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A new class of symmetric functions called factorial Schur symmetric functions 
has recently been discovered in connection with a branch of mathematical  physics. 
We align this theory more closely with the s tandard symmetric function theory, 
giving the factorial Schur function a tableau definition, introducing a shift operator 
and a new generat ing function with which we extend to factorial symmetric 
functions proofs of various determinantal  identities for classical symmetric func- 
tions, and defining a new factorial symmetric func t ion - - the  factorial e lementary 
symmetric function. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

Recent work in the domain of mathematical physics has focused on a 
new inhomogeneous basis set of symmetric functions known as factorial 
Schur functions (see Biedenharn and Louck [2], [3] and Chen and Louck 
[5]). However, the factorial Schur functions are also interesting in their 
own right and a substantial theory surrounding them has begun to de- 
velop. Several equivalent definitions for factorial Schur functions are 
known, and factorial complete symmetric functions and skew factorial 
Schur functions have been identified. In this paper we seek to make this 
theory more closely aligned with standard material on symmetric functions 
as found, for example, in Chapter I of Macdonald [7]. Thus we give the 
factorial Schur functions a tableau definition, and, by means of generating 
functions involving a shift operator, show that the proofs of the various 
determinantal identities in the standard theory extend very nicely to the 
factorial versions. In addition, a factorial elementary symmetric function 
arises naturally by these means. Results similar to those in the paper but 
for a-paired factorial symmetric functions (defined in [2]) can also be 
proved; however, as the extension is routine, and space does not allow for 
a full exposition of these ideas, they are omitted. 
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Let h = (h i , . . . , / ~m ) where hi >_ /~2 ~- " '"  -~ hrn are nonnegative inte- 
gers and A 1 + I  2 + . . . + 3 ,  m = n .  We then say h is a partit ion of n 
(denoted h t- n) with m parts  (denoted l (h )  = rn). Given any partition, we 
can represent  it by a Ferrers diagram, that is, by an arrangement  of 
squares which is left and top justified and which is such that there are h i 
squares in the ith row. The content  of a square x in a Ferrers diagram is 
denoted by c(x),  and equals j - i if x lies in column j f rom the left and 
row i from the top of the Ferrers diagram. The conjugate of a partition A 
is defined to be the partition h' whose Ferrets  diagram is the transpose of 
the Ferrers diagram of h. More explicitly, h' i is the number  of squares in 
the ith column of A, i.e., h' i = cardinality {j: hj _> i}. 

We can also define a skew partition. Given two partitions, h and /x ,  we 
say h _D/x if h i >_ txi for all i _> 1; i.e., the Ferrets  diagram of h contains 
the Ferrers diagram of ~ in its upper  left hand corner. If  we remove the 
Ferrers diagram of /x from the upper  left hand corner of the Ferrers 
diagram of h, then we have the Ferrets  diagram of the skew partition 
h -/-~. The conjugate of h - IX is defined to be the skew partition h' - tx'. 

If  we insert positive integers into the squares of the Ferrers diagram of a 
skew partition h - / x  such that the entries strictly increase down each 
column and weakly increase left to right along each row, we say we have a 
skew tableau of shape h - / x. In a skew tableau T, we use T ( x )  to denote 
the positive integer in square x of the Ferrers diagram of the shape of T. 
As a final comment,  note that in what follows we assume a finite number  
of variables, Z l , . . . ,  z,~, and adopt the conventions that z = (z 1 . . . . .  z m) 

and z + k = ( z  1 + k , . . . ,  z m + k )  for any integer k. 

2. THE SKEW FACTORIAL SCHUR SYMMETRIC FUNCTION 

For partitions A, tz with IX c_ h and l (h)  <_ m,  the classical skew Schur 
function can be defined combinatorially as 

s . / . ( z )  = E 1-I 
T x ~ A - I  x 

where the summation is over tableaux T of shape h - p~, and x ~ A - tx 
means that x ranges over all squares in the Ferrers diagram of h - / x .  

This is a symmetric homogeneous polynomial in z with many interesting 
propert ies (see Macdonald [7] for a complete treatment).  Among these are 
the Jacob i -Trud i  identity 

sa/l ,  ( z )  = det (ha  _m_/+j( z ) )m ×m' (1) 
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and its dual form 

= d e t ( e . _ . , _ ,  +,(.) ) . , . . ,  (2) 

where hk(Z) and e~(z), k >_ 0 are, respectively, the complete and elemen- 
tary symmetric functions given by E~>_ohk(Z)t k =  I~ jml (1-  Zjt) -1 and 
Ek>oek(z ) t  ~ = [Ijm=l(1 - f -z j t ) .  

