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1. Introduction

In this paper we describe formulas, derived from conjectures of Conrey, Farmer, Keating, Rubin-
stein, and Snaith [CFKRS], for the moments of quadratic Dirichlet L-functions at the central point, and
the moments of L-functions associated to quadratic twists of an elliptic curve.

We are motivated to study moments in these two families of L-functions because of their appar-
ent connection to the moments of characteristic polynomials of unitary symplectic and orthogonal
matrices.

Montgomery was the first to discover a link between an L-function and characteristic polynomials
of unitary matrices [Mo]. He computed, with restrictions on the allowed test functions, the limiting
pair correlation of the zeros of the Riemann zeta function, and found that it coincides with the average
pair correlation of the eigenvalues of large random (according to Haar measure) unitary matrices
that had been computed earlier by Dyson [Dy]. Odlyzko later confirmed this agreement numerically,
without restriction [O]. Rudnick and Sarnak generalized Montgomery’s result to higher correlations
and to any primitive L-function [RS].

Katz and Sarnak then made precise connections between various families of L-functions and ma-
trices from specific classical compact groups, based on results linking the density of zeros L-functions
and analogous zeta functions over function fields, to the eigenvalue densities of random matrices in
the classical compact groups [KS,KS2]. For instance, their work showed a statistical connection be-
tween the zeros of quadratic Dirichlet L-functions and eigenvalues of unitary symplectic matrices,
and between the zeros of L-functions of quadratic twists of an elliptic curve and eigenvalues of or-
thogonal matrices. The papers [R] and [R2], provided further theoretical and numerical support for
the relevance of these matrix groups to our two families of L-functions.

Subsequently, Keating and Snaith were able to predict the leading term in the asymptotics for the
moments of the Riemann zeta function on the critical line by carrying out an analogous computation
for random unitary matrices [KeS]. In a companion paper [KeS2], they also conjectured the leading
term in the asymptotics for the moments in our two families of L-functions by computing the mo-
ments of the characteristic polynomials of random unitary symplectic and even orthogonal matrices.
See also the paper of Conrey and Farmer [CF] which contains some arithmetic information needed for
the Keating and Snaith approach to moments.

The method of Keating and Snaith for predicting moments of L-functions relies on computations
in random matrix theory, for example it uses Weyl’s integration formula and the Selberg integral, and
some guesswork to make the heuristic leap to number theoretic moments. It also has the drawback
of requiring, as input, the relevant classical compact group as predicted by Katz and Sarnak.

On the other hand, the approach, referred to above, of Conrey, Farmer, Keating, Rubinstein, and
Snaith does not rely on random matrix theory to derive, heuristically, the moments of various families
of L-functions. Their method is based strictly on number theoretic techniques involving the approxi-
mate functional equation, the traditional equation that is used to study moments of L-functions [T,J].
While random matrix theory is not needed in their approach, the formulas that their heuristic ap-
proach yields for L-functions have provable analogues in random matrix theory. CFKRS were also able
to make progress by introducing ‘shifts’ into the moments, a strategy that was inspired by Moto-
hashi’s evaluation of the fourth moment of the zeta function [Mot] and also by an analogous problem
in random matrix theory. Their method, therefore, produces an answer that can be compared against
various moment computations in random matrix theory, and, instead of using the predictions of Katz
and Sarnak, it provides evidence for them. Furthermore, the conjectured formulas of CFKRS go well
beyond the leading asymptotic of Keating and Snaith, providing, implicitly, a full asymptotic expan-
sion for a variety of L-function moment problems. Because their conjectured formulas provide a full
asymptotic expansion for moments, one can test them numerically by comparing the predicted mo-
ments against those computed from L-function data. See for instance [CFKRS,CFKRS2,AR,RY].

Our goal is to turn the implicit formulas of CFKRS into asymptotic expansions with explicitly given
coefficients. We elaborate on the CFKRS formulas, for the family of quadratic Dirichlet L-functions, in
Section 1.1 and for quadratic elliptic curve L-functions in Section 5.

Besides the approaches of Keating and Snaith and of CFKRS, two additional methods have yielded
interesting results for the moments of L-functions.
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Gonek, Hughes, and Keating [GHK], and Bui and Keating [BK] use the explicit formula for an
L-function to realize the L-function as a hybrid between partial Hadamard and Euler products. They
assume statistical independence between these two products and study the moments of the partial
Euler product using number theoretic heuristics. The moments of the partial Hadamard product are
studied by modelling the zeros of the Hadamard product based on the predicted classical compact
group. Their approach therefore suffers the same disadvantage of the Keating and Snaith method of
requiring the predictions of Katz and Sarnak as input. The main advantage of their method over the
Keating and Snaith method is that it explains, rather than guesses, the appearance of an ‘arithmetic
factor’ in moment formulas for L-functions. Another disadvantage is that it only seems to correctly
predict the leading asymptotic for the L-function moments that they consider, and thus only agrees
with the CFKRS prediction to leading order. Presumably this is because their assumptions are too
strong, for example the statistical independence between the partial Hadamard and Euler products,
and their use of matrix eigenvalues to model the partial Hadamard product.

Another method for studying moments of L-functions has been developed by Diaconu, Goldfeld,
and Hoffstein [GH,DGH] and uses the theory of multiple Dirichlet series. It has the advantage of
proving asymptotic formulas for some L-function moments, for example the first three moments of
quadratic Dirichlet L-functions at the central point. However, it has the disadvantage of involving an
elaborate sieving process (in the case of quadratic characters), that makes it unwieldy for producing
explicit formulas for the asymptotic expansion. Interestingly, their method predicts the existence of
additional lower order terms of smaller magnitude that go beyond those of the asymptotic expansion
of CFKRS. See the paper of DGH as well as that of Zhang [Z], and Alderson and Rubinstein [AR] for
discussions and computations regarding these additional lower terms.

1.1. The CFKRS conjecture for L(1/2,χd)

We begin by describing the CFKRS conjecture for quadratic Dirichlet L-functions. Let D be a
squarefree integer, D �= 0,1, and let K = Q(

√
D) be the corresponding quadratic field. The funda-

mental discriminant d of K equals D if D = 1 mod 4, and 4D if D = 2,3 mod 4. Let χd(n) be the
Kronecker symbol ( d

n ), and L(s,χd) the quadratic Dirichlet L-function given by the Dirichlet series

L(s,χd) =
∞∑

n=1

χd(n)

ns
, �(s) > 0, (1.1)

satisfying the functional equation

L(s,χd) = |d| 1
2 −s X(s,a)L(1 − s,χd), (1.2)

where

X(s,a) = π s− 1
2
Γ ( 1−s+a

2 )

Γ ( s+a
2 )

, a =
{

0 if d > 0,
1 if d < 0.

(1.3)

Let S(X) denote the set of fundamental discriminants with |d| < X . The Gamma factor in functional
equation for L(s,χd) depends on whether d < 0 or d > 0. Thus, define further

S+(X) = {
d ∈ S(X): d > 0

}
,

S−(X) = {
d ∈ S(X): d < 0

}
, (1.4)

to be, respectively, the sets of positive and negative fundamental discriminants with |d| < X .
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CFKRS conjectured [CFKRS] the asymptotic expansion:

∑
d∈S±(X)

L(1/2,χd)
k ∼ 3

π2
XQ±(k, log X), (1.5)

where Q+(k, x) and Q−(k, x) are polynomials of degree k(k + 1)/2 in x that we will describe below.
The fraction 3/π2 accounts for the density of fundamental discriminants amongst all the integers.

The polynomial Q±(k, log X) is expressed in terms of a more fundamental polynomial Q ±(k, x) of
the same degree that captures the moments locally:

Q±(k, log X) = 1

X

X∫
1

Q ±(k, log t)dt. (1.6)

One of the main achievements of CFKRS was to give a general recipe/heuristic for producing formulas
for moments of various families of L-functions. Their formula (see Conjecture 1.5.3 in [CFKRS]) for the
polynomial Q ±(k, x) is given implicitly in terms of a k-fold multivariate residue:

Q ±(k, x) = (−1)k(k−1)/22k

k!
1

(2π i)k

∮
· · ·

∮
G±(z1, . . . , zk)�(z2

1, . . . , z2
k )2∏k

j=1 z2k−1
j

e
x
2

∑k
j=1 z j dz1 . . .dzk,

(1.7)

where �(w1, . . . , wk) is the Vandermonde determinant

�(w1, . . . , wk) = det
(

w j−1
i

)
k×k =

∏
1�i< j�k

(w j − wi), (1.8)

and

G±(z1, . . . , zk) = Ak(z1, . . . , zk)

k∏
j=1

X

(
1

2
+ z j,a

)−1/2 ∏
1�i� j�k

ζ(1 + zi + z j). (1.9)

Here, a = 0 for G+ and a = 1 for G− , X(s,a) is given in (1.3), and Ak equals the Euler product,
absolutely convergent in a neighbourhood of (z1, . . . , zk) = (0, . . . ,0), defined by

Ak(z1, . . . , zk) =
∏

p

∏
1�i� j�k

(
1 − 1

p1+zi+z j

)

×
(

1

2

(
k∏

j=1

(
1 − 1

p
1
2 +z j

)−1

+
k∏

j=1

(
1 + 1

p
1
2 +z j

)−1
)

+ 1

p

)(
1 + 1

p

)−1

. (1.10)

One advantage of Eq. (1.7) is that it allows one to easily see that Q ±(k, x) is a polynomial of
degree k(k + 1)/2 in x. That is because the denominator of the multivariate residue picks up terms
in the numerator involving

∏k
j=1 z2k−2

j , which is of degree 2k(k − 1). Now, the factor �(z2
1, . . . , z2

k )2

is a homogeneous polynomial, also of degree 2k(k − 1). However, the factor G±(z1, . . . , zk) cancels
k(k + 1)/2 of the factors of the Vandermonde, because each ζ(1 + zi + z j) has a Laurent expansion
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that begins 1/(zi + z j) coming from the pole at s = 1 of ζ(s). Therefore, in considering the multivariate
Taylor expansion of the numerator about z1 = · · · = zk = 0, we only need to take terms in the series

exp

(
x

2

k∑
j=1

z j

)
=

∞∑
0

xn

2nn! (z1 + · · · + zk)
n (1.11)

up to n = k(k + 1)/2. Hence, in the x aspect, the k-fold residue only involves terms up to xk(k+1)/2.
Eq. (1.7) has the disadvantage of expressing Q ±(k, x) implicitly. Let us therefore write

Q ±(k, x) = c±(0,k)xk(k+1)/2 + c±(1,k)xk(k+1)/2−1 + · · · + c±
(
k(k + 1)/2,k

)
. (1.12)

Our main result, described in the following theorem, gives explicit formulae for the coefficients
c±(r,k). We first define

ak := Ak(0, . . . ,0) =
∏

p

(1 − 1
p )

k(k+1)
2

1 + 1
p

( (1 − 1√
p )−k + (1 + 1√

p )−k

2
+ 1

p

)
. (1.13)

Theorem 1.1. In (1.12), the leading coefficient c±(0,k) of Q +(k, x) or Q −(k, x) are both equal to

ak

2k

k−1∏
j=0

(2 j)!
(k + j)! =: c(0,k), (1.14)

and, for given r � 1, we have

c±(r,k) = c(0,k)
∑
|λ|=r

b±
λ (k)Nλ(k), (1.15)

where Nλ(k) is a polynomial in k of degree at most 2|λ|, defined in (2.52), ak is defined in (1.13), and the
b±

λ (k)’s are the Taylor coefficients of a holomorphic function, defined in (2.4) and (2.5). The sum is over all
partitions |λ| = r, with

∑
λi = r and λ1 � λ2 � · · · > 0.

We remark that formula (1.14) for the leading term agrees with the prediction of Keating and
Snaith. See (34), (45), and (47) of Keating and Snaith [KS2] (replacing log D by x in their Eq. (45)).
Their derivation is heuristic and based on the Selberg integral. Compare also to the leading term of
Eq. (1.5.17) of [CFKRS], with N = x/2 in that equation. To verify the agreement between these, one
can check, inductively, that:

1

2k

k−1∏
j=0

(2 j)!
(k + j)! = 1

2k(k+1)/2

k∏
j=1

1

(2 j − 1)!! =
k∏

j=1

j!
(2 j)! . (1.16)

Note that (1.15) is analogous to formula (1.16) of [CFKRS] which provides a formula for the coeffi-
cients of the moment polynomials of the Riemann zeta function. See also Dehaye’s paper [D], also for
the Riemann zeta function, where he gives a combinatorial formula for the analogue of our polyno-
mial Nλ(k).

