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Abstract 

Goulden, I.P., A linear operator for symmetric functions and tableaux in a strip with given 

trace, Discrete Mathematics 99 (1992) 69-77. 

The sum of Schur symmetric functions in a countable set of variables, over partitions with given 

trace and upper bound on the number of parts, is evaluated. This generalizes results of Gordon 

(1971). The method is to extend an analogous sum in a finite set of variables by means of a 

linear operator. 

1. Introduction 

If A,, . . . ) A,, are nonnegative integers with A, Z= . * . 2 A,, then A is a partition 

of IA) = Ai +. + * + A,, and we write At 1121. The nonzero Ai’s are the parts of A, so 

A, is the largest part, and l(A) is the number of parts of A. The conjugate of A, 

denoted by & is the partition (p,, . . , pk), in which ,uj is the number of &‘s that 

are 2j for j = 1, . . . , k, where k = Al. The trace of A, denoted by c(A), is the 

number of odd parts of i. 

If H(t) = IIial (1 - x;t)-‘, then the complete symmetric functions 

h,(r), h,(x), . . . are given by 

h&) = [tk]H(t), k 2 0, 

where [tk] denotes the coefJicient of tk . m the expression to the right, and 

X = (Xl, x2, . . .). w e usually suppress these arguments, and write hk for hk(x). 

We adopt the convention that h, = 0 for k < 0. For a partition A = (A,, _ . . , A,) 
with at most II parts, the Schur symmetric function sA(x) is given by (the 

Jacobi-Trudi identity) 
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Equivalently, S*(X) is the generating function for tableaux of shape A. A 
tableau of shape 3, is an array 

t11 cl* * . . hi, 

t21 t22 t22* 

t nl tn2 * * * td. 

of positive integers tij arranged in rows and columns, with Ai elements in the ith 
row, i = 1,. . . , n, such that the tij form a nondecreasing sequence from left to 

right along each row, and an increasing sequence down each column. In the 
generating function, each occurrence of i in the array is marked by xi, for i 2 1. 

A standard tableau of shape A. is a tableau of shape A containing each of the 

integers 1,2, . . . , liEI once each. Thus, if f” is the number of standard tableaux of 
shape A, and )c kn, then we immediately have 

f*= [Xl. * * -%I+), 
where [x1 * - - x,] denotes the coefficient of x1 - - * x, in the expression to the right. 

For a finite set of variables, say z = (zi, . . . , z,) the Schur function can be 
written as a ratio of alternants: 

where 6 = (n - 1, n -2,. . . , 1,0) and, for ,u = (pi,. . . , pn) any vector of 
integers 

a,(z) = det(z?)l,i,j<,,. 

See Macdonald [lo, Chapter I] for more complete details about symmetric 
functions. 

Gordon [3] has proved the following result (see also Bender and Knuth [l], 
Gessel [2], Goulden [5] and Gordon and Houten [4]). 

Theorem 1.1. Let gl= Ciao hihi+, for 12 0, and g-1 = gp Then 

(1) c l(~)szti SA(X) = d&-j + gi+j-l)lri,jsm 

(2) c 1(1)==2m+l%(~) = (C k*o h&%gi-j - gi+j)lqi,j<rn. 

In this paper these results are extended, by evaluating the summations further 
restricted to partitions A. with a given value of trace. 

The method of proof is quite different from Gordon’s. The starting point is the 
following well-known result of Littlewood [9]. 

Theorem 1.2. Cc(_l_)=o Sl(Z) = nlGi<j<n (1 - ZiZj)-‘. 

From the interpretation of So as a generating function for tableaux, it is clear 
that s*(z) = 0 if /(A) > n, since a tableau of shape )L has a first column consisting of 
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I(n) distinct integers. Thus the summation of Theorem 1.2 is naturally terminat- 
ing, and we could add the restriction that f(n) 6 n (and if IZ is odd, we can further 
restrict to I(n) s n - 1, since c(n) = 0), so we can evaluate 

c Sk) 
I(A)QI,c(A)=O 

by means of Theorem 1.2. However the corresponding summation in an infinite 
set of variables 

c %(X) 
I(A)el,c(A)=O 

is not immediately deducible from Theorem 1.2 since the number of variables in z 
is the same as the upper bound on I(n), so we cannot simply change the number 
of variables without changing this bound. 

In Section 2 we introduce an operator @ that avoids this difficulty, allowing us 
to pass from (1) to (2), increasing the number of variables from n to infinite 
without raising the upper bound on l(n). Thus we evaluate (2) by means of 
Theorem 1.2. The result is given as Theorem 2.3. A similar operator has been 
used by Goulden [5] and Macdonald [lo, p. 32, Ex. 121. The operator that raises 
the number of variables one at a time has been used by Lascoux and Pragacz [7] 
and Lascoux and Schtitzenberger [S]. 

The extensions of Gordons’ results are deduced directly from Theorem 2.3 by 
means of two different constructions for Schur functions. The odd case is given in 
Theorem 2.4 and the even case is given in Theorem 2.6. The analogous sums for 
numbers of standard tableaux have been evaluated for the cases I(n) 6 4 and 5 by 
Gouyou-Beauchamps [6]. These analogous sums are evaluated for the general 
case in Theorem 2.7. 