The classical Schur function sA(z) is simply sa /e ( z ) ,  and has the 
determinantal property 

s,(z) IZu,_J lm× m (3) 

Consider now the related polynomials, with combinatorial definition 

t a / , ( z )  = E I-I (zr(,-) - T ( x )  + 1 - c ( x ) )  (4) 
T x~A-- t~  

where the summation is over tableaux T of shape A - ft. We let tA(z) = 
tA/D (z).  The polynomial tA/~(z) has been considered by Chen and Louck 
[5] in an equivalent form--as  a sum over skew Gel'fand pat terns--and is 
called the skew factorial Schur function; tA(z) has been considered by 
Biedenharn and Louck [2]--also in terms of Gel'fand pat terns--and 
is called the factorial Schur function. This name has been chosen because 
of the following determinantal property, analogous to (3) above for 
Schur functions, where (zi)  ~ denotes the falling factorial z i (z  i - 1) . . .  
(z  i - k + 1): 

t , ( z )  = (5 )  

The equivalence of (5) and the combinatorial definition (4) above with 
ft = Q (in its equivalent Gel 'fand pattern form) has been established 
by Biedenharn, Louck, and Macdonald [5]. Clearly, from (5), t~(z) 
is a symmetric polynomial in z, and, although it is not homogeneous, 
Biedenharn and Louck [2] have proved that {tA(z)} forms a Z-basis for the 
ring of symmetric polynomials in z. 

Chen and Louck [5] defined the sequence of polynomials w,(z) ,  n >>_ 0 
by 

w , ( z )  = E Yi~(Yi2- 1) . . .  ( y i , -  n + 1), (6) 
l <~il <_i2<_ . . ,  <_in<~m 
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where y~ = zj - j + 1, j = 1 , . . . ,  m, and proved an analogue of (1), namely 

,a/,~(z) = d e t ( w a i _ , _ i + i ( z  + j -  1 - /Xi))m×m. (7) 

In this sense the wn(z)  are analogues of the complete symmetric functions. 
As noted in Chen and Louck [5], they are themselves symmetric functions, 
so from (7), the skew factorial Schur function, t a / , ( z ) ,  is a symmetric 
function. We have been unable to find an elementary proof of this 
symmetry based on the combinatorial definition (4). For example, such a 
proof for the symmetry of the skew Schur function is given in Bender and 
Knuth [1] and is based on an involution for tableaux to which an adjacent 
transposition of the elements has been applied. However, this procedure 
does not seem to extend to the factorial case, so the fact that perturbation 
of zr(x) by T ( x )  - 1 + c ( x )  retains symmetry is perhaps deeper  than it 
might first appear. 

In this paper we give a compact treatment of (5) and (7), and introduce 
an analogue of the elementary symmetric functions which leads to an 
analogue of (2). These results involve the shift operator,  S, which acts 
homomorphically on polynomials in z l , . . . ,  z m and which is defined as 
S ( P ( z ) )  = P ( z  - 1) for P a polynomial in z I . . . . .  z m. For example, using 
the shift operator,  S, (5) may be rewritten as 

t a ( z )  = 

which provides a striking relationship between ta(z) and sa(z) when 
compared to (3). 

At this juncture it is perhaps appropriate to note that I ( z iS)  m J(1)lm×m 
= Iz~n-J[m×m, the Vandermonde determinant, for if we replace z/k in 
[22-Jlmxm by a monic polynomial in z i of degree k, then we can add and 
subtract multiples of other columns to recover z/~. 

In what follows we will actually have two kinds of objects defined for 
each factorial symmetric function: an operator  and a polynomial. The 
operators are polynomials in Z l , . . . ,  z m and S. Products are, of course, 
not commutative, and are distinguished by the placement of an S in the 
argument list. For example, f ( z ,  S) is such an operator,  while f ( z )  is the 
polynomial defined by f ( z )  = f ( z ,  S)(1). Multiplication of operators is, of 
course, compositional multiplication, whereas multiplication of polynomi- 
als is ordinary multiplication. Also, any S occurring in a product is 
assumed to act on any and all z s  which follow it. This is what one would 
expect in a compositional product but it is nonetheless a point worth 
stressing. Finally, suppose P and Q are operators and suppose every term 
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in P contains d occurrences of S in some order. Then (P(z, S)Q(z, S))(1) 
= (P(z)SaQ(z,  S))(1) = (P(z)Q(z  - d, S)Sd)(1) = P(z)Q(z  - d). 

