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1. INTRODUCTION 

Many problems which arise in a variety of disciplines may be expressed in 
terms of the enumeration of sequences, over a finite alphabet, which possess 
certain prescribed characteristics. Typical problems include the enumeration 
of non-self-intersecting paths on a rectangular lattice (a problem from crystal 
physics, Seymour and Welsh [ 16]), and the enumeration of sequences with 
no substrings in a prescribed set (Guibas and Odlyzko [lo]). The variety of 
such problems is attributable to the observation that sequences often may be 
used as a device for encoding combinatorial structures. For this reason, a 
considerable amount of attention has been focused on the development of 
general methods for sequence enumeration. A number of approaches to an 
algebraic theory of sequence enumeration have been adopted by Cartier and 
Foata [3], Cori and Richard [6], Doubilet et al. [7], Foata and Schiitzen- 
berger [S], Gessel [9], Jackson and Goulden [12], Spears et al. [17], 
Stanley [20], and several others. 

Many of the problems which have been considered already belong to the 
class in which the recognisable characteristics are those which are 
expressible in terms of adjacent pairs of elements. Typically, this class has 
been treated by a collection of special methods. However, the class may in 
fact be treated more generally as follows. Let Lf = (rri, 7~~) be an arbitrary 
bipartition of Xi, where N” = { l,..., n}, and let u = u, ... u, E Jy-J be called 
a rr,-path if (crl, u,+ i) E rrr for i = l,..., I- 1. Clearly, xi-paths are 
recognisable in terms of pairs of adjacent elements in a sequence. The 
following is a general theorem for enumerating sequences with respect to 
maximal x,-paths. 

THEOREM 1.1. Let F(x)=l+f,x+f,~~+~~~ and G(x)=g,x+ 
g,x2+ -a* be generating functions in which fr and g,, for i > 1, are indeter- 
minutes marking nonterminal and terminal paths of length i, respectively. Let 
y = (yO, y,,...), where yk is the generating function for x,-paths of length 
k > 0, where y0 = 1. Then 
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(1) the number of sequences in ,Y”,’ with ii occurrences of j, for 
j = l,..., n, with mi maximal non-terminal z,-paths of length i for i > 1, and 
with a terminal maximal z,-path of length k is [x’f”g,](GF-’ 0 y) 
(F-’ o y)-‘, where i = (i, ,..., i,) and m = (m, ,... ). 

(2) Moreover, when IZ = (<, >), the number of permutations on Jt, 
with j inversions, with m, maximal non-terminal increasing paths of length i 
for i > 1, and with a terminal maximal increasing path of length k is 
[f”g,q’(x”/n!,)] @(l, x/l!,, x2/2!,,... ), where @p(y) = (GF-’ o y)(F-’ o y)-’ 
and k!, = nf=, (1 - qi). 

The first part of this result was given by Jackson and Aleliunas [ 111, and 
the second follows from Gessel’s inversion homomorphism [9]. The 
following is an example of the use of this theorem. 

EXAMPLE 1.2. The number of permutations on Ju, with k inversions and 
no increasing paths of length p is 

ProoJ: Since the terminal maximal path is not distinguished we set 
G(x) = F(x) - 1. Accordingly, from Theorem 1.1, we have 1 + @ = 
(F-’ o y)-‘, where @ is the required generating function. Since paths of 
length greater than p - 1 do not occur then F(x) = 1 + x + x2 + a.. + xp- ’ 
so F-’ oy={(l-x)(l-xp)-l}oy=~,‘FO(yjP-yjP+,). But for increasing 
paths rrr = <, and the result follows from Theorem 1.1.2. 1 

The purpose of this paper is to consider generalisations in which 
restrictions may be placed on elements which may or may not be adjacent. 
An extreme example, but one which will not be considered further here, is 
the enumeration of plane partitions with given shape. The configurations 
which correspond to permutations in this case are Young’s tableaux. Both 
plane partitions and Young’s tableaux have been considered elsewhere (see, 
for example, Stanley [ 18, 191). They may be treated by the techniques 
considered here. However, this is beyond the scope of the present paper. 

Less extreme cases, however, may be treated. Although the problems may 
appear to be artificial, they are of interest enumeratively because they 
capture, in a concise way, the combinatorial characteristic which defeats the 
classical methods of enumeration except in special cases. A particular 
instance in the class we shall consider is the enumeration of the set of 
permutations u = uI ..a crI,, + , such that 
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FIG. I. The graphical representation of the pattern for permutations satisfying con- 
dition (i). 

where 0 <k < K. We adopt the convention that the edge with label < 
between ui and uj is represented by 

while an edge with label > between pi and uj is represented by 

u \ U 

with the understanding that the edges are directed from left to right. If u is 
such that (pi, ui+ r) E rrki for i = l,..., K, where xk, . .. Q, E fl*, then we say 
that u has pattern q, ... Q. Permutations which satisfy (i) alone have a 
pattern which may be represented graphically. This is given in Fig. 1. 