We work out examples, for r = 1 and r = 2. Table 1 provides N(1)(k) = k(k + 1), N(1,1)(k) = 1
2 k(k −

1)(k + 1)(k + 2), and N(2)(k) = 0. Thus,
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Table 1
We display the polynomials Nλ(k), for all |λ| � 7. Because each monomial of mλ(z) contributes the same to (2.6), Nλ(k) has, as
a factor, the polynomial: rλ(k) := ( k

l(λ)

)( l(λ)
m1(λ),m2(λ),...

) = (k)l(λ)/(m1(λ)!m2(λ)! . . .), where (k)m = k(k − 1) . . . (k −m + 1). Therefore,
rather than display Nλ(k), here we list Nλ(k)/rλ(k).

λ Nλ(k)/rλ(k) rλ(k)

[1] k + 1 (k)1

[1,1] (k + 2)(k + 1) (k)2/2
[2] 0 (k)1

[1,1,1] (k + 3)(k + 2)(k + 1) (k)3/6
[2,1] (k + 2)(k + 1) (k)2

[3] −(k − 1)(k + 2)(k + 1) (k)1

[1,1,1,1] (k + 4)(k + 3)(k + 2)(k + 1) (k)4/24
[2,1,1] 2(k + 3)(k + 2)(k + 1) (k)3/2
[2,2] 0 (k)2/2
[3,1] −(k − 2)(k + 3)(k + 2)(k + 1) (k)2

[4] 0 (k)1

[1,1,1,1,1] (k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)5/120
[2,1,1,1] 3(k + 4)(k + 3)(k + 2)(k + 1) (k)4/6
[2,2,1] 4(k + 3)(k + 2)(k + 1) (k)3/2
[3,1,1] −(k − 3)(k + 4)(k + 3)(k + 2)(k + 1) (k)3/2
[3,2] −2(k − 2)(k + 3)(k + 2)(k + 1) (k)2

[4,1] −2(k − 2)(k + 3)(k + 2)(k + 1) (k)2

[5] 2(k − 1)(k − 2)(k + 3)(k + 2)(k + 1) (k)1

[1,1,1,1,1,1] (k + 6)(k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)6/720
[2,1,1,1,1] 4(k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)5/24
[2,2,1,1] 10(k + 4)(k + 3)(k + 2)(k + 1) (k)4/4
[2,2,2] 0 (k)3/6
[3,1,1,1] −(k − 4)(k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)4/6
[3,2,1] −(k + 3)(k + 2)(k + 1)(3k2 + 3k − 40) (k)3

[3,3] (k − 2)(k − 4)(k + 5)(k + 3)(k + 2)(k + 1) (k)2/2
[4,1,1] −4(k + 3)(k + 2)(k + 1)(k2 + k − 10) (k)3/2
[4,2] 0 (k)2

[5,1] 2(k − 2)(k + 3)(k + 2)(k + 1)(k2 + k − 10) (k)2

[6] 0 (k)1

[1,1,1,1,1,1,1] (k + 7)(k + 6)(k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)7/5040
[2,1,1,1,1,1] 5(k + 6)(k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)6/120
[2,2,1,1,1] 18(k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)5/12
[2,2,2,1] 30(k + 4)(k + 3)(k + 2)(k + 1) (k)4/6
[3,1,1,1,1] −(k − 5)(k + 6)(k + 5)(k + 4)(k + 3)(k + 2)(k + 1) (k)5/24
[3,2,1,1] −2(k + 4)(k + 3)(k + 2)(k + 1)(2k2 + 2k − 45) (k)4/2
[3,2,2] −10(k − 3)(k + 4)(k + 3)(k + 2)(k + 1) (k)3/2
[3,3,1] (k − 3)(k − 5)(k + 6)(k + 4)(k + 3)(k + 2)(k + 1) (k)3/2
[4,1,1,1] −6(k + 4)(k + 3)(k + 2)(k + 1)(k2 + k − 15) (k)4/6
[4,2,1] −10(k − 3)(k + 4)(k + 3)(k + 2)(k + 1) (k)3

[4,3] 5(k − 2)(k − 3)(k + 4)(k + 3)(k + 2)(k + 1) (k)2

[5,1,1] 2(k − 3)(k + 4)(k + 3)(k + 2)(k + 1)(k2 + k − 15) (k)3/2
[5,2] 5(k − 2)(k − 3)(k + 4)(k + 3)(k + 2)(k + 1) (k)2

[6,1] 5(k − 2)(k − 3)(k + 4)(k + 3)(k + 2)(k + 1) (k)2

[7] −5(k − 1)(k − 2)(k − 3)(k + 4)(k + 3)(k + 2)(k + 1) (k)1

c±(1,k) = c(0,k)b±
(1)(k)N(1)(k)

= ak

2k

k−1∏
j=0

(2 j)!
(k + j)!k(k + 1)b±

(1)(k) (1.17)

and

c±(2,k) = c(0,k)
(
b±

(1,1)(k)N(1,1)(k) + b±
(2)(k)N(2)(k)

)

= ak

2k

k−1∏
j=0

(2 j)!
(k + j)! × 1

2
k(k − 1)(k + 1)(k + 2)b±

(1,1)(k). (1.18)
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Let

ζ(1 + s) = 1

s
+

∞∑
n=0

(−1)nγn
sn

n! (1.19)

be the Laurent expansion about 0 of ζ(1 + s) (γ0 is Euler’s constant), and define

f j(p) := (−1) j(p1/2 − 1)− j−k + (p1/2 + 1)− j−k

(p1/2 − 1)−k + (p1/2 + 1)−k + 2p−1−k/2
. (1.20)

Formulas for the coefficients b±
(1)(k), b±

(1,1)(k) can be derived using the method described in Sec-
tion 3, and are given by

b±
(1)(k) = −1

2
logπ + 1

2

Γ ′

Γ
(1/4 + a/2) + (k + 1)γ0 +

∑
p

(
(k + 1)

p − 1
+ f1(p)

)
log p, (1.21)

where a = 0 for b+
(1) , and a = 1 for b−

(1) , and

b±
(1,1)(k) = b±

(1)(k)2 − γ 2
0 − 2γ1 −

∑
p

(
p

(p − 1)2
+ f1(p)2 − f2(p)

)
log(p)2. (1.22)

In Section 2 we derive formula (1.14) for the leading coefficient of Q ±(k, x). Our tools are then
applied, in Section 2.2, to the general term c±(r,k), where we obtain a formula for Nλ(k) expressed
as a sum of determinants of the form:

Dλ(k) = det

((
2k − i − λk−i+1

2k − 2 j

))
1�i, j�k

, (1.23)

where λ = (λ1, . . . , λm) is a partition with length l(λ) � k (see Section 1.2 for definitions).
In Section 4 we derive some interesting formulas for these determinants. To describe our formulas,

let y = (y1, . . . , ym). We define the coefficient operator [yβ ] on the set of formal multivariate Taylor or
Laurent series in y, which picks the coefficient of the monomial yβ in the series. More precisely, if

f (y1, . . . , ym) =
∑

r1,...,rm∈Z
ar1,...,rm yr1

1 . . . yrm
m , (1.24)

define

[
yu1

1 . . . yum
m

]
f = au1,...,um . (1.25)

We prove the following theorem.

Theorem 1.2. Let λ be a partition and μ be the conjugate partition. Let m = l(λ), and n = l(μ) = λ1 . For
k � max(l(λ), λ1), we have

Dλ(k) = 2(k
2)−|λ|

× [
yλ1+m−1

1 . . . yλm
m

]( ∏
1�i< j�m

(yi − y j)(1 − yi − y j)

m∏
l=1

(1 − yl)
−k−m

)
, (1.26)
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and also

Dλ(k) = 2(k
2)−|λ|

× [
zμ1+n−1

1 . . . zμn
n

]( ∏
1�i< j�n

(zi − z j)(1 + zi + z j)

n∏
l=1

(1 + 2zl)(1 + zl)
k−n

)
. (1.27)

Corollary 1.3. Let λ be a partition, with l(λ) = m. There is a polynomial Pλ(k), integer valued at integers, of
degree |λ| such that for k � max(l(λ), λ1),

Dλ(k) = 2(k
2)−|λ| × Pλ(k). (1.28)

The leading coefficient of Pλ(k) is∏
1�i< j�m(λi − λ j − i + j)∏

1�i�m(λi + m − i)! = χλ(1)/|λ|!, (1.29)

where χλ(1) is the degree of the irreducible representation of the symmetric group S|λ| indexed by λ. In par-
ticular,

D0(k) = 2(k
2), (1.30)

where D0(k) is the determinant associated to the empty partition.

Table 2 gives a list of the polynomials Pλ(k) for partitions up to weight 7. Observe, in the table,
that Pλ(k) often has many linear factors. This fact plays a role in our formula for Nλ(k) so we encode
it in the following corollary.

Corollary 1.4. Let λ be a partition. Then Pλ(k) is divisible by

(k − λ1)(k − λ1 − 1) . . .
(
k − l(λ) + 1

) × (k + λ1)(k + λ1 − 1) . . .
(
k + l(λ)

)
, (1.31)

where we take the first product to be 1 if λ1 � l(λ), and the second product to be 1 if λ1 < l(λ).

Finally, in Section 5 we discuss the application of our techniques to the related problem of the
moments of the L-functions associated to quadratic twists of an elliptic curve.

1.2. Symmetric function theory

We collect here some definitions and results from the theory of symmetric functions that we use
in our paper. The details can be found in [M, Chapter 1]. We have used the notations of [M].

A partition λ is a sequence of non-negative integers (λ1, λ2, . . .) such that

λ1 � λ2 � · · · , (1.32)

and only finitely many λis are non-zero.
The length of the partition λ is defined to be the number of non-zero λi s. We denote it by l(λ).

The weight of a partition λ, denoted by |λ| is

|λ| =
∑
i�1

λi . (1.33)
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Table 2
Table of Pλ(k).

Partition Pλ(k)

[1] k + 1
[2] (1/2)(k + 1)(k + 2)

[1,1] (1/2)(k − 1)(k + 2)

[3] (1/6)(k + 1)(k + 2)(k + 3)

[2,1] (1/3)(k + 2)(k2 + k − 3)

[1,1,1] (1/6)(k − 2)(k − 1)(k + 3)

[4] (1/24)(k + 1)(k + 2)(k + 3)(k + 4)

[3,1] (1/8)(k + 2)(k + 3)(k2 + k − 4)

[2,2] (1/12)(k − 2)(k + 1)(k + 2)(k + 3)

[2,1,1] (1/8)(k − 2)(k + 3)(k2 + k − 4)

[1,1,1,1] (1/24)(k − 3)(k − 2)(k − 1)(k + 4)

[5] (1/120)(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)

[4,1] (1/30)(k + 2)(k + 3)(k + 4)(k2 + k − 5)

[3,2] (1/24)(k + 1)(k + 2)(k + 3)(k2 + k − 8)

[3,1,1] (1/20)(k + 3)(k4 + 2k3 − 11k2 − 12k + 40)

[2,2,1] (1/24)(k − 2)(k + 1)(k + 3)(k2 + k − 8)

[2,1,1,1] (1/30)(k − 3)(k − 2)(k + 4)(k2 + k − 5)

[1,1,1,1,1] (1/120)(k − 4)(k − 3)(k − 2)(k − 1)(k + 5)

[6] (1/720)(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)

[5,1] (1/144)(k − 2)(k + 2)(k + 4)(k + 5)(k + 3)2

[4,2] (1/80)(k + 1)(k + 2)(k + 3)(k + 4)(k2 + k − 10)

[4,1,1] (1/72)(k + 3)(k + 4)(k4 + 2k3 − 13k2 − 14k + 60)

[3,3] (1/144)(k − 3)(k + 1)(k + 3)(k + 4)(k + 2)2

[3,2,1] (1/45)(k + 1)(k + 3)(k4 + 2k3 − 16k2 − 17k + 75)

[3,1,1,1] (1/72)(k − 3)(k + 4)(k4 + 2k3 − 13k2 − 14k + 60)

[2,2,2] (1/144)(k − 3)(k − 2)(k − 1)(k + 2)(k + 3)(k + 4)

[2,2,1,1] (1/80)(k − 3)(k − 2)(k + 1)(k + 4)(k2 + k − 10)

[2,1,1,1,1] (1/144)(k − 4)(k − 3)(k + 3)(k + 5)(k − 2)2

[1,1,1,1,1,1] (1/720)(k − 5)(k − 4)(k − 3)(k − 2)(k − 1)(k + 6)