In Section 3 we use the operator 4 for two sets of variables and the Cauchy 
determinant formula to evaluate 

where y = (rl, y2, . . .). This has been previously given by Gessel [2], using a 
different method. 

2. A linear operator for symmetric functions and the extension of Gordon’s 
result 

Consider the operator @, acting on Laurent series in z, defined for integers 
b 1,. . . , bn by 

W’ * . - z>) = hb, - . . hbn 

extended linearly. The action of + is particularly striking for Schur functions. 
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Lemma 2.1. For any partition A with I(A) c n, 

#(lSGln (l -r~‘lzj)s*(~)) zsJ.(x). 

Proof. We have ni<i<jsn (I- z;‘zj) = K=i Zi -(“-i)aa(z)r and writing s,(z) as a 

ratio of alternants gives 

LHS = $$j z;c”-i)~~(z)a,+*(z)/a,(r)) 

= ~(det(zi”l+n-j-‘n-i’)*~i,j~~) 

= det(h+j+i)isi,jsn 

and the result follows by the Jacobi-Trudi identity. 0 

In applying #, it is convenient to note the following property. 

Lemma 2.2. For any k = 1, . . . , n, suppose that cx is independent of z, and P is a 

polynomial whose coefficients are independent of z,. Then 

@((l - LyzJlP(zi’)) = @((l - CxzJlP((Y)). 

Proof. Let P(W)= Cjkopjd. Then 

= $(,zopj c &hi_,), since h, = 0 for I< 0, 
iZ=j 

and the result follows. 0 

The first Schur function summation we evaluate is for those with at most 2m 
rows, and zero trace. The symmetric functions g,, defined in Theorem 1.1, arise 

because gk = @(zf(l - ZiZj)-‘) for i #i. 

Theorem 2.3 For any m 3 1, 

c sA(x) = det(gi-j - gi+j)lGi,jG,. 
1(A)s2m,c(h)=o 

Proof. From Lemma 2.1, with it = 2m, 

LHS=~(IC~E.(l-Z;LII) C 
_’ ._ r(n)a2,c(A)=o 
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But s*(z) = 0 for f(A) > n, so the restriction I(A) 6 n can be removed in the above 

sum. Thus, from Theorem 1.2, 

LJ-JS = @(F,(z)) 
where 

F,(Z) = n (1 - Z;‘Zj)(l - ZiZj)-‘. 
ISi<jGn 

Now, by a partial fraction expansion, we have 

~ (1 - ZlZj)-’ = ~ (1 - Z,Zj)-’ iQ,j (Zj - Z,)-‘Z,“~‘. 
j=2 j=2 

Thus 

WXZ)) = ,gz @J( (1 - zlzj)F1,fi2(1- z~lzl)~j) 

where 

Pj = z/“-2 i=fi, tzj - zi)-lF,-l(~\{zl~)~ 

Now apply Lemma 2.2 with k = 1 to obtain 

@(F,(Z))= 2 #((l- zlzj)-L Ifi (l-z;'zl)P,) 

j=2 /=2 

=,~2 (-ly~((l -ZlZj)-‘Zj-2(1 - Z,“)) 

x cp(z;’ . * ’ ~~~IFn-2(Z\{z1~ zj>)). 

Comparing this with the recurrence for a Pfaffian pf, we get 

@(F,(Z)) = Pf(aij)*si,j=n, 

where aij = 0 for i = j, aij = -aji for i > j, and 

aij = #((l - ZiZj)-12~-i-‘(1 - 27)) 

= gj_i_l - gj_i+I, for i <j. 

The result follows from Gordon [3, Lemma 11. 0 

Note that, for I 3 0 

by the Jacobi-Trudi identity, so g, -g/+2 is the generating function for tableaux 

with at most two rows, whose lengths differ by exactly 1. Thus the entries of 
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pf(gj+_i - gj-i+i) have a nice combinatorial interpretation, which suggests that a 

direct combinatorial proof of Theorem 2.3 is possible. 

First we extend the odd case of Gordon’s result, deducing it from Theorem 2.3. 

Theorem 2.4. For m, k 3 0, 

c SA(X) = h/c detk-j - gi+j)l<i,j<m. 
1(1)~2m+l,c(l)=k 

Proof. From Macdonald [lo, p. 42, 5.161 we deduce that 

r(*)~+~ofc(“) = ( Ix0 w) c h(X). 
qA)G2m,c(A)=rJ 

The result follows from Theorem 2.3. 0 

Now we extend the even case of Gordon’s result. In the proof it is convenient 

to use the operator qt that replaces some xi by t in a symmetric function in x. 

More precisely, if f(x) is symmetric in x and 

then 

Since f(r) is symmetric, this is independent of the choice of i, and is itself a 

symmetric function in X. The important fact that is needed about qI is given in the 

next result. 

