of the g-Saalschiitz theorem. (Note that (1.2) is obtained
from (1.3) by setting t=v—n, u=m—n—pu and k=m—p —r.) The proof relies
on the interpretation of the g-binomial coefficient as a generating function for
partitions.

Let (i, j) consist of all j-tuples p=(py,...,p;), where i=p,=---=2p;=0.If
p1+ -+ +p;=s(p), then p is called a partition of s(p). The non-zero p’s are
called the parts of p, so (i, j) is the set of partitions with largest part at most i,
and at most j parts. Define P(i, /) =Y ,cowy 4°®, s0 the coefficient of q™ in P(, j)
is the number of partitions of n with parts at most i, and at most j parts.

Lemma 1.1. P(i, j)=P(, i) =['"].
Proof. See Andrews [2] for a proof (p. 35) and references (p. 51). [

Thus we actually prove (in Section 3) that

Y q**P(m—k, k—u)P(n+u—k,k)P(m+n,t~k)=P(t, n)P(t—u, m),

k=u

(1.4)

which is equivalent to (1.3) by Lemma 1.1.

Part of our proof of the g-Saalschiitz theorem involves a direct evaluation of
Stanley’s [12] generating function for permutations with respect to greater index
in a special case. In this sense we are reversing Stanley’s approach, since he gave
an indirect evaluation of this generating function by applying the q-Saalschiitz
theorem.

Andrews and Bressoud [3] have given a completely different combinatorial
proof of the g-Saalschiitz theorem.

2. Definitions and notation

Let #,,={1,...,n}, and a =1---n be the increasing permutation on &, and
B=n+u+l---n+1ln+u+2---n+m, forsome 0<u=m—1. Let & be the set
of permutations on ., ., which contain both « and B as subsequences. Thus
|L|= ("™, since an element of & is uniquely determined by the subset of its
n+m positions containing the elements of « in the specified (increasing) order
(the complementary positions contain the elements of B in their specified order).
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For 0 =0 " On.m €, we say that o; is a descent if 0,>0;,,, and we define
(o) ={i | 0;,>0;.1}, the set of positions in o that are descents, and the greater
index I(0)=Y;ca©) i the sum of positions of descents in o. We denote the
number of descents in o by d(o)=|D(c), and let ¥ ={o | o e ¥, d(a) =k}, the
set of permutations in & with k descents. Finally, let S, =Y, ¢, """, Since
n+u+1,...,n+2 are descents in every € ¥, then I(o)=1+-- - +u=(*3", so
{o)-(*3Y)=0, and S, =0 for k <u.

Fix a nonnegative integer t. We now consider a set # of sequences obtained by
inserting t copies of 0 into each element o =0,"* -0, of F for usk=ty,
wherever we please, at either end of o or between adjacent elements of o, with
the only restriction being that we must insert at least one 0 between o; and g;.., if
o; is a descent. For any p € & constructed in this way from o, then o is called the
base permutation of p. For pe®, let N(p)=Ny(p)+---+N,(p) and M(p)=
M,(p)+ - - - + M,(p), where N;(p) (respectively M;(p)) is the number of elements
of a (respectively 8) that are to the left of the ith 0 in p (numbered from left to
right). Now let Z(p)= N(p)+M(p), and define R=Y,_5q%® “:". Note that
M(p)=1+---+u=("3') and N(p)=0, by definition, so Z(p)—(*3")=0.

In the next section we evaluate the generating function R in two ways to obtain
identity (1.4). This will involve three bijections, and each will be demonstrated in
the specific case m =6, n=3, u=2,t=7, k =3 for p,=0600501470023089 ¢ R,
with base permutation oo=651472389. Note that N(po) =
0+0+0+0+1+1+3=5, M(pg)=0+1+1+2+4+4+4=16, so Z(py)— (*3Y)=
5+16—-3=18, and I(oy)=1+2+5=8, so I(ogy)—(*31)=35.

3. The g-Saalschitz theorem
First we show that R is equal to the right hand side of (1.4).
Theorem 3.1. R =P(t, n)P(t—u, m).

Proof. In p € R, suppose that there are a; zero’s to the right of the ith element
(from the left) of a, for i=1,..., n, and b; zero’s to the right of the jth element of
B, for j=1,..., m. Then, by definition of R, we have

t?a1>"'?an>0 and t>b1>"°>bu+1?bu+22'"?meO.

Moreover N(p)=a,+ - - + +a,, since a, . . . , g, count the ith zero from the left
exactly once each, so a;+---+a,=N;(p)+---+N(p). Similarly M(p)=
b,+ - +b,.

Let ¢;=b; for i=u+1,...,m and ¢g=b,—(u+1—i) for i=1,...,u. Then
t—u=c,=---=2¢,=0 and by;+---+b,=c+ " +cn+(“3Y). Thus a=
@y, -..,a)ePn), c=(c,--.,cn)eP(t—u m) and Z(p)—(*3") =s(a)+s(c).