[7] (1/5040)(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)(k + 7)

[6,1] (1/840)(k + 2)(k + 3)(k + 4)(k + 5)(k + 6)(k2 + k − 7)

[5,2] (1/360)(k − 3)(k + 1)(k + 2)(k + 3)(k + 5)(k + 4)2

[5,1,1] (1/336)(k + 3)(k + 4)(k + 5)(k4 + 2k3 − 15k2 − 16k + 84)

[4,3] (1/360)(k + 1)(k + 3)(k + 4)(k + 2)2(k2 + k − 15)

[4,2,1] (1/144)(k + 1)(k + 3)(k + 4)(k4 + 2k3 − 19k2 − 20k + 108)

[4,1,1,1] (1/252)(k + 4)(k6 + 3k5 − 26k4 − 57k3 + 277k2 + 306k − 1260)

[3,3,1] (1/240)(k − 3)(k + 1)(k + 2)(k + 3)(k + 4)(k2 + k − 10)

[3,2,2] (1/240)(k − 3)(k − 1)(k + 2)(k + 3)(k + 4)(k2 + k − 10)

[3,2,1,1] (1/144)(k − 3)(k + 1)(k + 4)(k4 + 2k3 − 19k2 − 20k + 108)

[3,1,1,1,1] (1/336)(k − 4)(k − 3)(k + 5)(k4 + 2k3 − 15k2 − 16k + 84)

[2,2,2,1] (1/360)(k − 3)(k − 2)(k − 1)(k + 2)(k + 4)(k2 + k − 15)

[2,2,1,1,1] (1/360)(k − 4)(k − 2)(k + 1)(k + 4)(k + 5)(k − 3)2

[2,1,1,1,1,1] (1/840)(k − 5)(k − 4)(k − 3)(k − 2)(k + 6)(k2 + k − 7)

[1,1,1,1,1,1,1] (1/5040)(k − 6)(k − 5)(k − 4)(k − 3)(k − 2)(k − 1)(k + 7)

The diagram of a partition is the set of points

{
(i, j)

∣∣ 1 � i � l(λ), 1 � j � λi
}
. (1.34)

The conjugate partition λ′ of a partition λ is the partition whose diagram is

{
(i, j)

∣∣ ( j, i) is in the diagram of λ
}
. (1.35)

Equivalently, the conjugate partition of λ is a partition λ′ = (λ′
1, λ

′
2, . . .) where

λ′
i = #{λ j | λ j � i}. (1.36)
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The symmetric group Sn acts on the polynomial ring Z[x1, . . . , xn] by permuting the independent
variables x1, . . . , xn . The ring of symmetric polynomials in n-variables, Λn , is the set of polynomials in
Z[x1, . . . , xn] which are invariant under this action of Sn . The ring Λn is a graded ring:

Λn =
⊕
k�0

Λk
n, (1.37)

where Λk
n is the set of homogeneous symmetric polynomials of degree k.

For m > n, there is a ring homomorphism

ρm,n : Z[x1, . . . , xm] → Z[x1, . . . , xn], (1.38)

where ρm,n(xi) = xi for i � n, and ρm,n(xi) = 0 for i > n. This restricts to a map

ρm,n : Λk
m → Λk

n. (1.39)

The maps given by (1.39) define an inverse system. Let

Λk = lim←−Λk
n, (1.40)

and

Λ =
⊕
k�0

Λk. (1.41)

The ring Λ is called the ring of symmetric functions. This is a graded ring. The definition of Λ gives us
maps

ρn : Λ → Λn. (1.42)

In this paper, we shall use four Z-bases, parametrized by partitions, of the ring Λ: the monomial
symmetric functions (mλ), elementary symmetric functions (eλ), complete symmetric functions (hλ)
and the Schur symmetric functions (sλ). In addition, we shall be using power symmetric func-
tions (pλ). The power symmetric functions form a Q basis of Λ⊗ZQ. We shall use the same symbols
to denote their image under ρn in Λn .

Given α = (α1, . . . ,αn), we write xα to denote xα1
1 · · · xαn

n . Let λ be a partition of length less than
or equal to n. We define the monomial symmetric function mλ by its image under ρn for every n. If
n � l(λ), then

mλ(x1, . . . , xn) =
∑
α

xα, (1.43)

where the α ranges over distinct permutations of (λ1, . . . , λn). If l(λ) > n, then mλ(x1, . . . , xn) = 0. For
the only partition of 0, the empty partition, we define m0 = 1.

Let r � 0 be an integer. The elementary symmetric function er ∈ Λ is given by

er =
∑

1�i1<i2<···<ir

xi1 . . . xir = m(1,...,1), (1.44)

and e0 = 1. For a partition λ, we define

eλ = eλ1 eλ2 . . . . (1.45)
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The generating function for er is

E(t) =
∑
r�0

ertr =
∏
i�1

(1 + xit). (1.46)

Let r � 0 be an integer. The complete symmetric function hr is defined to be

hr =
∑
|λ|=r

mλ. (1.47)

Given a partition λ, we define

hλ = hλ1hλ2 . . . . (1.48)

The generating function for hr is

H(t) =
∑
r�0

hrtr =
∏
i�1

(1 − xit)
−1. (1.49)

Eqs. (1.46) and (1.49) give us the identity,

H(t)E(−t) = 1. (1.50)

For r � 1, the power symmetric function pr is defined as

pr =
∑
i�1

xr
i = m(r). (1.51)

For a partition λ, we define

pλ = pλ1 pλ2 . . . . (1.52)

Let (α1, . . . ,αn) ∈Nn . We define aα ∈ Z[x1, . . . , xn] by

aα(x1, . . . , xn) = det
(
x
α j

i

)
1�i, j�n. (1.53)

Clearly aα is skew-symmetric; that is, for w ∈ Sn , w(aα) = sgn(w)aα , where sgn(w) is the sign of
permutation w . Let δn be the partition

δn = (n − 1,n − 2, . . . ,1,0). (1.54)

For a partition λ of length less than or equal to n, we append 0’s as necessary to λ to create an
n-tuple, and define

sλ(x1, . . . , xn) = aδn+λ(x1, . . . , xn)

aδn (x1, . . . , xn)
. (1.55)

This is a polynomial. Since sλ(x1, . . . , xn) is a ratio of skew-symmetric polynomials, it is a sym-
metric polynomial. These symmetric polynomials are called Schur symmetric polynomials. For m > n,
ρm,n(sλ(x1, . . . , xm)) = sλ(x1, . . . , xn), hence they are represented by a function sλ ∈ Λ.
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Using the definitions of aλ and sλ , it is easy to check that

aδn (x1, . . . , xn) =
∏

1�i< j�n

(xi − x j), (1.56)

and

sδn (x1, . . . , xn) =
∏

1�i< j�n

(xi + x j). (1.57)

Let λ be a partition and λ′ be the conjugate partition. Then, for n � l(λ) [M, p. 41]

sλ = det(hλi−i+ j)1�i, j�n, (1.58)

and for m � l(λ′)

sλ = det(eλ′
i−i+ j)1�i, j�m. (1.59)

Identity (1.58) is called the Jacobi–Trudi identity, and (1.59) is called the dual Jacobi–Trudi identity.
Schur symmetric functions satisfy [M, p. 63]

∏
i, j�1

(1 − xi y j)
−1 =

∑
λ

sλ(x)sλ(y), (1.60)

and

∏
i, j�1

(1 + xi y j) =
∑
λ

sλ(x)sλ′(y). (1.61)

The sum in (1.60) and (1.61) is over all partitions λ. Identity (1.60) is called the Cauchy identity, and
(1.61) is called the dual Cauchy identity.

There is a fundamental involution ω, a ring automorphism, defined on the ring of symmetric func-
tions:

ω(er) = hr . (1.62)

Using (1.50), we can prove that

ω(hr) = er . (1.63)

We also have

ω(sλ) = sλ′ , and ω(pn) = (−1)n−1 pn. (1.64)
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2. Terms of the asymptotic expansion

We begin by rewriting the integrand on the right hand side of (1.7) as a ratio of a holomorphic
function and a monomial. The function G(z1, . . . , zk) in (1.9) has a pole in each z j at (0, . . . ,0) coming
from the product of the zeta functions. These poles are eliminated by a portion of the Vandermonde
determinants. Note that

�
(
z2

1, . . . , z2
k

)2 =
( ∏

1�i� j�k

(zi + z j)

)
�(z1, . . . , zk)�(z2

1, . . . , z2
k )

2k
∏k

j=1 z j

. (2.1)

Specifically each factor (zi + z j) occurring here cancels a pole coming from ζ(1 + zi + z j). We ob-
tain (2.1) by observing

�
(
z2

1, . . . , z2
k

) =
∏
i< j

(
z2

j − z2
i

) = �(z1, . . . , zk)
∏
j>i

(zi + z j)

= �(z1, . . . , zk)

∏
j�i(zi + z j)

2k
∏k

j=1 z j

. (2.2)

Substituting (2.1) into (1.7), we have

Q ±(k, x) = (−1)k(k−1)/2

k!
1

(2π i)k

∮
· · ·

∮
Ak(z1, . . . , zk)

×
k∏

j=1

X

(
1

2
+ z j,a

)− 1
2 ∏

1�i� j�k

(zi + z j)ζ(1 + zi + z j)

× �(z1, . . . , zk)�(z2
1, . . . , z2

k )∏k
j=1 z2k−1

j

∏k
j=1 z j

exp

(
x

2

k∑
j=1

z j

)
dz1 . . .dzk. (2.3)

Now the integrand is written as a ratio of a function which is holomorphic in a neighbourhood of
(0, . . . ,0) and a monomial.

Recall that ak = Ak(0, . . . ,0). Let z = (z1, . . . , zk) and mλ(z) be the monomial symmetric polyno-
mial defined in (1.43). Let

∞∑
i=0

∑
|λ|=i

b±
λ (k)mλ(z) (2.4)

be the power series expansion of

1

ak
Ak(z1, . . . , zk)

k∏
j=1

X

(
1

2
+ z j,a

)− 1
2 ∏

1�i� j�k

(zi + z j)ζ(1 + zi + z j). (2.5)

Here, the coefficients b+
λ are associated to the a = 1 case, and b−

λ with a = −1.
In (2.4), the sum is over all partitions λ1 + · · · + λk = i, with λ1 � λ2 � · · · � λk � 0. We divide

the expression by ak to ensure that the constant term in the power series is 1. We shall calculate the
Taylor series of (2.5) by calculating the Taylor series of its logarithm. This calculation is simpler if the
constant term is 1, i.e. b±

0 (k) = 1 in (2.4). So (2.3) becomes
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Q ±(k, x) = (−1)k(k−1)/2

k!
ak

(2π i)k

∞∑
i=0

∑
|λ|=i

b±
λ (k)

∮
· · ·

∮
mλ(z1, . . . , zk)

× �(z1, . . . , zk)�(z2
1, . . . , z2

k )∏k
j=1 z2k

j

exp

(
x

2

k∑
j=1

z j

)
dz1 . . .dzk. (2.6)

Only finitely many integrals in the sum (2.6) are non-zero. Each of the integrals in (2.6) picks up the
coefficient of z2k−1

1 . . . z2k−1
k in the Taylor expansion of the numerator of the corresponding integrand.

If degmλ(z1, . . . , zk) + deg�(z1, . . . , zk) + deg �(z2
1, . . . , z2

k ) > deg(z2k−1
1 . . . z2k−1

k ), that is |λ| > k(k +
1)/2, then in the Taylor expansion of the numerator of (2.6) the coefficient of z2k−1

1 . . . z2k−1
k is 0.

Given k, and a λ in the sum (2.6), the coefficient of the monomial z2k−1
1 . . . z2k−1

k in the Taylor
expansion of the numerator of the integrand is a constant, depending on λ and k, times x

k(k+1)
2 −|λ| .

2.1. The leading term

In this section, we shall calculate the leading coefficient of Q ±(k, x), i.e. the coefficient c±(0,k)

of x
k(k+1)

2 . The calculation will also provide insight into how to calculate the lower order terms of
Q ±(k, x). The leading coefficient is the same for Q +(k, x) and for Q −(k, x), and is given in the fol-
lowing proposition.