3. THE FACTORIAL COMPLETE AND ELEMENTARY 

SYMMETRIC FUNCTIONS 

Two important symmetric functions in classical theory are the complete 
symmetric function and the elementary symmetric function. We now 
consider factorial operator  versions of these, using the shift operator S. 
Note that all products are noncommutative, and that the indexing of each 
product below runs in a different direction. 

DEFINITION 3.1. (1) The factorial complete symmetric generating func- 
tion operators, w~(z, S), n > 0, are given by 

m 

E w.(z ,  S)t  ~ = W(t ,  z, S) = I-I (1 - (z ,  - i + 1 ) t s )  -1 
n > 0  i=1 

(2) The factorial elementary symmetric function operators, u~(z, S), 
n >_ O, are given by 

1 

E u~( z , S ) t  ~ = U ( t , z , S )  = 1--I (1 + 
n>_O i = m  

z i - i +  1)tS).  

The factorial complete symmetric functions %(z) ,  n _> 0, are defined as 
w~(z) = w~(z,S)(1) and the factorial elementary symmetric functions 
u~(z), n >_ O, are defined as u,(z) = un(z, S)(I). 

Clearly, from Definition 3.l, 

wn(z,S ) = y" (YiS) (Yi2S) . . . (Y inS) ,  
1_<i1_<i2_<... <_in <~m 

SO, 

w~(z) = E Yil(Yi2- 1 ) . . .  ( Y i , - n  + 1), (8) 
1_<i1<i2_<... <_in<_m 

where yj = z s - j + 1, j = 1 , . . . ,  m, and, by (6) our definition of w~(z) is 
therefore equivalent to that of Chen and Louck [5]. A similar explicit form 
for u~(z) is given by 

un(z) = E Yi.(Yi. , -  1 ) . . . ( y / , - n  + 1). 
1_~i1<i2<... <in~_m 
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Although  pe rhaps  not  immedia te ly  obvious for the above expressions,  
u~(z, S), u , ( z ) ,  w , (z ,  S), and wn(z) are indeed symmetr ic  in the zs  as can 
be  seen f rom their  genera t ing  funct ions in the  following result.  Chen  and 
Louck  [5] have shown tha t  the wn(z) are symmetr ic  by a divided difference 
a rgument .  

PROPOSVnON 3.2. (1) (1 -- (Z i -- 1)tS)(1 - z f lS )  = (1 - (zj  - 1)tS) 
(1 - zi tS) .  

(2) u~(z, S) and un(z) ,  n > 0 are symmetric in z. 

(3) w~(z, S)  and w~(z), n > 0 are symmetric in z. 

Proof. (1) 

(1 - ( z  i - 1) tS)( l .  - z l t S )  

= 1 - ( z  i - 1) tS  - z f lS  + ( z  i - 1)(z~ - 1)t2S 2 

= 1 - ( z  i -Jr- Z j  - -  1)iS + ( z  i - 1) (z j  - 1)t2S 2 

= 1 - ( z j -  1 ) t S -  z i tS  + (Z j -  1)(Zi- 1)t2S 2 

= (1 - ( z ] -  1 ) tS ) (1  - zi tS  ).  

(2) Rep lace  i by j +  1, t by - t ,  zj by z j - j +  1, and z j+l  by 
zj+ 1 - j  + 1 in (1). This  proves  that  U ( t , z , S )  is invariant  under  the 
adjacent  t ranspos i t ion  ( j ,  j + 1) appl ied to z for  any j = 1 . . . . .  n - 1. I t  
follows immedia te ly  tha t  U(t, z,  S)  is symmetr ic  in z, so u , ( z ,  S), n > 0 
are  symmetr ic  in z and thus u , ( z ) ,  n > 0 are  symmetr ic  in z. 

(3) F r o m  (1) we obtain  immedia te ly  

( 1 ) (  1 ) ( 1 ) (  1 ) 
1 ---zitS J -  ( z j -  1)tS = 1 - z j t S  1 -  ( z  i -  1) tS  

and the result  follows similarly to (2). | 

Since the un(z)  and w , ( z )  are symmetr ic ,  it is reasonable  to ask if the  us 
and the ws def ined by u~ = uAtua2...ua,,, and w, = wAwa2. . .wa, , ,  are 
each  bases  for  the ring of  symmetr ic  polynomials .  T h e  veraci ty of  this is 
rout ine  to show and can be done  using the me thod  out l ined in bo th  
Macdona ld  [7, pp. 13, 54, 55] and Biedenharn  and Louck  [2, pp. 413,414]. 
For  comple teness  we state it as a proposi t ion.  