These permutations are contained in the set of alternating permutations 
(Andre [ 11) and we note that they may be enumerated by Theorem 1.1 with 
G(x) = J’(x) - 1 and I;(x) = 1 + x2. 

Permutations which satisfy conditions (i) and (ii) have a pattern which 
may be represented graphically. This is done in Fig. 2. 

We say that the pattern given in Fig. 2 is obtained by the operation of 
triangling (denoted by V) the edges of the pattern given in Fig. 1. The 
patterns obtained in the closure of n* with respect to V are called T-graphs. 
In this paper we consider the enumeration of sets of sequences whose 
patterns belong to an arbitrary prescribed set of T-graphs. Clearly the 
enumeration of plane partitions is excluded. This may be seen from Fig. 3, 
giving the pattern for a plane partition of shape (4, 32, 2). 

There is no pattern in n* from which the pattern in Fig. 3 is derivable by 
triangling, and consequently the pattern for plane partitions of shape 
(4, 32, 2) is not a T-graph. Baxter sequences, treated by Chung, et al. [4] and 
by Mallows [ 131, are similarly excluded. 

FIG. 2. The graphical representation of the pattern for permutations satisfying conditions 
(i) and (ii). 
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FIG. 3. The pattern for a plane partition of shape (4,3’, 2). 

Section 2 contains the main enumerative theorems. A certain power series 
in non-commutative indeterminates may be obtained as the solution to a 
system of linear equations. This series may be transformed to obtain the 
ordinary generating function for the enumeration of sequences whose 
patterns belong to a prescribed set of T-graphs, or to obtain the Eulerian 
generating function for the enumeration, with respect to inversions, of 
permutations whose patterns belong to a prescribed set of T-graphs. The 
system is given in Theorem 2.11. In Section 3 we demonstrate the use of the 
material of Section 2 in detail, and apply it to a number of non-trivial 
enumeration problems. Finally, in Section 4, we note that the generating 
function for the enumeration of permutations whose patterns belong to a 
prescribed set of T-graphs may be expressed as the solution to a system of 
matrix Riccati equations. 

The following notational apparatus is used throughout. If i = (ii ,..., i,) and 
x = (x, )...) x”) then xi denotes xfl . . . xb. Moreover, iff(x) is a power series in 
X then [x’]f(x) denotes the coefficient of xi in f(x). If 
g(x)= go+ g,x+ g,x+ *-* 3 where x is an indeterminate, and if 
y = (y,,, y,,...) then g o y = g,y, + g, yi + ... , the umbra1 composition of g 
and y. If A is an n x n matrix and k is a column vector with n components 
then [A : k],, 1 < p < n, denotes the matrix obtained from A by replacing 
column p by k. The n x n identity matrix is denoted by e. A number of 
matrices have rows and columns indexed from zero, instead of one. Attention 
is not drawn further to this distinction since it is clear from the particular 
context. J is the n x n matrix, each of whose elements is equal to one, 
X = diag(x, ,..., x,) and o denotes the matrix XJ. Finally, [Alij denotes the 
(i,j)-element of A, and E denotes the empty sequence. 

2. THE MAIN THEOREMS 

If a is a directed path with edge labels in n= (n,, nz) which, when listed 
serially from origin to terminus are nk,,..., nk,, then (r is denoted by 
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R/(, ..’ Rk,. If%? is an isolated directed edge with origin U, terminus u and 
edge label II E ZZ, then V denotes the operation of connecting I( to v by a 
directed path R$$, where r, s > 1. We call the resulting graph the T-graph 
obtained by triangling z with ni KS. The closure of a under V is denoted by 
a’. This is the set of all T-graphs on a, and the latter is called the spine of 
the T-graphs in this set. Let & denote the set, (ZZ*)‘, of all T-graphs, where 
ZP is the set of all directed paths with edge labels in ZZ. 

If A E 6, then A has a unique directed Hamiltonian path, and suppose 
now that the m vertices of A are labeled so that this path is m. Let 
I, ,..., i, E Mn and suppose that ii is assigned to vi, for 1 Q j < m, in such a 
way that if ‘z is in the edge set of A and has label n then (ik, ik,) E 7~. 
Then o = i, . e. i, E J-J is called a sequence with length Iu / = m over Jv^, 
with pattern A. The length, JA 1, of A is m. 

For convenience in representing the elements of d graphically, we 
represent a directed edge with label rri by an edge drawn from bottom left to 
top right, and a directed edge with label x2 by an edge drawn from top left to 
bottom right, with the convention that the edges so drawn are directed from 
left to right. Figure 4 gives a T-graph with spine nin$, of length 19, 
represented by this graphical convention. 