Proposition 2.1. The leading coefficient c±(0,k) of Q ±(k, x) in (1.12) is

ak

2k

k−1∏
j=0

(2 j)!
(k + j)! . (2.7)

The leading term in (1.12) corresponds to the i = 0 term of (2.6). In this case there is only one
integral within the inner summation sign, giving

c±(0,k)xk(k+1)/2 = (−1)
k(k−1)

2

k!(2π i)k
ak

∮
· · ·

∮
�(z1, . . . , zk)�(z2

1, . . . , z2
k )∏k

j=1 z2k
j

exp

(
x

2

k∑
j=1

z j

)
dz1 . . .dzk.

(2.8)

Substituting u j = xz j/2, simplifying, and then relabelling u j with z j , we obtain

c±(0,k)xk(k+1)/2 = (−1)
k(k−1)

2

k!(2π i)k
ak

(
x

2

) k(k+1)
2

∮
· · ·

∮
�(z1, . . . , zk)�(z2

1, . . . , z2
k )∏k

j=1 z2k
j

× exp

(
k∑

j=1

z j

)
dz1 . . .dzk. (2.9)

The presence of the Vandermonde determinants prevents us from separating the integrals. How-
ever, we apply the following trick to move the Vandermonde determinants outside the integral.
Introduce new variables x1, . . . , xk and consider the more general integral

I(x1, . . . , xk) := 1

(2π i)k

∮
· · ·

∮
�(z1, . . . , zk)�(z2

1, . . . , z2
k )∏k

j=1 z2k
j

exp

(
k∑

j=1

x j z j

)
dz1 . . .dzk. (2.10)

Thus, the evaluation of c±(0,k) boils down to determining I(1, . . . ,1).
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Next, we introduce a partial differential operator which will help us move the Vandermonde de-
terminants outside the integral. Note that for a polynomial P (x1, . . . , xk) in k variables, we have

P

(
∂

∂x1
, . . . ,

∂

∂xk

)
exp

(
k∑

j=1

x j z j

)
= P (z1, . . . , zk)exp

(
k∑

j=1

x j z j

)
. (2.11)

We set

q(z1, . . . , zk) := �(z1, . . . , zk)�
(
z2

1, . . . , z2
k

)
. (2.12)

Then (2.10) equals

1

(2π i)k

∮
· · ·

∮
q

(
∂

∂x1
, . . . ,

∂

∂xk

)
exp(

∑k
j=1 x j z j)∏k

j=1 z2k
j

dz1 . . .dzk. (2.13)

Pulling the differential operator outside the integral (Leibniz’s rule) we conclude that (2.13) equals

q

(
∂

∂x1
, . . . ,

∂

∂xk

)
1

(2π i)k

∮
· · ·

∮ exp(
∑k

j=1 x j z j)∏k
j=1 z2k

j

dz1 . . .dzk. (2.14)

The integrand in (2.14) can be written as a product of integrals in one variable,

q

(
∂

∂x1
, . . . ,

∂

∂xk

)
1

(2π i)k

k∏
j=1

∮
exp(x j z j)

z2k
j

dz j . (2.15)

Each integral in the above product can be evaluated by expanding exp(x j z j) = ∑∞
n=0(x j z j)

n/n!. The
coefficient of z2k−1

j is x2k−1
j /(2k − 1)!, and thus (2.15) equals

q

(
∂

∂x1
, . . . ,

∂

∂xk

) k∏
i=1

x2k−1
i

(2k − 1)! . (2.16)

We have turned our computation of c±(0,k) into the question of determining the result of ap-

plying q( ∂
∂x1

, . . . , ∂
∂xk

) to
∏k

i=1
x2k−1

i
(2k−1)! , and finding the value of the resulting polynomial at (1, . . . ,1).

This calculation is done in Lemma 2.4. The proof of Lemma 2.4 uses Lemmas 2.2, and 2.3.
Lemma 2.2, a variant of Lemma 2.1 in [CFKRS2], gives a formula for applying the differential oper-

ator �( ∂2

∂x2
1
, . . . , ∂2

∂x2
k
) to a product of functions.

Lemma 2.2.

�

(
∂2

∂x2
1

, . . . ,
∂2

∂x2
k

) k∏
i=1

f (xi) = ∣∣ f (2 j−2)(xi)
∣∣
k×k. (2.17)

Proof. Write

�

(
∂2

∂x2
, . . . ,

∂2

∂x2

)
=

∣∣∣∣ ∂2 j−2

x(2 j−2)

∣∣∣∣
k×k

. (2.18)

1 k i
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Applying this to
∏k

i=1 f (xi), and noticing that xI only appears in the i-th row of the determinant, we
can move f (xi) into that row. �

Lemma 2.3 gives a formula for applying a product of differentials to a determinant of functions.

Lemma 2.3. Let f1(x), . . . , fk(x) be smooth functions of one variable. Then

∂n1

∂xn1
1

. . .
∂nk

∂xnk
k

∣∣∣∣∣∣∣∣∣

f1(x1) . . . . . . . fk(x1)
...

. . .
...

...
. . .

...

f1(xk) . . . . . . . fk(xk)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

f (n1)
1 (x1) . . . . . . . f (n1)

k (x1)
...

. . .
...

...
. . .

...

f (nk)

1 (xk) . . . . . . . f (nk)

k (xk)

∣∣∣∣∣∣∣∣∣∣
. (2.19)

Proof. It is easy to see if we first look at a simple case, say ∂
∂x1

applied to the determinant on the
left hand side of (2.19). �
Lemma 2.4. Let q(z1, . . . , zk) = �(z1, . . . , zk)�(z2

1, . . . , z2
k ), then

q

(
∂

∂x1
, . . . ,

∂

∂xk

) k∏
i=1

x2k−1
j

(2k − 1)! (2.20)

evaluated at (x1, . . . , xk) = (1, . . . ,1) is

(−1)
k(k−1)

2 × k!
(

k−1∏
j=0

(2 j)!
(k + j)!

)
2

k(k−1)
2 . (2.21)

Proof. To prove the lemma, we relate the value of (2.20) evaluated at (x1, . . . , xk) = (1, . . . ,1) to a
determinant of a matrix whose entries are binomial coefficients. We then use an identity for binomial
coefficients to rewrite the determinant as a product of two determinants, and evaluate each of them
separately.

Applying Lemma 2.2, we can deduce that

�

(
∂

∂x1
, . . . ,

∂

∂xk

)
�

(
∂2

∂2x2
1

, . . . ,
∂2

∂x2
k

) k∏
j=1

f (x j) (2.22)

equals

�

(
∂

∂x1
, . . . ,

∂

∂xk

)∣∣ f (2( j−1))(xi)
∣∣
k×k. (2.23)

Expanding the Vandermonde determinant of partial differential operators, we obtain

∑
μ∈Sk

sgn(μ)
∂μ1−1

∂xμ1−1
1

. . .
∂μk−1

∂xμk−1
k

∣∣∣∣∣∣∣∣
f (x1) f (2)(x1) · · · f (2(k−1))(x1)

f (x2) f (2)(x2) · · · f (2(k−1))(x2)
...

...
. . .

...
(2) (2(k−1))

∣∣∣∣∣∣∣∣
, (2.24)
f (xk) f (xk) · · · f (xk)
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where μ1, . . . ,μk is the image of the permutation μ of 1, . . . ,k. Applying Lemma 2.3, we can see
that (2.24) equals

∑
μ∈Sk

sgn(μ)

∣∣∣∣∣∣∣∣
f (μ1−1)(x1) f (μ1+1)(x1) · · · f (μ1−1+2(k−1))(x1)

f (μ2−1)(x2) f (μ2+1)(x2) · · · f (μ2−1+2(k−1))(x2)
...

...
. . .

...

f (μk−1)(xk) f (μk+1)(xk) · · · f (μk−1+2(k−1))(xk)

∣∣∣∣∣∣∣∣
. (2.25)

Let f (x) = x2k−1

(2k−1)! . Expression (2.25) evaluated at (x1, . . . , xk) = (1, . . . ,1) is

∑
μ∈Sn

sgn(μ)

∣∣∣∣∣∣∣∣∣

1
(2k−μ1)!

1
(2k−μ1−2)! · · · 1

(−μ1+2)!
1

(2k−μ2)!
1

(2k−μ2−2)! · · · 1
(−μ2+2)!

...
...

. . .
...

1
(2k−μk)!

1
(2k−μk−2)! · · · 1

(−μk+2)!

∣∣∣∣∣∣∣∣∣
. (2.26)

Rearranging the rows to cancel the effect of μ (this introduces another sgn(μ) in front of the deter-
minant) and evaluating at (x1, . . . , xk) = (1, . . . ,1), we get (2.26) equals

k!

∣∣∣∣∣∣∣∣∣

1
(2k−1)!

1
(2k−3)! · · · 1

1!
1

(2k−2)!
1

(2k−4)! · · · 1
0!

...
...

. . .
...

1
k!

1
(k−1)! · · · 0

∣∣∣∣∣∣∣∣∣
. (2.27)

We can convert the determinant (2.27) into a determinant of matrices whose entries are binomial
coefficients. Multiplying the j-th column by 1

(2( j−1))! and the i-th row by (2k − i)!, we see that (2.27)
equals

k! 0!2! · · · (2k − 2)!
(2k − 1)!(2k − 2)! · · ·k!

∣∣∣∣∣∣∣∣∣∣

(2k−1
0

) (2k−1
2

) · · · (2k−1
2k−2

)
(2k−2

0

) (2k−2
2

) · · · (2k−2
2k−2

)
...

...
. . .

...(k
0

) (k
2

) · · · ( k
2k−2

)

∣∣∣∣∣∣∣∣∣∣
. (2.28)

The determinant in (2.28) is

∣∣∣∣
(

2k − i

2 j − 2

)∣∣∣∣
k×k

. (2.29)

In Section 4 we study this determinant. From (1.23) and Corollary 1.3, the determinant of this matrix

equals (−2)(
k
2) . The extra (−1)(

k
2) here comes about from the fact that the D0(k) in (1.23) has its

columns reversed from the above determinant. �
Applying Lemma 2.4 to (2.16), we find that the leading term is:

ak

k!
(

x

2

) k(k+1)
2

(
k!0!2! · · · (2k − 2)!

(2k − 1)! · · ·k!
)

2
k(k−1)

2 = ak

2k

k−1∏
j=0

(2 j)!
(k + j)! xk(k+1)/2. (2.30)
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Hence the coefficient of the leading term is

ak

2k

k−1∏
j=0

(2 j)!
(k + j)! . (2.31)

This proves Proposition 2.1.

2.2. Further lower order terms

In this section we consider a general term occurring in the sum of integrals (2.6). Let λ be a
partition. We shall calculate

(−1)k(k−1)/22k

k!
ak

(2π i)k
b±

λ (k)

∮
· · ·

∮
mλ(z1, . . . , zk)

× �(z1, . . . , zk)�(z2
1, . . . , z2

k )

2k
∏k

j=1 z2k
j

exp

(
x

2

k∑
j=1

z j

)
dz1 . . .dzk. (2.32)

Modifying the approach of the previous section to incorporate the extra monomial mλ(z1, . . . , zk),
we define

qλ(z1, . . . , zk) = mλ(z1, . . . , zk)�(z1, . . . , zk)�
(
z2

1, . . . , z2
k

)
. (2.33)

Following the same steps as in the evaluation of the leading term, expression (2.32) becomes

(−1)
k(k−1)

2 akb±
λ (k)

k!
(

x

2

) k(k+1)
2 −|λ|(

qλ

(
∂

∂x1
, . . . ,

∂

∂xk

) k∏
j=1

x2k−1
j

(2k − 1)!

)
evaluated at x j=1

. (2.34)

This section is devoted to calculating (2.34).
Let f (x) = x2k−1/(2k − 1)!. Let |λ| = ∑

i λi , and length l(λ). Thus, l(λ) is the number of non-zero
elements of the partition λ, i.e. λ j = 0 for j > l(λ). Let m j(λ) be the number of j’s in the partition λ,

so that |λ| = m1(λ)+2m2(λ)+3m3(λ)+· · · . There are
( k

l(λ)

)( l(λ)
m1(λ),m2(λ),...

)
monomials in mλ(x1, . . . , xk)

[S, 7.8]. Here
( l(λ)

m1(λ),m2(λ),...

)
is the multinomial coefficient. Since we are working with symmetric func-

tions, it is enough to compute (2.32), i.e. (2.34), for one monomial of mλ(
∂

∂x1
, . . . , ∂

∂xk
). Therefore,

qλ

(
∂

∂x1
, . . . ,

∂

∂xk

) k∏
j=1

f (x j)

∣∣∣∣
evaluated at x j=1

(2.35)

equals

(
k

l(λ)

)(
l(λ)

m1(λ),m2(λ), . . .