But this procedure is reversible, since knowledge of a and c tells us how many
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elements of a and how many elements of 8 to place between consecutive zero’s in
p. There is a unique such p since the elements between consecutive zero’s must be

in increasing order, by definition of . Thus we have a bijection between # and
P(t,n)XP(t—u, m), so

R= Z qZ(o)—(u;l)= Z qs(a) Z qs(c)

peR aeP(t,n) ceP(t—u,m)

=P(t,n)P(t—u,m). O

As an example of the bijection in Theorem 3.1, consider p, given at the end of
Section 2. Corresponding to poe R we have aq=(3,1,1)e P(7,3) and c,=
(4,3,3,3,0,0)e 2(5, 6), and indeed s(agy)+s(co)=5+13=18=Z(py) — (*3Y).

To show that R is equal to the left hand side of (1.4), we give a construction in
two stages.

Theorem 3.2. R=Y,., S, P(m+n,t—k).

Proof. Suppose that p e R has base permutation o =0, - - * 6,,,,, € F. Then for
i€P(o), o; and o,,, are separated by at least one zero in p, and we call the

left-most of these zeros an essential zero. The remaining ¢t — k zeros in p are called
nonessential. Let the ith of the nonessential zeros (numbered from left to right)

have e; elements of o to its left, for i=1,...,t—k. Then O0<e;<-::-<e,_, <
m+n, so e=(e_q,...,e)eP(m+n,t—k). Moreover, the contribution of the
nonessential zeros to Z(p) is s(e), and the contribution of the essential zeros to
Z(p) is I(o), by definition, so Z(p)— (*31) =s(e)+I(o)— (*3Y).

But this procedure is reversible, since knowledge of o determines k = d(o), and
thus allows us to place the essential zeros, one immediately following each of the
k descents in 0. Then e tells us uniquely how to distribute the nonessential zeros.
Thus we have a bijection between R and |y, Fi X P(m +n, t — k). Accordingly

R= Z qZ(p)—(";1)= z Z ql(a)—(“;l) Z qs(e)

peR k=uoce¥; ecP(m+n,t—k)
=Y SP(m+nt~k). O
k=u

As an example of the bijection in Theorem 3.2, corresponding to poe R we
have 0,=651472389e¢%; and e,=(7,5,1,00e?(9,4), and indeed
s(eg)+I(o0) — (3 =13+5=18= Z(po)— (*31).

The final result involves a direct construction of the elements of ¥,.

Theorem 3.3. S, =q*“™“P(m—k, k—u)P(n+u—k, k).
Proof. Let X=(Xp—w -+ -» X)) EP(Mm—k, k—u) and V=V ---,V1)E

P(n+u—k, k). Then we construct o€ ¥, from x and y, as follows, by choosing
the elements of o from left to right. We begin by taking the first y, (=0) elements
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of a, followed by the first element of 8. Then, for i =2, ..., u, alternate successive
blocks of the next y;,—vy;,_; (=0) elements of a, followed by the ith element of B.
Thus we have obtained the first y, + u elements of o from the first y, elements of
a and the first u elements (namely n+u+1,...,n+2) of B. We continue by
taking the next y,,;—y. (=0) elements of «, followed by the next x,+1 (>0)
elements of B. Then for j=2,..., k—u, alternate blocks of y,,; —y,.; 1+ 1 (>0)
elements of @ and x;,—x;_;+1 (>0) elements of B. To finish, take the final
n+u+l—k—y, (>0) elements of a, followed by the final m -k —x,_, (=0)
elements of .

Now for o constructed in this way, we have @(o)={y,+1, ..., y.+u,
Yurrtu+1+xy, yoootu+2+x,+1, ..., ye+tk+x_,+k—u—1} so d(o)=k
and I(o)=s(x)+s(y)+(1+---+k)+(1+---+(k—u—1)). Simplifying gives
Io)~(“3Y) =s(x)+s(y)+ k(k —u).

But this procedure is reversible since, for any o € &, the k descents of o must
include the first u elements of B3, as well as k — u of the other n — u elements of B,
which are descents in o if and only if they are immediately followed by an
element of «. Thus x and y are uniquely recoverable from o, so we have a
bijection, between &, and P(m —k, k —u) X P(n+u—k, k), which yields

—_ I(@)—3Y L kk—
Se= L g =g 0§ g § g

o xeP(m—k,k—u) vePn+u—k,k)

- qk(k—u)P(m -k, k— u)P(n +u-— k, k) O

As an example of the bijection in Theorem 3.3, consider o, given at the end of
Section 2. Corresponding to og€ ¥3 we have x,=(1)e ?(3,1) and y,=(1,0,0) ¢
P(2,3), and indeed s(xq)+s(yo)+k(k—u)=1+1+3=5=I(ay)— (*3%).

The three results of this section yield an immediate proof of (1.4).

Proof of the g-Saalschiitz theorem. Theorems 3.1, 3.2 and 3.3 demonstrate that
the left- and right-hand sides of (1.4) are both expressions for R. The g-
Saalschiitz theorem (1.3) follows by applying Lemma 1.1. O

We say that this is a bijective proof because it follows from the bijection
between

UPm—-kk—uwWXPh+tu—k KXPm+n,t—k) (3.1)
k=u

and |
P, n)XP(t—u, m), 3.2)

obtained by combining the bijections used to prove Theorems 3.1, 3.2 and 3.3.
For example, combining the examples following Theorems 3.1, 3.2 and 3.3, we
find that ((1), (1,0,0), (7,5,1,0)) in (3.1) corresponds under this bijection to
((3,1,1), 4,3,3,3,0,0)) in (3.2).
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