The unique Hamiltonian path in this pattern is v?. If ZZ = (<, 2) 
then the sequence 4 1 12 9 5 2 6 10 19 18 15 7 3 8 13 11 14 16 17 has the 
pattern whose T-graph is given in Fig. 4. For example, (i3, L,) = (12, 19) E n, 
since 12 < 19, and z has label xi according to the above convention. 
Further use of this T-graph is made in Section 3. 

DEFINITION 2.1. (1) Let u = u, . - - CT,,, E J-z. An invekion in u is a 
pair (i, j) with 1 ,< i < j < m such that ui > uJ. The number of inversions in u 
is denoted by Z(u). 

(2) Let a G Nn, /3 = Jy”, - a and let u = u’u” E 9” (the symmetric 
group on n symbols) be such that u’ is a permutation on a and a” is a 

FIG. 4. A T-graph with spine TT~ z:. 
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permutation on /3. Then I(a, /3) denotes the number of inversions (i, j) in o 
with i E a and j E p, for any such a. 

We note that I(a,/3) is constant for all c = U’O” such that O’ is a 
permutation on a and o” is a permutation on /I. Accordingly, I(a, p) is well- 
defined. 

The following proposition is well-known, but its proof is included since the 
methods employed are used later in Proposition 2.7. The first part is 
attributed to Rodrigues [ 151, while the second may be found in Gessel [9]. 

PROPOSITION 2.2. Let p,(n) be the number of permutations on Jv^, with k 
inversions. Then 

(1) c p,(n)qk=(l+q)(1+q+q2)...(1+q+...+q”-1), k>O 
where q is an indeterminate. 

(2) where = n!,(m!,(n - m)!,)- ’ 

ld=Wl 

(the q-binomial, or Gaussian, coeflcient). 

proof: (1) LetL(q)=~,,,ind . (O) We obtain a recurrence equation for 
fn(q) as follows. Each element of u,+ I may be constructed uniquely from an 
element CJ of Yn by inserting the number n + 1 into any one of the n + 1 
gaps preceding or following elements in u. We index these gaps sequentially 
from right to left, beginning from zero. The insertion of the number 
n + 1 into gap i in any u E Y,, contributes an additional (disjoint) 
set of i inversions to the set of inversions of u. These contributions are 
enumerated by 1 + q + . .. + q” independently of u. Thus f,,, I(q) = 
u+q+ 0-e + qn)f,(q) andf,(q) = 1. The result follows. 

(2) Let acJi, P=Ji-a and u=u’u”EY,,, where u’ is a 
permutation on a and u” is a permutation on p. Then clearly I(u) = 
Z(d) + Z(u”> + Z(a, P), b ecause the three sets of inversions are disjoint. Let 
9(a) denote the set of permutations on a. Accordingly 
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since I(o’) and I(#) are invariant under monotonic functions of the elements 
of a and /3, respectively. Thus from (1) we have 

n!, = (n - m)!,m!, 

and the result follows. 1 

We now consider the generating function for sequences with prescribed 
patterns. Let W denote the graph consisting of a directed edge with label 
xi U n2. If A, B E & U { W} then AB denotes the configuration obtained by 
identifying the right-most vertex of A with the left-most vertex of B. Let 
d = (?F U { W})*. If s&’ c d then (A) denotes the set of all sequences in A’-: 
with pattern in A?. If c E Xi and c = 6, . . . uk then p(a) denotes x,, . . . xok, 
where x, ,..., x, are non-commutative indeterminates. 

DEFINITION 2.3. Let A E b. The incidence matrix, T(A), of A is the 
n x n matrix such that [S(A)], = Cos(Aj xO1 a.. x0,-,, where IA I= 1. 

We note that there is a [ 1 : 1 ] correspondence between incidence matrices 
and the associated patterns, and accordingly we write A = J-‘(a) when 
a=S’(A). 

PROPOSITION 2.4. If A, B E d then J’(AB) = Z(A) f(B). 

ProoJ If A, B E 8 then AB E d so AB has a unique directed 
Hamiltonian path. The result then follows from Definition 2.3. 

The following power series is central to the subsequent development and 
may be specialised to yield the generating functions for the enumeration of 
sequences and permutations whose patterns belong to a prescribed set of T- 
graphs. 

DEFINITION 2.5. (1) yi,..., yI are indeterminates and 

T = 
I 

2 miai ( f-‘(a,) E 6, mi E Q[y] . 
i>O I 

(2) If u = Ciao miai E ZT- then Y’(U) = Ci>o ml Coe(~-qq)) P(O). 

The following proposition gives an important property of Y. 

PROPOSMION 2.6. Let u, v E y. Then Y(uov) = Y(u) Y(v), where 
0 =3(w). 