)
∂ |λ|

∂xλ1
1 . . . ∂x

λl(λ)

l(λ)

�

(
∂

∂x1
. . .

∂

∂xk

)
�

(
∂2

∂x2
1

. . .
∂2

∂x2
k

) k∏
j=1

f (x j) (2.36)

evaluated at (x1, . . . , xk) = (1, . . . ,1). We already have the expression for the effect of Vandermonde
determinant operators in (2.25). Therefore by Lemma 2.3, the expression (2.36) equals

(
k

l(λ)

)(
l(λ)

m1(λ),m2(λ), . . .

)
∂ l

∂xλ1 . . . ∂x
λl(λ)

∑
μ∈S

sgn(μ)det
(

f (μi−1)+2( j−1)(xi)
)
. (2.37)
1 l(λ) k
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The expression (2.37) is equal to

(
k

l(λ)

)(
l(λ)

m1(λ),m2(λ), . . .

) ∑
μ∈Sk

sgn(μ)det
(

f (μi−1+2( j−1)+λi)(1)
)
. (2.38)

In each summand of (2.38), rearrange the rows so as to reverse the effect of μ. We get(
k

l(λ)

)(
l(λ)

m1(λ),m2(λ), . . .

) ∑
ν∈Sk

det
(

f (i−1+2( j−1)+λνi )(1)
)
. (2.39)

Here ν is μ−1. The expression (2.39) is

(
k

l(λ)

)(
l(λ)

m1(λ),m2(λ), . . .

) ∑
ν∈Sk

det

(
1

(2k − 1 − (i − 1) − 2( j − 1) − λνi )!
)

i j
. (2.40)

Each determinant inside the sum is of the form

det

(
1

(2k − 1 − (i − 1) − 2( j − 1) − di)!
)

i j
, (2.41)

and
∑

di = |λ|. In Proposition 2.5, we determine a necessary condition for the determinant (2.41) to
be non-zero. This condition will imply that a large portion of terms in (2.40) are zero.

Proposition 2.5. Consider the determinant

det

(
1

(2k − 1 − (i − 1) − 2( j − 1) − di)!
)

i j
. (2.42)

Assume that
∑k

i=1 di = |λ|, with di ∈ Z�0 . The determinant (2.42) is zero if any of d1, . . . ,dk−|λ| is non-zero.

Proof. Let u be a number between 1 and k such that du is non-zero. The u-th row in the matrix is(
1

(2k − 1 − (u − 1) − 2( j − 1) − du)!
)

1� j�k
. (2.43)

Now look at the row which is du rows below the row u in the matrix (2.42). Let this be row v where
v = u + du . Row v , (

1

(2k − 1 − (v − 1) − 2( j − 1) − dv)!
)

1� j�k
, (2.44)

is identical to row u if dv is zero. We have a necessary condition for the matrix to have a non-zero
determinant; for every u such that du �= 0, either du+du is also non-zero or u + du > k. We look at
this cascading process, and see that if we start at a row above the row k − |λ|, that is if du �= 0 for
some u � k − |λ|, then we cannot go down beyond row k since all di add to |λ|. Hence we will have
two identical rows. We can then conclude that we obtain non-zero determinants in (2.42) only when
du = 0 for 1 � u � k − |λ|. �

The above proposition tells us that, in (2.46) all the action takes place in the last |λ| rows or lower.
Thus, let u = (uk, . . . , u1) be a permutation of (λ1, . . . , λk). Notice that we have reversed the order of
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the subscripts on the u’s, starting at k and ending at 1. Applying the above proposition, we shall
assume ui = 0 for i > |λ|. Note, however, that some of the ui ’s, with i � |λ| can also equal 0. For a
given permutation u, let i(u) be the smallest positive integer such that ui = 0 for all i > i(u). Thus,
i(u) � |λ|.

Next, any two permutations that have identical non-zero ui ’s, i.e. that move around the 0’s, pro-
duce the same determinant. For any given way of selecting where the non-zero λi ’s go, there are
(k − l(λ))! ways to move around the remaining zero-valued λi ’s. Furthermore, permuting identical
non-zero λi ’s also produces the same determinant. For a given permutation, there are m1(λ)!m2(λ)! . . .
ways to move around the identical non-zero λi ’s. Using the fact that(

k

l(λ)

)(
l(λ)

m1(λ),m2(λ), . . .

)(
k − l(λ)

)!m1(λ)!m2(λ)! . . . = k!, (2.45)

and taking into account the above two paragraphs, expression (2.40) can thus be written as

k!
∑

u

′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(2k−1)!

1
(2k−3)! · · · · 1

1!
1

(2k−2)!
1

(2k−4)! · · · · 1
0!

...
...

...
1

(k+i(u))!
1

(k−i(u)−2)!
...

1
(k+i(u)−1−ui(u))!

1
(k+i(u)−3−ui(u))!

...

...
...

...
1

(k−u1)!
1

(k−u1−2)! · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.46)

There are k − i(u) rows above the horizontal dashed line and i(u) rows below the dotted line. The
sum is over distinct permutations (uk, . . . , u1) of (λ1, . . . , λk), satisfying ui = 0 for i > |λ|. Note that,
in order for a given permutation u to appear in the sum, we require that k � i(u).

We may also reduce the number of terms in the sum by excluding matrices where two or more
rows of the matrix are identical. The ′ on the sum indicates that such terms have been excluded from
the sum.

Now consider one specific term in the sum (2.46). As in the calculation of the leading coefficient,
multiply its i-th row by (2k − i)! and its j-th column by 1/(2( j − 1))!. This enables us to write the
determinant in a term of (2.46) as a product of a known quantity and a determinant of binomial
coefficients,

∏k
j=1(2( j − 1))!∏k

i=1(2k − i)! ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2k−1
0

) (2k−1
2

)
. . . . . . .

(2k−1
2k−2

)
(2k−2

0

) (2k−2
2

)
. . . . . . .

(2k−2
2k−2

)
...

...
. . .

...(k+i(u)
0

) (k+i(u)
2

) . . .
(k+i(u)

2k−2

)
(k+i(u)−1−ui(u)

0

) (k+i(u)−1−ui(u)

2

)
. . . . . . .

(k+i(u)−1−ui(u)

2k−2

)
...

...
. . .

...(k−u1
0

) (k−u1
2

)
. . . . . . .

(k−u1
2k−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× (

k + i(u) − 1
)

ui(u)

(
k + i(u) − 2

)
ui(u)−1

· · · (k)u1 . (2.47)

Here (x)n is the falling factorial x(x − 1) . . . (x − n + 1). The last factor, the product of falling factorials,
is a polynomial of degree |λ| in k. Expressions (2.46) and (2.47) for the lower terms are the analogue
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of (2.28) for the leading coefficient. The difference is the presence of u1, . . . , ui(u) in the determinant
and the appearance of the product of falling factorials. The latter are accounted for by the fact that
the (2k − i)! is not entirely cancelled by the numerator of the binomial coefficients in the last i(u)

rows.
We study the above determinant in the next section. To apply the formulas of that section, we

require u1 � u2 � · · · , which does not typically hold for the terms in the sum of (2.46). However,
by swapping adjacent rows, we can arrange that these inequalities hold. More precisely, say that
um < um+1. We can assume that, in fact, um + 2 � um+1 since if um + 1 = um+1 then the m-th and
m + 1-st rows from the bottom of the matrix coincide, and such terms are excluded from (2.46) since
the determinant in such cases is 0.

Consider what happens when we swap the m-th and m +1-st rows from the bottom. The binomial
coefficient

(k+m−1−um
2 j−2

)
gets switched with

(k+m−um+1
2 j−2

)
at a cost of a sign change to the determinant.

On the other hand, the new determinant is of the same form, but with u replaced by u′ , where
u′

j = u j for all j, except for u′
m = um+1 − 1 and u′

m+1 = um + 1. Thus we have reversed the inequality,
i.e. u′

m � u′
m+1. Notice also that this swapping also satisfies

∑
u′

j = ∑
u j = |λ|.

Therefore, continuing in this fashion, any given determinant in the sum in (2.47) is equal, up to
a power of −1, to the same kind of determinant but with u replaced by, say, α(u), where α is a
partition of |λ|, i.e. with α1 � α2 � · · · � 0. Let the power of −1 introduced by the row swaps that
take u to α(u) be denoted by n(a). Thus, a given determinant in (2.47) is equal, on performing the
row swaps, to

(−1)n(u)+(k
2)Dα(u)(k), (2.48)

where D is the determinant defined in (1.23). The extra (−1)(
k
2) arises because the columns of D

in (1.23) are in the reverse order from the determinants in (2.47).
Therefore, returning to Eqs. (2.6), (2.34), and (2.32), we have, on simplifying, that the coefficient

c±(r,k) of x
k(k+1)

2 −r in Q ±(k, x) can be expressed as:

ak

2
k(k+1)

2 −r

k−1∏
j=0

(2 j)!
(k + j)!

×
∑
|λ|=r

b±
λ (k)

∑
u

′
(−1)n(u)Dα(u)(k) × (

k + i(u) − 1
)

ui(u)

(
k + i(u) − 2

)
ui(u)−1

· · · (k)u1 . (2.49)

In Theorem 1.2 and Corollary 1.3 we show that, for k � max(l(α),α1),

Dα(k) = 2(k
2)−r Pα(k), (2.50)

where Pα(k) is a polynomial in k of degree |α|. Theorem 1.2 also gives a formula for determining the
polynomials P . Hence

c±(r,k) =
(

ak

2k

k−1∏
j=0

(2 j)!
(k + j)!

) ∑
|λ|=r

b±
λ (k)Nλ(k), (2.51)

where

Nλ(k) =
∑′

(−1)n(u) Pα(u)(k) × (
k + i(u) − 1

)
ui(u)

(
k + i(u) − 2

)
ui(u)−1

· · · (k)u1 . (2.52)

u
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The sum is over distinct permutations u = (uk, . . . , u1) formed from the partition λ by append-
ing 0’s if necessary. Furthermore, we have restricted to permutations such that i(u) � |λ|, and have
also excluded u where the corresponding matrix has any identical rows. Finally, for a given u to
appear in the sum we have assumed that i(u) � k, and to apply (2.50), we also required that
k � max(l(α(u)),α(u)1).

We show that the latter assumption can be removed. First note that i(u) = l(α(u)), because our
swapping procedure that replaces a given u with u′ has i(u′) = i(u). Next, Corollary 1.4 tells us that
Pα(k) vanishes for α1 � k � l(α) − 1. Furthermore,

(
k + i(u) − 1

)
ui(u)

(
k + i(u) − 2

)
ui(u)−1

· · · (k)u1 (2.53)

vanishes if 0 � k < α1 as can be seen by examining the factor associated to α1: let u j be the term
that, under our swapping procedure, gets swapped down to α1. The corresponding falling factorial
is (k + j − 1)u j . But α1 = u j − ( j − 1), because u j gets moved down j − 1 rows to the bottom row.
Therefore,

(k + j − 1)u j = (k + j − 1)α1+ j−1 = (k + j − 1)(k + j − 2) . . . (k − α1 + 1) (2.54)

which is divisible by

k(k − 1) . . . (k − α1 + 1). (2.55)

Thus, we have shown that

Pα(u)(k) × (
k + i(u) − 1

)
ui(u)

(
k + i(u) − 2

)
ui(u)−1

· · · (k)u1 (2.56)

vanishes for 0 � k < max(l(α(u)),α(u)1). We can, therefore, ignore, in (2.52), the condition that
k � max(l(α(u)),α(u)1), since, in including terms with k < max(l(α(u)),α(u)1), the corresponding
summand in (2.52) vanishes.

Hence, Nλ(k) is given by a sum over a fixed, i.e. depending only on λ but not on k, number
of terms u. Each term is a polynomial of degree 2|λ| in k, thus Nλ(k) is a polynomial in k of
degree � 2|λ|.