PROr'OSmON 3.3. The sets o f  symmetric polynomials, {u A} and {wa}, are 
each Z-bases for  the ring o f  symmetric polynomials. 
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Note that U ( - t ,  z,  S ) W ( t ,  z,  S)  is the identity operator. This leads to 
the following analogue of the relation E~=0(-1)iei(z)h~-i(z) = ~o,~. 

PROPOSITION 3.4. For n >_ O, 

( - - 1 ) i u i ( Z ) W n _ i ( Z  -- i) = 6o, n. 
i=0 

Proof. This identity is similar to that of Macdonald [7, (2.6), p. 14] and 
follows directly from ( U ( - t ,  z,  S ) W ( t ,  z,  S))G) = 1 since un(z ,  S)  is ho- 
mogeneous of degree n in S. Thus [ t n ] ( U ( - t ,  z , S ) W ( t ,  z, S))(1) = 
~ n  _ _ _ ( i=0 ( -  1 ) i u i ( Z ,  S ) W  n i ( Z ,  S) ) (1 )  = Y~n=0(-- 1 ) i u i ( Z ) W n  i (Z  i ) .  | 

4. T H E  SKEW FACTORIAL J A C O B I - - T R u D I  IDENTITY AND ITS D U A L  

Equations (1) and (7) introduced the classical skew and skew factorial 
Jacobi-Trudi identities. Here we give a more concise proof of this second 
result, exploiting the combinatorial definition of the skew factorial Schur 
functions and using the Gessel-Viennot lattice path techniques [6]. Note 
that this method of proof was suggested in Chen and Louck [5]. 

Here a lattice path has two types of steps: vertical steps, which increase 
the y-coordinate by 1, and horizontal steps, which increase the x-coordi- 
nate by 1. We use the weight function 0 for a lattice path P defined by 
O(P) = l - I ( i , j ) ( z  j - j - i), where the product is over points (i, j), which are 
starting points of the horizontal steps. First we identify the factorial 
complete symmetric function as a lattice path generating function with this 
weight function. 

PROPOSITION 4.1. The generating funct ion for  lattice paths  which start at 
(a, 1) and end at (/3, m )  is w¢_~(z  - a - 1). 

Proof. The horizontal steps in a lattice path from (a, 1) to (/3, m) start 
at (a ,  i l ) , ( a  + 1, i 2) . . . .  ,(/3 - 1, i~_~) for 1 < i 1 <_ i 2 <_ . . .  <_ i¢_~ <_ m,  
so the required generating function is 

(Z i l  --  i l  --  O L ) . . , ( g @ _  -- i~_o~ --  /3 ~- 1) 
1_<i1_<... ~<icj c~_<m 

and the result follows immediately from (8). ] 
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THEOREM 4.2 (Skew Factor ia l  J a c o b i - T r u d i  Identity).  For partitions 
A = ( h i , . . .  , A m ) and IX = ( Ix1 , . . . ,  Um), we have 

t a / ~ ( z )  = det(wA_u~ i+7(z + j - 1 - /Xj))m×m. 

Proof. We modify  the G e s s e l - V i e n n o t  latt ice pa th  bijection m e t h o d  of  
p roof  for  the skew J a c o b i - T r u d i  identi ty to account  for  the modif ied 
weight  in the skew tableaux genera t ing  funct ion (4). This  results in 
weight ing each  hor izontal  s tep in the cor responding  non- in tersec t ing  lat- 
tice paths  by zi - j  - i where  the s tep begins  at point  (i, j )  in the  plane.  
The  result  is a consequence  of T h e o r e m  1.2 of  S tembr idge  [9], with 
u = ((/x m - m,  1 ) , . . . , ( / x  1 - 1,1)) and v = ((A m - m , o o ) , . . . , ( A  1 - 1, oo)) 
and invoking Propos i t ion  4.1. | 

I t  is wel l -known in classical theory  tha t  the J a c o b i - T r u d i  identi ty has a 
dual  version,  namely  (2) above.  Similarly the  factorial  J a c o b i - T r u d i  iden- 
tity has a dual version.  

THEOREM 4.3. For partitions A and tx with A ' - ( A ' I , . . . ,  I~'m) and 
/~' = ( ~ 1  . . . . .  I&Jrn ), tA/~(z)  = det (uxi_ / j_ i+/(z  - i + h'i))al×x ,. 