Proof Clearly Y(u) = tr uo. But tr apap = (tr a,o)(tr a,o) and the 
result follows. I 
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Two further generating functions are needed. These are concerned with the 
enumeration of sequences and the enumeration of permutations. 

PROPOSITION 2.7. If u E F’- and u = Ci>, miai let Y,(u) = 
c. I>0 mi LCP-‘(al)) x T(g) and 

bthre (W)=Wn~,,, the set of permutations with pattern A E 8, and 
z(0) = (i , ,..., i,), the type of o, where ij is the number of occurrences of j in u 
for 1 < j < n. Let u,, u2 , uj E 9”^ and II= (<, 2). Then the following holds 
for i= 1,2: 

(1) If y(Ul) •t y(&) = I then pi(U,) •t F’i(Uz) = Y’i(U,)* 

(2) If Y(Ul) !P(U,) = Y(U,) then Yi(U,) Yi(U,) = Yi(U3). 

Proof Let uj = ciao my’ ai for j = 1, 2, 3 and let 3-‘(ai) = Ai for i > 0. 

(1) [i=2]. N ow Y(u,) + Y(u,) = Y(u,) so retaining only the 
contributions of permutations we have 

C ml” C p(a) + C ml” C p(a)= 2 mi”’ C p(U), 
i>O 0 E ((A i)) i>O uswin i>O 17 E ((A i)) 

whence 

= Y mj3’ T 
GO (I 6% i)) 

and the result follows. The case i = 1 

4’ (0) 

lAil!q 

is treated similarly. 
(2) [i = 21. Now Y(u,) Y(u,) = Y(u,) so retaining the contribution of 

permutations we have 

by Propositions 2.6 and 2.4, whence 

6” 
y2(“3) = c m!3’ oE$A,, $ 

i>O 1 ‘4 

(u) 

= v mj ”m!”  T  4’ 

i.50 
J 

u E (h$‘Ajll IA, WA,l!, * 



ALGEBRAIC METHODS FOR PERMUTATIONS 121 

We now construct each element of ((A, WA,)) by concatenating an element of 
9(a) of shape A, with an element of 9@) of shape A,, for all choices of 

a c 4” ,W”,, and P = Jy@v”,, -a, where Ial = IAil and, of course, lp\= IA,). 
Accordingly 

(o’)+I(c7”)+I(a 4) 
4’ ’ 

IAi WAjI!q 

But there exists a bijective map 0,: 9(a) + qA,, : (a ,,,..., a,,,,,) = 
(I&,) ,..., I&,~,,)), where a = (a, ,..., alA,,) with a, < ... < alAll and 
l,(a& = k for k = l,..., [A,[. Moreover, o, preserves the number of inversions 
since n = (<, 2). Thus 

so by Proposition 2.2.2 we have 

whence 

d (0’) 
!P*(u,) = c mj1’mj2) c - 4’ Cm”) 

- 
i&-O U'a4I)) IAiI!q crl~&l~~ lA,I!q 

and the result follows. The case i = 1 follows similarly. 1 

We now obtain ‘the required generating function for sequences and 
permutations as solutions to systems of linear equations. This is done by 
representing the T-graphs equationally. It will be seen that certain T-graphs, 
namely, the headed ones, may be treated indirectly and accordingly the 
equational representation of the T-graphs is used to decompose the T-graphs 
into headed T-graphs. Certain preliminary results are needed. 

If A E rr”, where rr E n then A is called elementary. In particular, if A is 
the T-graph obtained by triangling K with n;ni and if B E A’ then B is called 
an elementary T-graph with spine-type (r, s). We call (z:)” and (ni)” the 
sets of headed and non-headed T-graphs. If A G d has the property that 
I A ( = ) B I for all A, B E S’ then ~4 is said to be homogeneous. Similarly if 
u E Y is a linear combination of incidence matrices of headed T-graphs, 
then u is called headed. Moreover, u is called homogeneous if it is a linear 
combination of incidence matrices of T-graphs of the same length. 
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PROPOSITION 2.8. Let A E (zJv and let v(A) denote the element of (71,)’ 
obtained from A by replacing the label on the spine of A by 7~‘. Let A have 
spine-type (r, s). Then there exist unique B,,..., B, E (nz)’ and unique 

C, E (z~)” such that s’(A) +3(,(A)) = 3’(BI) .*. J’(B,) J’(C,) ... 

Proof. (A) f7 (v(A)) = 0 and (A) U (v(A)) = (D), where D E (X:X:)‘, 
since A has spine-type (r, s). Clearly, D may be written uniquely in the form 
B, . . . B,C, . . . C,, where B, ,..., B, E (z&O and C, ,..., C, E (71,)‘. Thus, from 
Definition 2.3, we have s’(A) + 3’(v(A)) = f(B, .a+ B,C, ... C,) and the 
result follows from Proposition 2.4. 1 

If A E (7~~)’ and B = v(A) then v-‘(B) denotes A. 
The following result gives the equational representation of the T-graphs. 

