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A new class of symmetric functions called factorial Schur symmetric functions
has recently been discovered in connection with a branch of mathematical physics.
We align this theory more closely with the standard symmetric function theory,
giving the factorial Schur function a tableau definition, introducing a shift operator
and a new generating function with which we extend to factorial symmetric
functions proofs of various determinantal identities for classical symmetric func-
tions, and defining a new factorial symmetric function—the factorial elementary
symmetric function. © 1995 Academic Press, Inc.

1. INTRODUCTION

Recent work in the domain of mathematical physics has focused on a
new inhomogeneous basis set of symmetric functions known as factorial
Schur functions (see Biedenharn and Louck [2],[3] and Chen and Louck
[5D). However, the factorial Schur functions are also interesting in their
own right and a substantial theory surrounding them has begun to de-
velop. Several equivalent definitions for factorial Schur functions are
known, and factorial complete symmetric functions and skew factorial
Schur functions have been identified. In this paper we seek to make this
theory more closely aligned with standard material on symmetric functions
as found, for example, in Chapter T of Macdonald [7]. Thus we give the
factorial Schur functions a tableau definition, and, by means of generating
functions involving a shift operator, show that the proofs of the various
determinantal identities in the standard theory extend very nicely to the
factorial versions. In addition, a factorial elementary symmetric function
arises naturally by these means. Results similar to those in the paper but
for a-paired factorial symmetric functions (defined in [2]) can also be
proved; however, as the extension is routine, and space does not allow for
a full exposition of these ideas, they are omitted.
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Let A =(Ay,...,A,,) where A; > A, = ... = A, are nonnegative inte-
gers and A; +A, +...+A, =n. We then say A is a partition of n
(denoted A + n) with m parts (denoted /(1) = m). Given any partition, we
can represent it by a Ferrers diagram, that is, by an arrangement of
squares which is left and top justified and which is such that there are A,
squares in the ith row. The content of a square x in a Ferrers diagram is
denoted by c¢(x), and equals j — i if x lies in column j from the left and
row i from the top of the Ferrers diagram. The conjugate of a partition A
is defined to be the partition A’ whose Ferrers diagram is the transpose of
the Ferrers diagram of A. More explicitly, X, is the number of squares in
the ith column of A, i.e., X; = cardinality {j: A, > i}.

We can also define a skew partition. Given two partitions, A and u, we
say A D u if A; > u; for all i > 1; i.e.,, the Ferrers diagram of A contains
the Ferrers diagram of wu in its upper left hand corner. If we remove the
Ferrers diagram of u from the upper left hand corner of the Ferrers
diagram of A, then we have the Ferrers diagram of the skew partition
A — . The conjugate of A — u is defined to be the skew partition A" — u'.
If we insert positive integers into the squares of the Ferrers diagram of a
skew partition A — u such that the entries strictly increase down each
column and weakly increase left to right along each row, we say we have a
skew tableau of shape A — w. In a skew tableau T, we use T(x) to denote
the positive integer in square x of the Ferrers diagram of the shape of T.
As a final comment, note that in what follows we assume a finite number
of variables, z,,..., z,,, and adopt the conventions that z = (zy,..., z,,)
and z + k =(z, + k,..., z,, + k) for any integer k.

2. TuEe Skew FACTORIAL SCHUR SYMMETRIC FUNCTION

For partitions A, w with & € A and I(A) < m, the classical skew Schur
function can be defined combinatorially as

Sa/u (z) = Z 1_[ Z7(x)

T xEA—k

where the summation is over tableaux 7 of shape A — p,and x €A —u
means that x ranges over all squares in the Ferrers diagram of A — u

This is a symmetric homogeneous polynomial in z with many interesting
properties (see Macdonald [7] for a complete treatment). Among these are
the Jacobi—Trudi identity :

snu(2) = det(h,\i—u,—iﬂ(z)) (1)

L
mXxXm
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and its dual form
Saul(2) = det(e)\’,-~ﬂ’,—i+f(Z))/\lxm’ (2)

where 4,(z) and ¢,(z), k > 0 are, respectively, the complete and elemen-
tary symmetric functions given by ¥, o4 (z)t* = TI/L,(1 — z;1)™" and
Crsoe(Dth =TI (1 + z;0).