Proposition 2.5. For any m 3 1, 

vt( c s*(x) = c s*(x)tW 
I(h)s2m,c(A)=O > /(1)S2rn 

Proof. Since s*(x) is the generating function for the tableaux of shape A, then 

I+!J~(s*(x)) is the generating function for tableaux of shape A, with t marking the 

occurrence of any positive integer we choose. Suppose t marks the ‘largest’ 

integer, say 00. Then ~0 appears only as the last element in a column, to the right 

of all smaller symbols in the same row. If there are k occurrences of m and these 

are removed, the remaining symbols form a tableaux, k of whose columns have 

length one less than the corresponding columns in the original tableau of shape A. 

Specifically, if c(A) = 0 and 1(A) s2m, then a tableau of shape A with k 
occurrences of 00 yields a tableau of shape A.’ when the 00s are removed, where 

/(A.‘) < 2m and c(A’) = k. The result follows. •i 

The even case of Gordon’s result can now be extended. 
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Theorem 2.6. For any m 2 1 and k 3 0, 

c SA(X) = 
1(1)s2m,c(A)=k 

det ( k-j - gi+j)lsism--l,lsjGm 

km-j+k - gm+j+k)lSjSm > 

Proof. From Proposition 2.5, 

LHS = P*l%( c h(X) 
1(1)=2m,c(A)=o 

) 

= [t“]q,(det(gi_j - gi+j)l,i,j<,), from Theorem 2.3 

= [tk]det(V&-j - gi+j))lzzi,j=,. 

But, as noted above for I> 0, 

g, - a+2 = c s(A,,A,)(x), 
A,-AZ=1 

and, for AI - A2 = I, 

by letting t mark the largest symbol in the tableaux counted by s~A,,A,)(x). Thus 

v%(g, -&+2) = d$o td Ix t” c %.d4 
nao p,-pz=l+n-d 

= d$o td .,a0 (&+n-d - gl+n-d+2)fn 

= d$o td (G/-d - %d+2) 

where G; = CnaOgi+nt”, so 

,n-1 

Vlkl - g1+2n) = vt(g k/+2b -a+,,,,)) 
n-l I+26 

= go z. td(G,+2b-d - G,+2b-d+2). 

Substituting this in the determinant yields 

LHS = [tk]det(aq),,i,jGm 
where 

j-l i-j+26 

aij = 2 c td(Gi-j+2b-d- Gi-j+2b-d+2), i ai, 
b=O d=O 

and 
Uij = Uji, i<j. 
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We now simplify det(aij) by a sequence of row operations: 

(I) Replace row i by row i - t row (i - l), i = 2, . . . , m 

(II) Replace row i by row i - t-’ row (i - l), i = 2, . . . , m 

(III) Replace row 1 by CE”=, t’ row i 

(IV) Divide row 1 by tm-‘, and multiply row i by t, i = 2, . _ . , m. 

(V) Multiply row i by -1 and interchange row i and row (i - l), i = 

2 > . . . f m. 

These row operations do not change the value of the determinant, and 

transform (a,), using the identity G1 = g, + tGl+l, 1~ 0, repeatedly, to 

( 

(Si-j - gi+j)l&Cm--l,lGjjrm 

(Gm-j - Gm+j)lsjsm > ’ 

The result follows since LHS = [?]det(a,) and [tk](Gm_j - G,+j) = gm_j+k - 

g m+j+k. 0 

The corresponding results for degree sums follow immediately. 

Theorem 2.7. Let w, = cisO (?+‘/i! (i + I)!) for 1 s 0, and w-l = Y. Then 

Proof. The results follow from Theorems 2.4 and 2.6, using f * = [xl . . . x,] sA(x), 
and the easily established fact that 

Lx* * . .x,,l@(h~, ha.. .)=[$o(, . . .) . . 
for any formal power series in the hi’s. 0 

Suitably simplified, this result has been given for m = 2 by Gouyou-Beauchamps 

PI. 
Note that the p-recursiveness (see Gessel [2], Stanley [ll]) of the number of 

tableaux with at most i rows, with trace k, and containing j copies of each of 

1,2,. . .) n, where i, j, k are fixed, also follows immediately from the above 

results. 

3. Pairs of Schur functions and Cauchy’s determinant 

Let u = (ul, . . . , r~,), y = (yl, . . .) and the operator GC2) be defined for 

Laurent series in z and v by 

~&” . . . z~vf’ . . . ~2) = h&) . . . h&)h,,(y) * . . h,“(y), 
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extended linearly, where bI, . . . , b,, cl, . . . , c, are arbitrary integers. The 

analogue of Lemma 2.1 is 

@(*)( JJI, (l - zL’zj)(l - v71U,)s*(r)sA(v)) = sA(x)sA(Y)* 

To calculate the summation 

c %(X)S*(Y) 

(3) 

we apply (3) to the following well-known result of Cauchy 

7 ~(zh(u> = G(z)-~G(~)-’ det($---) 
I 1 lG,jsn 

= det(ui_j)l,i.j,, 

where u, = C ks,,hk+[(x)hk(y), in agreement with Gessel [2]. 
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