This completes the proof of Theorem 1.1.
As an example, we compute N(2,1,1)(k) using (2.52). In this case, the sum (2.52) is over the 12 dis-

tinct permutations of (2,1,1,0). We can truncate at 4 terms because |λ| = 4, and i(u) � |λ|. Of these
12 permutations, only (2,1,1,0), (0,2,1,1), (1,0,2,1), and (1,1,0,2) give non-zero determinants.
The sign (−1)n(u) is 1 for (2,1,1,0), and −1 for the rest. We have

N(2,1,1)(k) = P (2,1,1)(k)2(k + 1)1(k + 2)1 − P (1,1,1,1)(k + 1)2(k + 2)1(k + 3)1

− P (1,1,1,1)(k)1(k + 2)2(k + 3)1 − P (1,1,1,1)(k)1(k + 1)1(k + 3)2

= 1

8
(k − 2)(k + 3)

(
k2 + k − 4

)
× k(k − 1)(k + 1)(k + 2) − 1

24
(k − 3)(k − 2)(k − 1)(k + 4)

× (
(k + 1)k(k + 2)(k + 3) + k(k + 2)(k + 1)(k + 3) + k(k + 1)(k + 3)(k + 2)

)
= k(k − 1)(k − 2)(k + 3)(k + 2)(k + 1). (2.57)

Having shown that Nλ(k) is a polynomial in k of degree � 2|λ|, we can determine it either using
formula (2.52) and the formulas in Theorem 1.2 for the polynomials P , or else by evaluating (2.46)
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for 2|λ| + 1 values of k and applying polynomial interpolation. More specifically, we can work back
from (2.46) to (2.32), and divide by ak

2k

∏k−1
j=0

(2 j)!
(k+ j)! to get the formula

Nλ(k) =
(−1

2

)k(k−1)/2

2|λ|
k−1∏
j=0

(k + j)!
(2 j)!

∑
u

′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(2k−1)!

1
(2k−3)! · · · · 1

1!
1

(2k−2)!
1

(2k−4)! · · · · 1
0!

...
...

...

1
(k+i(u))!

1
(k−i(u)−2)!

...

1
(k+i(u)−1−ui(u))!

1
(k+i(u)−3−ui(u))!

...

...
...

...
1

(k−u1)!
1

(k−u1−2)! · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.58)

This formula can be used for a specific choice of λ and several values of k to create a table of values
of Nλ(k) to which polynomial interpolation can be applied. Table 1 lists the polynomials Nλ(k) for all
|λ|� 7.

3. The coefficients b±
λ (k)

In order to compute the multivariate Taylor expansion of (5.18), we consider the series expansion
of its logarithm. We first examine the arithmetic product, and let

log
(

Ak(z1, . . . , zk)/ak
) =:

∞∑
r=1

∑
|λ|=r

Bλ(k)mλ(z). (3.1)

We start the sum at r = 1 because the division by ak makes the constant term 0. Now, the left hand
side is symmetric in the zi ’s, and we can find Bλ(k) by applying

1

λ1!λ2! . . . λl!
∂λ1

∂zλ1
1

∂λ2

∂zλ2
2

. . .
∂λl

∂zλl
l

, (3.2)

where l = l(λ), and setting z1 = · · · = zk = 0. Since the partial derivatives do not involve zl+1, . . . , zk
we can set these to 0 before the differentiation. Thus, by (1.10), Bλ(k) is equal to (3.2) applied to

− log(ak) +
∑

p

∑
1�i� j�l

log

(
1 − 1

p1+zi+z j

)
+

∑
1�i�l

(k − l) log

(
1 − 1

p1+zi

)

+ log

(
1

2

(
l∏

j=1

(
1 − 1

p
1
2 +z j

)−1(
1 − 1

p
1
2

)l−k

+
l∏

j=1

(
1 + 1

p
1
2 +z j

)−1(
1 + 1

p
1
2

)l−k
)

+ 1

p

)

− log

(
1 + 1

p

)
, (3.3)

evaluated at z1 = · · · = zl = 0. Likewise, we can find the coefficients of the expansions

−1

2

k∑
j=1

log X(1/2 + z j,a) =:
∞∑

r=1

∑
|λ|=r

f ±
λ (k)mλ(z), (3.4)
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where a = 1 for f − and 0 for f + , and of

∑
1�i� j�k

log
(
ζ(1 + zi + z j)(zi + z j)

) =:
∞∑

r=1

∑
|λ|=r

gλ(k)mλ(z), (3.5)

by applying (3.2), at z1 = · · · = zl = 0, to

−1

2

l∑
j=1

log X(1/2 + z j,a), (3.6)

and to ∑
1�i� j�l

log
(
ζ(1 + zi + z j)(zi + z j)

) +
∑

1�i�l

(k − l) log
(
ζ(1 + zi)zi

)
, (3.7)

respectively.
Next, by composing the three series expansions (3.1), (3.4), (3.5) with the series for the exponential

function, we can derive formulas for the coefficients b±
λ (k). Example formulas, for b±

(1)(k) and b±
(1,1)(k),

are displayed in the Introduction.
To obtain numerical approximations to b±

λ (k) for specific choices of k and λ one needs to compute
infinite sums over primes where the summand is a rational function of p1/2 times log(p)|λ| . This can
be achieved to high precision using Mobius inversion as described, in the context of the moment
polynomials of the Riemann zeta function, in Section 4.1 of [CFKRS2]. In this fashion, and using (1.15),
we computed the values of c±(r,k), for r � 10 and k � 9, given in Tables 3 and 4.

4. Determinant of a matrix of binomial coefficients

Proof of Theorem 1.2. We shall first prove (1.27), and use it to prove (1.26).

Proof of (1.27). For a k-tuple (α1, . . . ,αk) and x = (x1, . . . , xk), let xα denote the monomial xα1
1 . . . xαk

k .
For a partition λ of length less than or equal to k, xλ can be defined by appending zeros after the
positive elements of λ to make it a k-tuple.

Reversing the rows of the matrix in (1.23), we see that

Dλ(k) = (−1)(
k
2) det

((
k + i − 1 − λi

2k − 2 j

))
1�i, j�k

. (4.1)

The (i, j)-th entry of the matrix in (4.1) can be written using the coefficient operator defined in (1.25).
Let x = (x1, . . . , xk). Then

Dλ(k) = (−1)(
k
2) det

([
x2k−2 j

j

]
(1 + x j)

k+i−1−λi
)

1�i, j�k. (4.2)

Noticing that column j only involves x j , we can move all the [x2k−2 j
j ] in front of the determinant to

get

(−1)(
k
2)

[
x2δk

]
det

(
(1 + x j)

k+i−1−λi
)

1�i, j�k

= (−1)(
k
2)

[
x2δk

]
det

(
(1 + x j)

−(k−i+λi)
) k∏

(1 + xl)
2k−1. (4.3)
l=1
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Table 3
The coefficients c−(r,k) of Q −(k).

r c−(r,1) c−(r,2) c−(r,3)

0 3.522211004995827732e−01 1.238375103096108452e−02 1.528376099282021425e−05
1 6.175500336140218316e−01 1.807468351186638511e−01 8.968276397996084726e−04
2 3.658991414081511628e−01 1.701420175947633562e−02
3 −1.398953902867718369e−01 1.093281830681910732e−01
4 1.358556940901993748e−01
5 −2.329509111366616925e−01
6 4.735303837788046866e−01
r c−(r,4) c−(r,5) c−(r,6)

0 3.158268332443340154e−10 6.712517611066278238e−17 1.036004645427003276e−25
1 5.062201340608140133e−08 2.341233253582258184e−14 6.796814066740219201e−23
2 3.252070477914552180e−06 3.571169234103129887e−12 2.037808336505920108e−20
3 1.065078255299183117e−04 3.127118490785452708e−10 3.698051408075659748e−18
4 1.865791348720969960e−03 1.734617312939144360e−08 4.534838798273249707e−16
5 1.658674128885722146e−02 6.342941105701246722e−07 3.972866885083416336e−14
6 5.985999910494527870e−02 1.541064437383931078e−05 2.563279107875100164e−12
7 5.231179842747744717e−03 2.441498848686470880e−04 1.237229229636910631e−10
8 −1.097356193524353096e−01 2.390928284573956911e−03 4.491515829566301398e−09
9 5.581253300381869842e−01 1.275610736275904766e−02 1.222154548508955419e−07

10 1.918594095122517496e−01 2.430382016767882944e−02 2.461203700713661380e−06
r c−(r,7) c−(r,8) c−(r,9)

0 8.864927187204894781e−37 3.372009502181036150e−50 4.727735796587526113e−66
1 9.894437508330137269e−34 5.951191608649093822e−47 1.248019487993274422e−62
2 5.176293026015439716e−31 5.002043249634522587e−44 1.585820955757896443e−59
3 1.686724585610585967e−28 2.664702289380503418e−41 1.291823649274241834e−56
4 3.837267516078630273e−26 1.010164553397544484e−38 7.580660624239738211e−54
5 6.474635477336820480e−24 2.900498887294046119e−36 3.413900516458523702e−51
6 8.402114103039537077e−22 6.555588245821587108e−34 1.227404779731471396e−48
7 8.581764459399681586e−20 1.196609980002393296e−31 3.618608212113140382e−46
8 7.002464589632248733e−18 1.795828629692653400e−29 8.916974338520402569e−44
9 4.607034349981096374e−16 2.244368542496810519e−27 1.862786263819570034e−41

10 2.455973970379903840e−14 2.357312576663548340e−25 3.334524507937658586e−39

The determinant in (4.2) can be written in terms of aδk and sλ defined in (1.53) and (1.55),

Dλ(k) = (−1)(
k
2)

[
x2δk

]
aλ+δk

(
1

1 + x1
, . . . ,

1

1 + xk

) k∏
l=1

(1 + xl)
2k−1

= (−1)(
k
2)

[
x2δk

]
aδk

(
1

1 + x1
, . . . ,

1

1 + xk

)
sλ

(
1

1 + x1
, . . . ,

1

1 + xk

) k∏
l=1

(1 + xl)
2k−1. (4.4)

But (1.56) gives aδk (x1, . . . , xk) explicitly. Hence

aδk

(
1

1 + x1
, . . . ,

1

1 + xk

)
=

∏
1�i< j�k

(
1

1 + xi
− 1

1 + x j

)
=

∏
1�i< j�k

(1 + x j) − (1 + xi)

(1 + x j)(1 + xi)

=
∏

1�i< j�k(x j − xi)∏k
j=1(1 + x j)

k−1
= (−1)(

k
2)aδk (x)∏k

j=1(1 + x j)
k−1

. (4.5)

Using (4.5) in (4.4), we have

Dλ(k) = [
x2δk

]
aδk (x1, . . . , xk)sλ

(
1

1 + x1
, . . . ,

1

1 + xk

) k∏
(1 + xl)

k. (4.6)

l=1
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Table 4
The coefficients c+(r,k) of Q +(r,k).

r c+(r,1) c+(r,2) c+(r,3)

0 3.522211004995827732e−01 1.238375103096108452e−02 1.528376099282021425e−05
1 −4.889851881547797041e−01 6.403273133040673915e−02 6.087355322740111135e−04
2 −4.030985462971436450e−01 5.189536257221761054e−03
3 8.784723252866324383e−01 −2.070416696161206729e−02
4 −4.836560144295628388e−02
5 6.305676273169569246e−01
6 −1.231149543676485214
r c+(r,4) c+(r,5) c+(r,6)

0 3.158268332443340154e−10 6.712517611066278238e−17 1.036004645427003276e−25
1 4.070002081481211197e−08 2.024913313371989448e−14 6.113326104276961713e−23
2 1.961035634727995841e−06 2.611003455556346309e−12 1.632224321325099403e−20
3 4.187933734218812260e−05 1.870888923760240058e−10 2.605311255686981285e−18
4 3.233832982317403053e−04 8.086250862410257040e−09 2.766415183453526818e−16
5 −7.264209058002128044e−04 2.126496335543600159e−07 2.056437432501927988e−14
6 −9.741303115420443803e−03 3.194157049041922835e−06 1.095709499896029594e−12
7 6.254058547607513341e−02 2.120198748289444789e−05 4.206172871179562219e−11
8 5.338039400180279170e−02 −3.390055513847315853e−05 1.149109718292255815e−09
9 −1.125787514381924481e+00 −7.750613901748660065e−04 2.154509460431619112e−08

10 2.125417457224375362 3.339978554290242568e−03 2.543371224701971233e−07
r c+(r,7) c+(r,8) c+(r,9)

0 8.864927187204894781e−37 3.372009502181036150e−50 4.727735796587526113e−66
1 9.114637784804059894e−34 5.569826318573164385e−47 1.181182697783246367e−62
2 4.370089613567423486e−31 4.368642207198861832e−44 1.417926553457661234e−59
3 1.297363094463138851e−28 2.164658555649376388e−41 1.089051480593133551e−56
4 2.670392092372496088e−26 7.604817314362535383e−39 6.012641112088390226e−54
5 4.043466811338890795e−24 2.015327809331532264e−36 2.541594397695401893e−51
6 4.663148139710778893e−22 4.184593239584908611e−34 8.555207141044511720e−49
7 4.183154331210266578e−20 6.980465161514108456e−32 2.354807833463352272e−46
8 2.954857264190019988e−18 9.516651650236242059e−30 5.400892227120418237e−44
9 1.652770327042906306e−16 1.073015400698217206e−27 1.046573394851932219e−41

10 7.319238365079051443e−15 1.008662233782716849e−25 1.731269798305270612e−39

We shall now express sλ as a coefficient in a polynomial which is easier to work with. The dual
Jacobi–Trudi identity, (1.59), gives

sλ = det(eμi−i+ j)1�i, j�n, (4.7)

where (μ1, . . . ,μn) is the conjugate partition of λ, and n = l(μ).
Expanding the determinant, we get

sλ =
∑
σ∈Sn

sgn(σ )

n∏
i=1

eμi−i+σ (i)(x). (4.8)

From (1.46), we have er = [tr]E(t). We rewrite (4.8) using this notation. Let t = (t1, . . . , tn). Then

sλ(x) =
∑
σ∈Sn

sgn(σ )
[
tμ1−1+σ (1)

1 . . . tμn−n+σ (n)
n

] n∏
i=1

E(ti)

= [
tμ1

1 . . . tμn
n

] n∏
i=1

E(ti)
∑
σ∈Sn

(
sgn(σ )

n∏
i=1

ti−σ (i)
i

)
.