The classical Schur function s)(z) is simply s, (z), and has the
determinantal property

Ajtm

lz _j[me

S/\(Z) = |lz

(3)

im_j’me
Consider now the related polynomials, with combinatorial definition

t/\/,LL(Z) = Z I_[ (ZT(x) - T(x)+1- c(x)) (4)

T XEA—pu

where the summation is over tableaux 7' of shape A — u. We let ¢,(z) =
t) sz (z). The polynomial ¢, ,(z) has been considered by Chen and Louck
[5] in an equivalent form—as a sum over skew Gel'fand patterns—and is
called the skew factorial Schur function; t,(z) has been considered by
Biedenharn and Louck [2]—also in terms of Gel'fand patterns—and
is called the factorial Schur function. This name has been chosen because
of the following determinantal property, analogous to (3) above for
Schur functions, where (z;), denotes the falling factorial z.(z; — 1)...
(z; — k + 1)

l(zi))‘j+’n_j lme

‘(Zi)m“f lmxm '

t(z) = (5)

The equivalence of (5) and the combinatorial definition (4) above with
g = & (in its equivalent Gel’fand pattern form) has been established
by Biedenharn, Louck, and Macdonald [5]. Clearly, from (5), £,(z)
is a symmetric polynomial in z, and, although it is not homogeneous,
Biedenharn and Louck [2] have proved that {,(z)} forms a Z-basis for the
ring of symmetric polynomials in z.

Chen and Louck [5] defined the sequence of polynomials w,(z), n > 0
by

(z) = - Y Vi, = 1).. . (y, —n+1), (6)
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where y, =z, —j + 1,j = 1,...,m, and proved an analogue of (1), namely

fu(2) = det(w, _, ui(z 47— 1 - )

m><m‘ (7)
In this sense the w,(z) are analogues of the complete symmetric functions.
As noted in Chen and Louck [5], they are themselves symmetric functions,
so from (7), the skew factorial Schur function, ¢, ,(z), is a symmetric
function. We have been unable to find an elementary proof of this
symmetry based on the combinatorial definition (4). For example, such a
proof for the symmetry of the skew Schur function is given in Bender and
Knuth [1] and is based on an involution for tableaux to which an adjacent
transposition of the elements has been applied. However, this procedure
does not seem to extend to the factorial case, so the fact that perturbation
of zpy by T(x) — 1 + c(x) retains symmetry is perhaps deeper than it
might first appear.

In this paper we give a compact treatment of (5) and (7), and introduce
an analogue of the elementary symmetric functions which leads to an
analogue of (2). These results involve the shift operator, S, which acts
homomorphically on polynomials in z,,..., z, and which is defined as
S(P(z)) = P(z — 1) for P a polynomial in z,,..., z,,. For example, using
the shift operator, S, (5) may be rewritten as

1(2:8) " (D) pserm
1(2:8)" ™ (Dl

t(z) =

2

which provides a striking relationship between ¢,(z) and s,(z) when
compared to (3).

At this juncture it is perhaps appropriate to note that [(z,;8)" (1) xm
= |2 7|,yxm, the Vandermonde determinant, for if we replace zF in
Iz{"‘f | xm by a monic polynomial in z, of degree &, then we can add and
subtract multiples of other columns to recover zf.

In what follows we will actually have two kinds of objects defined for
each factorial symmetric function: an operator and a polynomial. The
operators are polynomials in z,,..., z,, and S. Products are, of course,
not commutative, and are distinguished by the placement of an § in the
argument list. For example, f(z, §) is such an operator, while f(z) is the
polynomial defined by f(z) = f(z, SX1). Multiplication of operators is, of
course, compositional multiplication, whereas multiplication of polynomi-
als is ordinary multiplication. Also, any S occurring in a product is
assumed to act on any and all zs which follow it. This is what one would
expect in a compositional product but it is nonetheless a point worth
stressing. Finally, suppose P and Q are operators and suppose every term
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in P contains d occurrences of S in some order. Then (P(z, $)Q(z, $)X1)

= (P(2)89Q(z, D) = (P(2)Q(z — d,$)SX1) = P(2)Q(z — d).

3. Tue FacroriAL COMPLETE AND ELEMENTARY
SyMMETRIC FuNcTIONS

Two important symmetric functions in classical theory are the complete
symmetric function and the elementary symmetric function. We now
consider factorial operator versions of these, using the shift operator S§.
Note that all products are noncommutative, and that the indexing of each
product below runs in a different direction.

DeriNitioN 3.1, (1) The factorial complete symmetric generating func-
tion operators, w,(z,S), n = 0, are given by

Yowi(z,8)t" =W(t,z,5) = ﬁ(l —(z;, —i+ l)tS)_l.
=1

n=0

(2) The factorial elementary symmetric function operators, u,(z,S),
n > 0, are given by

You,(z,8)t"=U(t,z,5) = ]'11 (1 + (z; =i+ 1)15).

nz=0

The factorial complete symmetric functions w,(z), n > 0, are defined as
w,(z) = w,(z,5X1) and the factorial elementary symmetric functions
u,(z), n > 0, are defined as u,(z) = u,(z, SX1).