COROLLARY 2.9. Let A E 6. Then 

.3’(A) = o,,, 

a, + bi = Oi for I,< i < k, 

a+b=o, where a = 3’(n,) and b = ry(n,), 

(i) ai = 3’(v(3- ‘(b,))) and bi are incidence matrices for headed and 
non-headed elementary T-graphs, and are mutually distinct. 

(ii) wi is a product of elements from {a, a ,,..., ak, b, b ,,..., bk}. 

(iii) For each i, 1 < i < k, either a, or bi occurs in at least one Oj, 
where j # i, but not in Oi. 

(iv) The system of equations is unique, up to reordering of equations 
and relabeling of matrices. 

Proof. By repeated application of Proposition 2.8. I 

The system of equations in Corollary 2.9 is called the incidence system for 
A. 

LEMMA 2.10. Let H E d and let 3(H) = h. Then h admits an 
expansion of the form h = p - cj”=, 1jOrj for some s 2 0 (empty sums are 
zero), where 

(1) P? 4 ,a.., I, are headed and homogeneous (for a left-expansion of h), 

(2) P, r1,..., T, are headed and homogeneous Vor a right-expansion of 
hi 
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ProoJ: From Corollary 2.9, H has an incidence system. Suppose 
.?‘(H) = o,,. This incidence system may be used to eliminate the incidence 
matrix of the left-most (resp. right-most) non-headed elementary T-graph in 
wO. This process of elimination may be applied successively to each term 
generated in this fashion until the left-most (resp. right-most) expansion is 
obtained. I 

The following theorem gives the systems of linear equations for Y, and Yz 
defined in Proposition 2.7. 

THEOREM 2.11 (The linear system). Let H, C, D E d and let 
h = Y(H), c = 3’(C), d = 3’(D), r0 = c and I0 = 0. 

(1) Let h = p - c,!= 1 ljori be an expansion (left or right) of h. Then 
for s= 1,2 we have 

Ys(c(e - k)-‘d) = j[M’“‘: ktS)),,) . lM(S))-*, 

where MfS) is (t + 1) x (t + l), k@) = (ky),..., kjs’)T, kjs’ = !Ps(rj(e - p)-‘d) 
and 

[M’“’ ] ij = r3,j for O<i,<t, j=O 

= 6, + Ys(ri(e - p)-‘ZJ for 0 < i < t, 1 <j < t. 

(2) Moreover [xm] !PY,(c(e - h)-‘d) is the number of sequences in JV~ 
with type m and pattern in CH*D, and [q’Q’/n!,)J !P*(c(e - h)-‘d) z’s the 
number of permutations over Xn with k inversions and pattern in CH*D. 

Proof. (1) Now HE d so, from Lemma 2.10, h has an expansion 
(left or right) of the form h =p -cJ=, Z,orj. But ri(e - p)-Id = 
ri(e - p)-’ (e - h)(e - h)-’ d so rl(e - p)-’ d = ri(e - h)-‘d + 
2;; rite - p)-‘+ri(e - h)- ‘d for 0 g i < t. Thus, from Proposition 2.6 we 

!P(ri(e - p)- ‘d) = G (6, + !P(r,(e - p)-‘Zj)} Y(rj(e - h)-‘d). 
,Zl 

Let I$‘) = (cg),..., r$s))T, where 5:s’ = YJr,(e - h)-‘d). Thus from 
Proposition 2.7 we have M(s)i$s) = k (S). But <l;” = Ul,(c(e - h)-‘d) and the 
result follows by Cramer’s rule. 

(2) Immediate. 1 

The power series in MtS) and k(‘) involve only headed T-graphs or T- 
graphs of bounded length which may or may not be headed. Both cases may 
be treated and, accordingly, Theorem 2.11 may be regarded as a means for 
transforming the generating function for a T-graph problem into an 
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expression whose constituents are obtainable by other means. It will be 
shown in Theorem 2.18 that another system of linear equations may be 
obtained for headed T-graphs and for T-graphs of bounded length. The 
system is constructed combinatorially by considering the largest element in a 
permutation. The same device may be used to demonstrate that the 
generating function for permutations, whose patterns belong to a prescribed 
set of T-graphs, satisfies a matrix Riccati equation. 

Attention is confined henceforth to the bipartition (<, 2) and to the 
enumeration of permutations. We now consider the properties of w:‘(m), a 
combinatorial object, which is defined below. These properties are used to 
derive the system of linear equations given in Theorem 2.18. 