Next, pull out
∏

ti
i from the sum, and multiply and divide by

∏
tn

i , to get
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[
tμ1

1 . . . tμn
n

] n∏
i=1

E(ti)
∏

1�i< j�n

(ti − t j)

n∏
l=1

tl−n
l = [

tμ+δn
] n∏

i=1

E(ti)
∏

1�i< j�n

(ti − t j)

= [
tμ+δn

]
aδn (t)

n∏
i=1

E(ti). (4.9)

Here we have also used the Vandermonde determinant (up to (−1)(
n
2)):

∑
σ∈Sn

sgn(σ )

n∏
i=1

tn−σ (i)
i =

∏
1�i< j�n

(ti − t j). (4.10)

We have expressed sλ(x) as a coefficient in a polynomial. Substituting (4.9) for sλ in (4.6), and
using the product form of E(t), (1.46), we have

Dλ(k) = [
tμ+δn x2δk

]
aδk (x)aδn (t)

[
n∏

i=1

(
k∏

l=1

(
1 + ti

1 + xl

))]
k∏

l=1

(1 + xl)
k

= [
tμ+δn x2δk

]
aδk (x)aδn (t)

k∏
l=1

(
(1 + xl)

k−n
n∏

i=1

(1 + xl + ti)

)

= [
tμ+δn x2δk

]
aδk (x)aδn (t)

k∏
l=1

(
(1 + xl)

k−n
n∏

i=1

(
1 + xl

1 + ti

))
n∏

i=1

(1 + ti)
k. (4.11)

Applying the dual Cauchy identity (1.61) to the double product on the right hand side above gives

k∏
l=1

(
(1 + xl)

k−n
n∏

i=1

(
1 + xl

1 + ti

))
=

∑
λ

sλ(x1, . . . , xk)sλ′
(

1, . . . ,1,
1

1 + t1
, . . . ,

1

1 + tn

)
.

(4.12)

The number of 1’s in the second factor on the right hand side of (4.12) is k − n. Recall from (1.55)
that aδsλ = aδ+λ . Hence (4.11) equals

[
tμ+δn

][
x2δk

]
aδn (t)

n∏
i=1

(1 + ti)
k
∑
λ

aλ+δk (x1, . . . , xk)sλ′
(

1, . . . ,1,
1

1 + t1
, . . . ,

1

1 + tn

)
.

(4.13)

The monomial x2δk occurs in the sum in (4.13) only when λ = δk . The coefficient of x2δk in
a2δk (x1, . . . , xk) is 1. Simplifying (4.13), we have

Dλ(k) = [
tμ+δn

]
aδn(t)

n∏
i=1

(1 + ti)
ksδk

(
1, . . . ,1,

1

1 + t1
, . . . ,

1

1 + tn

)
. (4.14)

Note that we have used δ′
k = δk . Applying the formula sδk in (1.57), we have
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sδk

(
1, . . . ,1,

1

1 + t1
, . . . ,

1

1 + tn

)
= 2(k−n

2 )
n∏

i=1

(
1 + 1

1 + ti

)k−n ∏
1�i< j�n

(
1

1 + ti
+ 1

1 + t j

)
.

(4.15)

The 2(k−n
2 ) comes from pairing, in applying (1.57), the k − n 1’s. The middle factor arises from

matching each 1/(1 + ti) with k − n 1’s, and the last factor from matching all pairs of distinct
1/(1 + ti),1/(1 + t j). Substituting (4.15) into (4.14), and collecting the powers of (1 + ti) gives

Dλ(k) = [
tμ+δn

]
aδn (t)2(k−n

2 )

(
n∏

i=1

(1 + ti)(2 + ti)
k−n

) ∏
1�i< j�n

(2 + ti + t j). (4.16)

Substituting zi = ti/2, and collecting powers of 2 (note that
(k−n

2

) + (k − n)n + (n
2

) = (k
2

)
), we get

Dλ(k) = [
zμ+δn

]
aδn (z)2(k

2)+(n
2)−|μ+δn|

n∏
i=1

(1 + 2zi)(1 + zi)
k−n

∏
1�i< j�n

(1 + zi + z j). (4.17)

Here we have also used aδn (t) = aδn (z)2(n
2) . Since |δn| = (n

2

)
, and |μ| = |λ|, this proves (1.27). �

Proof of (1.26). We now use (1.27) to prove (1.26). As above, let z = (z1, . . . , zn).
Since Schur symmetric functions form a Z-basis for the ring of symmetric functions, the coefficient

of sγ of a symmetric function F is well defined. We denote this coefficient by [sγ ]F .
For a symmetric polynomial F (z) in n-variables, and a partition γ with length at most n, we have

[
sγ (z)

]
F (z) = [

zγ +δn
]
aδn (z)F (z). (4.18)

This can be seen by writing F (z) in terms of our Schur basis

F (z) =
∑
γ

vγ sγ (z). (4.19)

We wish to find the coefficient vγ . Multiplying by aδn (z) and using (1.55) gives

aδn (z)F (z) =
∑
γ

vγ aγ +δn(z). (4.20)

Now, the monomials in aγ +δn (z) are all distinct, and distinct from the monomials in aγ ′+δn for any
different partition γ ′ of length at most n. Furthermore, zγ +δn appears in aγ +δn (z) with coefficient 1,
coming from the main diagonal of (1.53). Thus, vγ is equal to the coefficient of zγ +δn in aδn (z)F (z).

Therefore we can rewrite (1.27) as

Dλ(k) = 2(k
2)−|λ|[sμ(z)

] ∏
1�i< j�n

(
1 + zi + z j

(1 + zi)(1 + z j)

) n∏
i=1

(1 + 2zi)(1 + zi)
k−1. (4.21)

We shall work with the ring of symmetric functions Λ instead of the ring of symmetric polynomials
in n variables Λn . The right hand side of (4.21) equals

2(k
2)−|λ|[sμ(z)

] ∏
1�i< j

(
1 + zi + z j

(1 + zi)(1 + z j)

)∏
i�1

(1 + 2zi)(1 + zi)
k−1. (4.22)
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Note that in (4.22), we are looking at elements in the ring of symmetric functions, Λ, i.e. as a product
involving a countable number of variables z1, z2, . . . , whereas in (4.21), we were considering the
elements in the ring of symmetric polynomials in n variables, Λn .

Applying ω, and using (1.64) we obtain

Dλ(k) = 2(k
2)−|λ|[sλ(y)

]
ω

( ∏
1�i< j

(
1 − yi y j

(1 + yi)(1 + y j)

)∏
i�1

(1 + 2yi)(1 + yi)
k−1

)
. (4.23)

We use the fact that exp(log(1 + u)) = 1 + u to write the argument of ω as formal power series:

Dλ(k) = 2(k
2)−|λ|[sλ(y)

]
ω

(
exp

∑
a�1

1

a

(
−

∑
1�i< j

ya
i ya

j(1 + yi)
−a(1 + y j)

−a

− (−2)a
∑
i�1

ya
i − (k − 1)(−1)a

∑
i�1

ya
i

))

= 2(k
2)−|λ|[sλ(y)

]
ω

(
exp

∑
a�1

1

a

(
−

∑
b,c�0

(−a

b

)(−a

c

) ∑
1�i< j

ya+b
i ya+c

j

− (−2)a
∑
i�1

ya
i − (k − 1)(−1)a

∑
i�1

ya
i

))
. (4.24)

We can rewrite the argument of ω in (4.24) using power symmetric functions;

Dλ(k) = 2(k
2)−|λ|[sλ(y)

]
ω

(
exp

∑
a�0

1

a

(
−

∑
b,c�0

(−a

b

)(−a

c

)
1

2
(pa+b pa+c − p2a+b+c)

− (−2)a pa − (k − 1)(−1)a pa

))
. (4.25)

In (1.64) we have seen that ω(pa) = (−1)a−1 pa . This gives

Dλ(k) = 2(k
2)−|λ|[sλ(y)

]
exp

∑
a�0

1

a

(
−

∑
b,c�0

(−a

b

)(−a

c

)
(4.26)

× (−1)2a+b+c 1

2
(pa+b pa+c + p2a+b+c) + 2a pa + (k − 1)pa

)

= 2(k
2)−|λ|[sλ(y)

] ∏
1�i� j

(
1 − yi y j

(1 − yi)(1 − y j)

)∏
i�1

(1 − 2yi)
−1(1 − yi)

−k+1. (4.27)

If we isolate factors corresponding to i = j in the first product, we are able to cancel some factors in
the second product. Simplifying, we get

Dλ(k) = 2(k
2)−|λ|[sλ(y)

] ∏
1�i< j

(
1 − yi y j

(1 − yi)(1 − y j)

)∏
i�1

(1 − yi)
−k−1. (4.28)
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To calculate the coefficient of sλ in (4.28), we only have to look at the projection in any Λm such
that m is greater than or equal to l(λ). We can choose it to be equal to l(λ) (also equals μ1). Let
m = l(λ). Then

Dλ(k) = 2(k
2)−|λ|[sλ(y)

] ∏
1�i< j�m

(
1 − yi y j

(1 − yi)(1 − y j)

) m∏
i=1

(1 − yi)
−k−1, (4.29)

which is equal to

2(k
2)−|λ|[sλ(y)

] ∏
1�i< j�m

(1 − yi − y j)

m∏
i=1

(1 − yi)
−k−m. (4.30)

Another application of (4.18) proves (1.26). �
Proof of Corollary 1.3. It is immediate from (1.26) or (1.27) that Pλ(k) is a polynomial in k with
integer values at integers of degree at most |λ|. We will show that it is in fact of degree |λ| and
determine its leading coefficient.