Clearly, from Definition 3.1,

Wn(Z,S) = Z (yl[S)(ylzs)(ylnS)’
l<ij<iy<...<i,<m
S0,
w,(z) = Y y,-l(yl-z— 1)...(yin—n+ 1), (8)
I<ij<i,<...<i,<m
where y, =z, —j + 1, j=1,...,m, and, by (6) our definition of w,(z) is

therefore equivalent to that of Chen and Louck [3]. A similar explicit form
for u,(z) is given by

un(z) = Z yi,,(yi

1<i|<iy<...<iy<m

—1) (v, —n 1)

n—1
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Although perhaps not immediately obvious for the above expressions,
ulz,8), u,(z), w(z,S), and w,(z) are indeed symmetric in the zs as can
be seen from their generating functions in the following result. Chen and
Louck [5] have shown that the w,(z) are symmetric by a divided difference
argument,

ProrosiTion 3.2, (1) (1 — (z; — DeSH1 — z;28) = (1 — (z; — 1iS)
(1 — z;18).

(2) u,(z,8) and u,(z), n = 0 are symmetric in z.
(3 w,(z,8) and w(2), n > 0 are symmetric in z.

Proof. (1)
(1= (z;, = D)tS)(1 — 2;25)
=1—(z; = 1)tS — z;1S + (z; = 1)(z; — 1)1°S?
=1~ (z;+z,— 1) + (z; — 1)(z; — 1)£2S?

i

1~ (z; = )8 = 248 + (z; — 1)(z; — 1)128?
= (1~ (z; = 1)S)(1 — z,25).

(2) Replace i by j+1, ¢t by —t,z; by z; —j+ 1, and z,,, by
z;.; —Jj+ 1 in (1). This proves that U(t z, S) is invariant under the
adjacent transposition (j, j + 1) applied to z forany j=1,...,n — 1. It
follows immediately that U(t, z, S) is symmetric in z, so u,(z,5), n >0
are symmetric in z and thus u,(z), n > 0 are symmetric in z.

(3) From (1) we obtain immediately

(1 —lzitS )(1 - (zjl— 1)tS) - (1 —1zjt5)( 1- (z,.1~ 1):5)

and the result follows similarly to (2). |

Since the u,(z) and w,(z) are symmetric, it is reasonable to ask if the us
and the ws defined by u, =u,u,,...u, and w, = WAWa, W, ATE
each bases for the ring of symmemc polynom1als The veracity of this is
routine to show and can be done using the method outlined in both
Macdonald [7, pp. 13, 54, 55] and Biedenharn and Louck [2, pp. 413, 414].
For completeness we state it as a proposition.

ProprositioN 3.3.  The sets of symmetric polynomials, {u,} and {w,}, are
each Z-bases for the ring of symmetric polynomials.
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Note that U(~t, z, SW(¢, z, §) is the identity operator. This leads to
the following analogue of the relation L7_ (= D'e(2)h,_(z) =5, .

ProrosiTioN 3.4. Forn > 0,

D R

Proof. This identity is similar to that of Macdonald [7, (2.6), p. 14] and
follows directly from (U(~t, z, SW (¢, z, S)X1) = 1 since u,(z,S) is ho-
mogeneous of degree n in S. Thus [¢t"JU(—¢, z, S)W(t, z, $)() =
(E (= Dulz, Sw,_(z, SN = T (= D'ulw,_(z - ). |}

4. Tue Skew FacroriaL JacoBl—TRupi IpenTITY AND ITS DUAL

Equations (1) and (7) introduced the classical skew and skew factorial
Jacobi-Trudi identities. Here we give a more concise proof of this second
result, exploiting the combinatorial definition of the skew factorial Schur
functions and using the Gessel-Viennot lattice path techniques [6]. Note
that this method of proof was suggested in Chen and Louck [5].

Here a lattice path has two types of steps: vertical steps, which increase
the y-coordinate by 1, and horizontal steps, which increase the x-coordi-
nate by 1. We use the weight function 8 for a lattice path P defined by
8(P) =Tl ;(z; —j — i), where the product is over points (i, j), which are
starting points of the horizontal steps. First we identify the factorial
complete symmetric function as a lattice path generating function with this
weight function.

ProrosiTioN 4.1.  The generating function for lattice paths which start at
(a,1) and end at (B, m) is wy_(z — a — 1).