DEFINITION 2.12. (1) If a = s’(A), where A E 6, then t,~‘,“‘(m) = 

c (0) 
os((n;“~-‘(a))) 4’ ’ 

(2) If u=Ci>Omiai, 3--‘(a,)E d for i>O and rni~ Q[y] then 

VF’,4)(m> = Ci>O mi Vc)Crn>* 
(3) The edge-length, Z,(A), of A is IA I- 1. The vertex-length, l,(A), of 

A is ]A ]. Moreover, we write I,(a) = Z,(A). If u E xi,, miai E 7‘ is 
homogeneous then Z,(u) = &(a,). 

The combinatorial interpretation of w:‘(m) is given below. The notation 
for edge-length and vertex-length is introduced to simplify certain 
expressions. 

PROPOSITIONS 2.13. Let J = {Ai} be a homogeneous set of headed T- 
graphs in which each T-graph has edge-length p. Let 9 = {Bi} be a set of T- 
graphs. Zf u = Jfi>0 mt2’(Ai) and v = Ciao m;S’(B,), where mi, rnj E Q[y] 
for i > 0, then t&?(m) = yf)(m) v:‘(rn + p). 

Proof. Now w:‘(m) = Ci,j>o mimi w:‘.(m), 
4 

where a, = .7’(Ai), 
bi = 5’(B,) for i > 0. But each element of ( xyAiBj)) may be constructed 
uniquely from ((rr yIpBj)) by replacing the single string in ((II:+“)) by an 
element of ((lryAi)). Thus 

However, Z(cri) = Z(a’) + Z(rc’:+“, B,), where ui is formed by identifying the 
right-hand element of 0’ with the left-hand element of (T”, and where 
cr’ E ((~;l+~)) and cr” E ((Bj)). A ccordingly Z(cri) = Z(u”) + Z(nyAi, Bj). Thus 
Z(U,)+ Z(U~)=~(U”)+ Z(U~)+Z(~C~A~,B~)=Z(U), where u E ((nyAiBj))* 
Thus 

ygj(m) = Y 
o , E CC+Bj)) 

aCU1) x P) = w:‘(m) $‘(m + p), 
0*‘((7CyA;Ai)) 
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whence 

w$(~ft) = C 
id>0 

mimj v~‘(m) @“Cm + P) = w:‘(m) &Ym + P) 

and this completes the proof. m 

PROPOSITION 2.14. Let c, p, d E Y be homogeneous and let c, p be 
headed. Then !Pz(c(e - p)-‘d) = 2 k.+O ck(tik/Ak!J, where 1, = l,(c) + 
H,(p) + I,(d) + 1 and 

k-l 

ck = w:'(O) 
I 

c y/;'(&) + i&)) ~~'(ze(c) -t-&(p))* 
i=O I 

ProoJ From Proposition 2.7 we have 

!J’dc@ - p)-‘d) = c w!&(O) $ k>O k ‘4 
and the result follows by repeated applications of Proposition 2.13. 1 

We now consider the evaluation of w:‘(m), where >-‘(a) =A is an 
elementary T-graph which may be headed of non-headed. For this purpose 
we consider each maximum of A in turn and delete it and its incident edges. 
As a result am’ may be expressed as the solution of a system of linear 
equations whose coefficient matrix contains r@(O), where J’-‘(bi) is a strict 
subpattern of A. These objects may be evaluated directly. 

DEFINITION 2.15. Let A E 6. A maximum in A is a vertex in the spine 
of A which is incident with a single edge in the spine and is 

(i) the origin of an edge in the spine with label x2, or 

(ii) the terminus of an edge in the spine with label K, ; 

or is incident with two edges in the spine and 

(iii) both (i) and (ii) hold. 

Clearly each element of d has at least one maximum. Moreover, if a 
maximum, U, is deleted from A together with its incident edges then A 
decomposes into an ordered pair (&(A),p,(A)). The set of maxima of A is 
denoted by p(A), and A(A) denotes 1,(A), where w  is the right-most 
maximum of A. 

PROPOSITION 2.16. Let A E & and Y(A) = a. Then 

(where I,(A) and I,(A) are gioen in Definition 2.12.3) 
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Proof We construct each of the elements of ((ny,4)) uniquely as follows. 
Let ) TL~A I= p, and consider the position of p in o E ((n:A)). This position is 
any one of the maxima of A. Let u E ,u(A) and suppose that p is assigned to 
U. Let a CM&, and /3 =NDpl - a. Let ur E 9(a) n (no&,) and 

*2 E SC01 r‘l @u(A)), so c1 is a permutation of the elements of a with pattern 
x:&(A) and o2 is a permutation of the elements of p with pattern p,(A). 
Thus or pa, E ((A)), and because the construction is [ 1 : 1 ] we have 

But GJ, ~02) = I@, 02) + 4,@,(A)) since p is greater than every element in 
02. Thus I@, pu2) = I(o,) + I(a2) + I(a, /3) + I,@,(A)), whence 

from Proposition 2.2.2 

which completes the proof. I 

Since L,(A) and p,(A) are in ,F, Proposition 2.16 may be applied to L,(A) 
for each u E p(A) to obtain a system of linear equations for w:‘(m). The 
following definition is needed. 