Proof. W e  achieve this result  by showing 

d e t ( w a _ , F i + / ( z  + j - 1 - / z / l )  = det(uA, i_~)_i+/(z  - i  Xi)) .  + 

We mimic  Macdona ld  [7, p. 15]. 
Le t  N be  a posit ive in teger  and consider  the matr ices  of  N + 1 rows 

and columns,  

W = ( w i _ j ( z - j +  1)) a n d  U = ( ( - 1 ) i - J u i _ j ( z - j - t  - 1)).  

Both  W and U are lower t r iangular ,  with ls  down the diagonal ,  so tha t  
det  W = det  U = 1; moreover ,  Propos i t ion  3.4 shows that  W and U are  
inverses of  each  other.  I t  follows that  each  minor  of  W is equal  to the 
c o m p l e m e n t a r y  cofactor  of  U T, the t ranspose  of U. 

Let  A a n d / x  be  par t i t ions  of  length _< p such that  A' a n d / x '  have length 
< q where  p + q = N + 1. Consider  the  minor  of  W with row indices 

Ag + p - i (1 < i < p )  and co lumn indices /x  i + p - i (1 _< i < p) .  By (1.7), 
p. 3 of  [7], the c o m p l e m e n t a r y  cofactor  of  U r has row indices p - 1 + 
j - A'j (1 _< j _< q) and co lumn indices p - 1 + j - / x ' j  (1 < j _< q). H e n c e  
we have 

det(wAi_~j_i+j( z - p + j - Ix~)) 

= ( - - 1 ) t A l + l ~ l d e t ( ( - - 1 ) x i - ~ ' i - i + J u x i _ / F i + j ( z - - p - - i  + X i + 1)) .  
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The  minus signs cancel out,  and thus we have 

det(wa,_~, i+,(z - p  + j -  txj)) = det(ua,_l , ,_i+j(z  - p  - i  + X i + l ) ) .  

If we replace z by z + p - 1 (valid since all s ta tements  made  are true 
for all z), we have 

det (wa_t ,_ i+j (z  + j  - 1 - /*J ) )mx,n  = det(ua', -~', i+J(z - i + h'i))a, xa . II 

5. THE FACTORIAL JACOBI--TRuDI IDENTITY: 
AN ALTERNATE PROOF 

As an aside, we invoke the a l ternate  definition of ta(z) to prove the 
factorial  J a c o b i - T r u d i  identity algebraically. This p roof  follows closely 
the techniques  of  Macdona ld  [7, p. 25], and involves manipulat ions of  the 
factorial  e lementa ry  symmetric functions. 

T H E O R E M  5.1 .  For partition l~ = ("~I . . . .  , Am), we h a v e  

I ( Z i ) m _ j l m × m  = d e t ( w a ,  - i + ' ( z  + j - 1 ) ) m x m -  

Proof. For  k = 1 . . . . .  m and n > 0, let uEk](t, Z, S), u{f](z, S), u~J(z)  
deno te  U(t, z \ {zk}, S), u,,(z \ {Zk}, S), u , ( z  \ {zk}), respectively. Define 

= (( -1)m-Ju~J_j (z  - m - 1))l<k,j_< m and, for a = (% . . . . .  a m) ~ N m, 
define 

= ((z i) ,~,)  and W~ = (Woe , m + i ( Z  - ~ i - -  1)). 

Now from the symmetry of W we have 

u [ K I ( - - t , z , S ) W ( t ,  z , S )  = (1 - (zk - m  + 1) tS)  -~ 

Apply S - ( ' -  ~) to both  sides of  this equat ion and equate  coefficients of  t ~, 
to obtain 

E (-1)m-'ugL (z + m - 1, s s-m+'w S) (zkS)  / a j - m + l ( Z ~  : 
l~1 
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Apply both sides to 1, giving 

( - 1 ) m - ' u ~ ] , ( z  + rn - 1)w~ _ , , + , ( z  + I - 1) = ( z k ) ~ ,  
/ = 1  

so &rW~ = . 4 .  If we  take determinants we  obtain 

a~ = d e t ( X ~ )  = d e t ( M ) d e t ( W ~ ) .  

Let a = (m - 1, m - 2 . . . . .  1, 0), and note that W a is upper unitriangu- 
lar, so  det(Wa) = 1. Thus substituting a = 6 in the above expression gives 
d e t ( M )  = ~a. Hence  ~ = ~a det(W~) and the result follows if we  let 
a = A + 6 and then divide both sides by aa. II 
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