Proof.  The horizontal steps in a lattice path from (a, 1) to {8, m) start

at (@, i), (a + Liy),...,(B—Lig Jfor1<i,<i,<...< g o <m,
so the required generating function is

Y (zil—il—a)...(ziﬁw—'B*a~,8+1)

Isii<...<ig ,<m

and the result follows immediately from (8). §
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THEOREM 4.2 (Skew Factorial Jacobi—Trudi Identity). For partitions
A=y, LA and w=(uy, ..., u,), we have
ty,(2) = det(w)\i_#j,iﬂ(z +j—1- ;Lj))me.
Proof. We modify the Gessel-Viennot lattice path bijection method of
proof for the skew Jacobi-Trudi identity to account for the modified
weight in the skew tableaux generating function (4). This results in
weighting each horizontal step in the corresponding non-intersecting lat-
tice paths by z; —j — i where the step begins at point (i, j) in the plane.
The result is a consequence of Theorem 1.2 of Stembridge [9], with
=, -m1,....(u;, —1,1) and v = (A, —m,®),...,(A, — 1,®))
and invoking Proposition 4.1. |

It is well-known in classical theory that the Jacobi-Trudi identity has a
dual version, namely (2) above. Similarly the factorial Jacobi-Trudi iden-
tity has a dual version.

THEOREM 4.3. For partitions A and u with M = (X,...,X,) and
po= (s ity (2) = detCuy (2 — i+ X))y n e

Hi—

Proof. We achieve this result by showing
det(w)\’__ﬂj_iﬂ(z +ji—-1- ,u,j)) = det(uA,i_,L,i_i+j(z — i+ X,-)).

We mimic Macdonald [7, p. 15].
Let N be a positive integer and consider the matrices of N + 1 rows
and columns,

W=(w_j(z—j+1)) and U= ((—1)[—jui_j(z -j+ 1))

Both W and U are lower triangular, with 1s down the diagonal, so that
det W = det U = 1; moreover, Proposition 3.4 shows that W and U are
inverses of each other. It follows that each minor of W is equal to the
complementary cofactor of U7, the transpose of U.

Let A and u be partitions of length < p such that A’ and u' have length
< g where p + g = N + 1. Consider the minor of W with row indices
A +p—i(l <i<p)andcolumn indices u; + p —i (1 <i < p). By (1.7),
p. 3 of [7], the complementary cofactor of U7 has row indices p — 1 +
j—X; (1 £j < q) and column indices p — 1 +j — u; (1 <j < q). Hence
we have

det(w)\i_”i_i+j(z 2 P«,-))

i~

— (_1)l/\\+lu\ det((_l))\'i_l-‘-'i—i+ju/\’ ,,jj—i+j(z —-p—i+ /\,i + 1))
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The minus signs cancel out, and thus we have
det(wAiwj,iﬂ(z -p+j- ,uj)) = det(”xﬁu;qﬂ(z —p—i+ X+ 1))

If we replace z by z + p — 1 (valid since all statements made are true
for all z), we have

det(wy,—p,—i4i(z +7 =1 = ;) = det(uy,_y_;(z =i + X))

mxm ApXaAy” I

5. Tue FacroriaL JacoBi—TRuUDI IDENTITY:
AN ALTERNATE PrROOF

As an aside, we invoke the alternate definition of f,(z) to prove the
factorial Jacobi-Trudi identity algebraically. This proof follows closely
the techniques of Macdonald [7, p. 25], and involves manipulations of the
factorial elementary symmetric functions.

THEOREM 5.1.  For partition A = (A, ..., A,,), we have

}(zi))‘f*'m_j ,mxm

'(Zi)m—f ’me

= det(w, _;.;(z +j— 1))

mxm”

Proof. For k=1,...,m and n > 0, let U*Xz, z, 8), ul¥)(z, S), ul*i(z)
denote U(t, z\ {2z}, S), u,(z\ {2z}, 8), u,(z\ {z,}]), respectively. Define
M=((-D""ui1 (z = m - 1), ;. ppand, fora = (a,,...,a,) € N,
define

A, = ((21)a,) and W, = (wa},mﬂ(z +i- 1))
Now from the symmetry of W we have
UM ~1,2, SYW(1,2,8) = (1 = (2, —m + 1)2S) .

Apply § ¢~ to both sides of this equation and equate coefficients of ¢%
to obtain

e

(D" Wk (24 m = 1,8)8 " hw, L (2,8) = (2,5)".

]

=1
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Apply both sides to 1, giving

lg(—n’”‘luaﬁll(z +m = W, (24 1= 1) = (20)

so MW, = A,. If we take determinants we obtain
a, = det(A,) = det(M)det(W,).

Let 5 =(m — 1,m — 2,...,1,0), and note that W, is upper unitriangu-
lar, so det(W;) = 1. Thus substituting « = & in the above expression gives
det(M) = @5. Hence a, = a;det(W,) and the result follows if we let
a = A + & and then divide both sides by a;. |
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