DEFINITION 2.17. Let Vi, Vi E a for i = I,..., r and let K,(U, ,..., U, ; 
V , ,***, V,) be the r x r matrix defined by 

[Kmlij = 1 if Vi = Vi 

=o 

and @‘(m) = 1. 

otherwise 

The final result gives an explicit expression for w:‘(m). This expression, in 
conjunction with Proposition 2.13, may be used to derive the matrix of the 
linear system given in Theorem 2.11. 
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THEOREM 2.18. Let A E B and let A = a,,, A(a,) = a, ,..., A(a,-,) = a,,, 
A(a,) = E, where none of ao,..., apeI is e. Then @(m) = 
- [K&a0 ,..., apVl ; a, a, ,..., a,-,)/. 

Proof: Proposition 2.16 may be applied to a,,..., apeI to give a set of p 
equations for I&!{,,)(~) for i= l,..., p - 1. The coeffkient matrix of this 
system of linear equations is upper triangular with unit diagonal, after reor- 
dering the equations if necessary. The result follows by Cramer’s rule. a 

3. AN APPLICATION 

We now consider an application of the material of Section 2 to a specific 
enumeration problem. Let H be the T-graph given in Fig. 4. We determine 
the eulerian generating function for the number of permutations on Jy with 
pattern in H*. Figure 5 displays a set of T-graphs associated with H. 

Consider the T-graphs given in Fig. 5. By Corollary 2.9 the incidence 
system associated with H is 

h = Z(H) = alalbb3, 

a, + b, = ba, 

a2 + b, = ba, a, 

a,+b,=bb,aa,a, 

a4 + b, = b2a2, 

a5 + b, = b’a, 

a6 + b, = ba’, 

a+b=o, 

where ai = 3(,4,), b, = S’(V-~(,~,)) for i = l,..., 6, a = 3(rr1) and b =3(x,). 
We now apply Theorem 2.11, for which the right expansion of h is 

required. Then eliminating the right-most occurrence of a bi in h we have 

h=a,a,b’b,aa,a-a,a,ba,. 

By continuing this process we obtain h = p - Cf=, l,wr,, where t = 4 and 
p = a1a2a{a(a3 - a5) aa6a + a3}, I, = ala,, 12=a,a2b, I, = a1a2b2, 
1, = a, a2b3, r, = a3 + a(a’ - a5) aa6a, r2 = (a, - a”) aa,a, 3 r3=a a,a, 
r4 = - a’a,a. Moreover, by inspection, we have t,(p) = 18, l,(li) = 7 + i and 
i,(ri) = 10 - i for i = l,..., 4. Also I,@,,) = 0. 

601/42/Z-2 
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A4 As “6 

FIG. 5. A set of T-graphs associated with the T-graph of Fig. 4. 

We now consider the evaluation of M’*’ and k”‘. From Theorem 2.11 and 
Proposition 2.14, with c = r0 = d = e, we have 

[M(*)lii = 6, for O<i<4, j=O 

= 6, + 1 ck(i, j) 
&ri) + I,(I$ t IBk + 1 

k>O (Z,(ri) + Z,(lj) + 18k + l)!q 

for O<i<4, l<j<4 

and 

kj*) = \‘ dk(i) 
XI,W,)t 18kt 1 

(Ze(ri) + 18k + I)!, 
for 

ky0 

0 <i < 4, 

where 

k-l 

dk(i) = lip’ n ylF’(l,(ri) -I- ISl) for Og i< 4, 
I=0 

ck(iy j) = V$‘(l,(ri) + 18k) dk(i) for O<i<4, l&j<4. 

Moreover, by repeated application of Proposition 2.13 we have, letting 
W$)tm> = gitm)7 

u/F’(m) =slW> g2tm + Wg,tm + 9) + (1 - g,tm + lO)g,tm + 14))) 
for m > 0, 
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wl,“‘(O) = 1, wlf’<o> = &P) + (1 - g5U))g,W9 

w:,“‘(o) = (g5W - 1) g,(4), wlp> = g,(3), d,“(O) = - g,(2). 

Also ~:,~‘(rn) = gl(m) g,(m + 2) for m > 0, and from Proposition 2.16, we 
have 

y/y(m) = q(i) (” :J: i), d:)(m) for i=2,3,4andm>O. 

Now g,(m), for i = l,..., 6, may be obtained directly from Theorem 2.18 and 
Proposition 2.16. We obtain the following expressions for them. 