From (1.26), the highest power of k occurs when we pick as many powers of yi as possible from
the last product. This happens when none of the yi are picked from (1 − yi − y j). Note that

(1 − y)−k−m = 1 + (k + m)y + (k + m)(k + m + 1)

2! y2 + · · · =
∞∑
j=0

(k + m + j − 1) j y j/ j!. (4.31)

The coefficient of the highest power of k that appears in the j-th term of this Taylor series is 1/ j!.
Thus, the coefficient of k|λ| in Pλ(k) equals

[
y

λ1+m−1
1 . . . yλm

m
]( ∏

1�i< j�m

(yi − y j)

)
exp(y1 + · · · + ym)

= [
y

λ1+m−1
1 . . . yλm

m
] ∑
σ∈Sm

sgn(σ )

(
m∏

i=1

ym−σ (i)
i e yi

)

=
∑

σ∈Sm

sgn(σ )
1

(λi − i + σ(i))! = det
(
1/(λi − i + j)!)m×m

=
∏

1�i< j�m(λi − λ j − i + j)∏
1�i�m(λi + m − i)! = χλ(1)

|λ|! , (4.32)

where χλ(1) is the degree of the irreducible representation of S |λ| indexed by λ. See Example 6 in
Chapter I.7 of [M] for the last two equalities. �
Proof of Corollary 1.4. We use Eq. (1.27) which gives a formula for Pλ(k). As part of the process of
identifying the coefficient of zμ1+n−1

1 . . . zμn
n in that formula, we focus on the coefficient of zμ1+n−1

1 .
Now, μ1 = l(λ), and n = λ1, hence μ1 + n − 1 = l(λ) + λ1 − 1. When we expand (1.27), some of the
powers of z1 come from the factor (1 + z1)

k−λ1 , and the rest from

∏
1< j�λ

(z1 − z j)(1 + z1 + z j)(1 + 2z1). (4.33)

1
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Consider the terms arising from taking a z j
1 from the above. Notice that (4.33) is a polynomial in z1

of degree 2λ1 − 1, and thus 0 � j � 2λ1 − 1. The remaining l(λ) + λ1 − 1 − j powers of z1 come from
expanding (1 + z1)

k−λ1 using the binomial theorem, so that the term associated with a particular
choice of j is divisible by

(
k − λ1

l(λ) + λ1 − 1 − j

)
= (k − λ1)(k − λ1 − 1) . . . (k − 2λ1 − l(λ) + 2 + j)

(l(λ) + λ1 − 1 − j)! . (4.34)

For all 0 � j � 2λ1 − 1, this is divisible by

(k − λ1)(k − λ1 − 1) . . .
(
k − l(λ) + 1

)
. (4.35)

The coefficient of zl(λ)+λ1−1
1 = zμ1+n−1

1 in the expression in (1.27) is therefore divisible by (4.35). Thus,

so is the coefficient of zμ1+n−1
1 . . . zμn

n .
The same analysis applied to (1.26), and using (4.31) gives that Pλ(k) is divisible, for l(λ) � λ1, by

(
k + l(λ)

)
. . . (k + λ1 − 1)(k + λ1). � (4.36)

5. Family of quadratic twists of elliptic curve L-functions

Here we modify our techniques to the family of L-functions associated to the quadratic twists of
an elliptic curve over Q. To keep things explicit, we focus on the elliptic curve of conductor 11:

E11a : y2 + y = x3 − x. (5.1)

The L-function of E11a is given by an Euler product of the form

L11(s) = 1

1 − 11−s−1/2

∏
p �=11

1

1 − a(p)p−s−1/2 + p−2s
, (5.2)

which can be expanded into the Dirichlet series

∞∑
n=1

a(n)

n1/2+s
. (5.3)

The Dirichlet series above is absolutely convergent in �s > 1. The coefficients a(n) can be obtained
from the Fourier expansion of the cusp form of weight two and level 11 given by

∞∑
n=1

a(n)qn = q
∞∏

n=1

(
1 − qn)2(

1 − q11n)2
, (5.4)

or, alternatively, by counting points on E11a over the fields F p , p prime.
The function L11(s) has analytic continuation to all of C and satisfies the functional equation

L11(s) = X(s)L11(1 − s), (5.5)

where

X(s) = Γ (3/2 − s)

Γ (s + 1/2)

(
2π

111/2

)2s−1

. (5.6)
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The L-function associated to a quadratic twist of E11a has a Dirichlet series of the form

L11(s,χd) =
∞∑

n=1

a(n)

n1/2+s
χd(n), (5.7)

where d is a fundamental discriminant which we further assume satisfies (d,11) = 1. L11(s,χd) sat-
isfies the functional equation

L11(s,χd) = χd(−11)|d|1−2s X(s)L11(1 − s,χd). (5.8)

When considering the moments of L11(1/2,χd) we should restrict L(s,χd) to have an even functional
equation, i.e. χd(−11) = 1, otherwise L(1/2,χd) is trivially equal to 0. In [CFKRS], d was also restricted
to being negative since it allowed them to exploit a theorem of Kohnen and Zagier [KZ] to easily
gather numerical data for L11(1/2,χd) with which to check their conjecture.

When d < 0, χd(−1) = −1, hence, in order to have an even functional equation, we require
χd(11) = −1, i.e. d = 2,6,7,8,10 mod 11. CFKRS conjectured, see Section 5.3 of [CFKRS], the asymp-
totic expansion:

∑
d∈S−(X)

d=2,6,7,8,10 mod 11

L11(1/2,χd)
k ∼ 15

11π2

1

X

X∫
1

Υk(log t)dt. (5.9)

The extra factor of 5/11 on the right hand side, compared to (1.5), reflects the fact that the sum on
the left is over 5 out of 11 possible residue classes mod 11. Here, Υk is the polynomial of degree
k(k − 1)/2 given by the k-fold residue

Υk(x) = (−1)k(k−1)/22k

k!
1

(2π i)k

∮
· · ·

∮
R11(z1, . . . , zk)�(z2

1, . . . , z2
k )2∏k

j=1 z2k−1
j

ex
∑k

j=1 z j dz1 . . .dzk,

(5.10)

where

R11(z1, . . . , zk) = Ak(z1, . . . , zk)

k∏
j=1

X(1/2 + z j)
−1/2

∏
1�i< j�k

ζ(1 + zi + z j), (5.11)

and, overloading the notation of Section 1.1, Ak is the Euler product which is absolutely convergent
for

∑k
j=1 |z j | < 1

2 ,

Ak(z1, . . . , zk) =
∏

p

R11,p(z1, . . . , zk)
∏

1�i< j�k

(
1 − 1

p1+zi+z j

)
(5.12)

with, for p �= 11,

R11,p =
(

1 + 1

p

)−1
(

1

p
+ 1

2

(
k∏

j=1

1

1 − a(p)p−1−z j + p−1−2z j
+

k∏
j=1

1

1 + a(p)p−1−z j + p−1−2z j

))

(5.13)
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and

R11,11 =
k∏

j=1

1

1 + 11−1−z j
. (5.14)

Note that, although here we are working with the specific elliptic curve E11a , CFKRS’ recipe provides
a similar conjecture for the quadratic twists of any elliptic curve over Q. For many examples, see
the paper [CPRW]. The only difference is in the conductor, in the local factors of Ak for the primes
dividing the conductor, and in the allowed residue classes (and modulus) for d.

Next, Υk(x) is a polynomial of degree of k(k − 1)/2 given by the k-fold residue (5.10). The degree
works out smaller compared to Q ±(k, x) because the product of zetas in (5.11) involves fewer zetas,
i.e. the product over i < j has

(k
2

)
factors. Therefore, we can write

Υk(x) = c0(k)xk(k−1)/2 + c1(k)xk(k−1)/2−1 + · · · + ck(k−1)/2(k). (5.15)

Also note that the exponential in (5.10) has an x rather than x/2. This will impact the powers of 2
that enter into our formulas for the coefficients cr(k).

To address the poles coming from the zeta-product
∏

ζ(1 + zi + z j) we absorb some of the factors
of �(z2

1, . . . , z2
k ) = ∏

1�i< j�k(z j − zi)(z j + zi). Thus,

Υk(x) = (−1)k(k−1)/22k

k!
1

(2π i)k

∮
· · ·

∮
Ak(z1, . . . , zk)

k∏
j=1

X(1/2 + z j)
−1/2

×
∏

1�i< j�k

ζ(1 + zi + z j)(zi + z j)
�(z1, . . . , zk)�(z2

1, . . . , z2
k )∏k

j=1 z2k−1
j

exp

(
x

k∑
j=1

z j

)
dz1 . . .dzk.

(5.16)

We overload notation again and set

ak := Ak(0, . . . ,0) (5.17)

and expand

1

ak
Ak(z1, . . . , zk)

k∏
j=1

X(1/2 + z j)
−1/2

∏
1�i< j�k

ζ(1 + zi + z j)(zi + z j) =:
∞∑
j=0

∑
|λ|= j

bλ(k)mλ(z),

(5.18)

where, as before, mλ(z) is the monomial symmetric function for the partition λ. The left hand side
above is holomorphic in a neighbourhood of z1 = · · · = zk = 0, because the poles from the zeta-
product

∏
ζ(1 + zi + z j) are cancelled by the product

∏
(zi + z j). We normalize by ak so that the first

coefficient is 1.
So (5.16) becomes

Υk(x) = (−1)k(k−1)/22k

k!
ak

(2π i)k

∮
· · ·

∮ ∞∑
j=0

∑
|λ|= j

bλ(k)mλ(z)

× �(z1, . . . , zk)�(z2
1, . . . , z2

k )∏k
j=1 z2k−1

j

exp

(
x

k∑
j=1

z j

)
dz1 . . .dzk. (5.19)
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Comparing to Eq. (2.6) we notice three differences: the extra 2k in front of the integral, the 2k − 1
powers of each z j , rather than 2k powers, in the denominator, and the x rather than x/2 in the
exponential. The first two differences are accounted for by the fact that the product over zetas in (2.3)
includes i = j, and this introduces, from (2.2), an extra 2z j , for each j. Therefore, proceeding as in
Section 2.2, we get:

cr(k) = (−1)k(k−1)/22k

k!
ak

(2π i)k

∮
· · ·

∮ ∑
|λ|=r

bλ(k)mλ(z)

× �(z1, . . . , zk)�(z2
1, . . . , z2

k )∏k
j=1 z2k−1

j

exp

(
k∑

j=1

z j

)
dz1 . . .dzk. (5.20)

Analogously to (2.49), we have

cr(k) = 2kak

k−1∏
j=0

(2 j)!
(k + j − 1)!

×
∑
|λ|=r

bλ(k)
∑

u

′
(−1)n(u)Eα(u)(k) × (

k + i(u) − 2
)

ui(u)

(
k + i(u) − 3

)
ui(u)−1

· · · (k − 1)u1 ,

(5.21)

where, for a partition α,

Eα(k) = det

((
2k − i − 1 − αk−i+1

2k − 2 j

))
1�i, j�k

. (5.22)

The equation for cr(k) differs from (2.49) in the power of 2 that appears, and also some of the
factorials have an extra −1 in them. The latter comes from the one missing z j in the denominator
of (5.20) compared to (2.3).

Notice that Eα(k) is very similar to Dα(k). The only difference is the extra −1 in the binomial
coefficient. We can relate the two determinants by taking advantage of the entries in the first column
of the matrix for Eα(k), which are all 0 except for the 1,1 entry. Assume, for now, that k � max(l(α)+
1,α1) (so, in particular, αk = 0). Expanding along the first column, and then reindexing i, j with
i + 1, j + 1:

Eα(k) = det

((
2k − i − 1 − αk−i+1

2k − 2 j

))
2�i, j�k

(5.23)

= det

((
2(k − 1) − i − α(k−1)−i+1

2(k − 1) − 2 j

))
1�i, j�k−1

(5.24)

= Dα(k − 1) = 2(k−1
2 )−|α| × Pα(k − 1). (5.25)

Also note, while we have assumed that k > l(α), Corollary 1.4 tells us that Pα(k − 1), and hence the
right hand side of (5.23), vanishes for α1 + 1 � k � l(α). Furthermore, by the same method as was
used around (2.55), (

k + i(u) − 2
)

ui(u)

(
k + i(u) − 3

)
ui(u)−1

· · · (k − 1)u1 (5.26)

is divisible by (k − 1) . . . (k − α1), and thus vanishes for 1 � k � α1. Therefore, writing
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cr(k) = 2k+(k−1
2 )−rak

k−1∏
j=0

(2 j)!
(k + j − 1)!

×
∑
|λ|=r

bλ(k)
∑

u

′
(−1)n(u) Pα(u)(k − 1) × (

k + i(u) − 2
)

ui(u)

(
k + i(u) − 3

)
ui(u)−1

· · · (k − 1)u1 ,

(5.27)

we can replace the requirement that k � max(l(α) + 1,α1) with k > 0. Finally, using (2.52), we get,
for k > 0,

cr(k) = 2k+(k−1
2 )−rak

k−1∏
j=0

(2 j)!
(k + j − 1)!

∑
|λ|=r

bλ(k)Nλ(k − 1). (5.28)

For example, the r = 0 term equals

c0(k) = 2k+(k−1
2 )ak

k−1∏
j=0

(2 j)!
(k + j − 1)! . (5.29)

One can verify inductively that this matches the leading term as described in (1.5.26) of [CFKRS]:

2k+(k−1
2 )

k−1∏
j=0

(2 j)!
(k + j − 1)! = 2(k+1)k/2

k−1∏
j=0

j!
(2 j)! . (5.30)

One should also pay attention here that the Taylor coefficients bλ(k), and also ak , depend on
the underlying elliptic curve E11a and its a(p)’s. While we can derive similar formulas for bλ(k)

as for quadratic Dirichlet L-functions (see the examples (1.21), (1.22)), in order to accelerate their
numerical evaluation we would need to use the symmetric power L-functions associated to the
L-function L11(s).
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