0 -1 

65(m) = =4 

( 
mtl 

1 
( 

mtl 

1 > 
q 

1 
1 

9’ 

9 

gdm 

I 0 -1 0 0 

\ /q8i:),(“:‘), 1 -l O 
41(;)9y4)9 0 l-l 

6 m-l-3 

( 1 

=47 (;)9 [ ;mfj+q;m;5;9/ +46 (“:‘J9, 

g&N = 

0 -1 0 0 0 

l-l 0 0 
9 

qq;),(“;“), 0 0 0 1 
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where 

JACKSONANDGOULDEN 

P,(q) = q5 (:)q(:)q+q7(:)q(~~q+q10i:)q~ 

P*(q) = P,(q) + q6 

M?)=&(4wf l ( 
3 

g,(m) = 

g6crn) = 

mt2 I() q3 2 4 

0 

mt2 
q2 2 ( ) 4 

I qrYq 

-1 

1 

-1 

1 

,(i )q-q8 ( Ygq+q13 ( :)qT 

=4 
3 m+2 

( ) 2 4' 

-: =9* (“:‘),+q (“T ‘),. 

0 1 

This completes the determination of M’*’ and kc*‘. The required generating 
function is, from Theorem 2.11, 

IW 
(2) : ,&*‘],I . IM’*‘I-1. 

EXAMPLE 3.1. We next consider a simpler example which has been 
treated previously by Carlitz [2] in the case q = 1. The example concerns the 
enumeration of alternating permutations of-/y-, with i inversions and m rises 
between successive maxima. Let A, be the T-graph given previously in 
Fig. 5. The incidence system for the problem is 

h=za, tb,, 

a, tb,=ba 

and the required number is [zmqi(x”/n!,)] !Pu,((e -h)-‘). The right expansion 
of e - h is e - h = e - p - Zwr, where p = (z - 1) a, - a*, I = e and r = a. 
Thus, by Theorem 2.11, we have 

Y,((e -h)-‘) = 
y2u,((e - P)F’) 

1 - ul,(a(e - p)-‘) ’ 
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The numerator and denominator may be obtained immediately from 
Proposition 2.14, and the required generating function is F,,(x){ 1 - F,(x)}-‘, 
where 

since $‘(j) = q(‘: ‘)q and Gus) = 1. 

The material of Section 2 may be applied more generally as the following 
example demonstrates. 

EXAMPLE 3.2. We consider the enumeration of permutations of odd 
lengths, with respect to the number of rises (between adjacent elements) and 
the number of rises between elements in adjacent odd positions. 

Let mi = 3(Mi) for i = I,..., 6, where the Mi are given in Fig. 6. Then the 
required generating function is Y,((e - h)-I), where the incidence system is 

h=rum,+r2um2+rum,+rm,+m,+rm,, 

m, +m,=ba, 

m,+m,=ab, 

m2 = a2, 

m, = b2, 

in which r marks rises, and u marks rises between elements in adjacent odd 
positions. To see this, it sufftces to note that if u = o, . . . oZk+ I then 
~2j- ,~~~cr~~+, has pattern Mi for some i with 1 < i < 6, and 1 <j Q k. We 
note also that M, represents a rise and a rise between adjacent odd positions, 

% 11, % 
FIGURE 6 
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M2 represents two rises and a rise between adjacent odd positions, and so on 
for M, ,..., M,. Accordingly the indeterminates ru, r’u,..., r are associated 
with M,, M, ,..., M,. 

Now h = r(u - l)(ml + rm2 t m3) t (ra t b)’ = p - Z,or, - Z20r2, 

where 

p = r(u - l)(m, t t-m, t m3) t (r - l)‘a’, 

I, = e, 1, = ra t b, r, = -(r - l)a, r2 =-e. 

Thus, from Theorem 2.11 we have 

1 - (r - 1) !Pu,(a(e -p)-‘) -(r - 1) YY,(a(e - p)-’ - 
-Wte - P)-‘) -Y,((e -P)-‘) = 

1 -(r- 1) !P,(a(e-p)-‘) -(r - 1) !PI(a(e - p)-‘(ra t b)) 

-We -P)-‘) 1 - Y,((e - p)-‘(ra t b)) 

= Y,(te -P)-‘) 

x I - (r - 1) Y’,(a(e - p)-‘) --y, - (r - l)‘!FI(a(e - p)-‘a) -’ 

-Y,tte - PI-‘1 1 - (r - 1) !Pr((e - ~)-‘a) 

by replacing b by o - a and by using elementary row and column 
operations. Now M, ,..., M,, are not T-graphs, and in particular 
m, t mr, + m3 is not headed, so Theorem 2.18 is not applicable. Instead, we 
observe that m, + m2 + m3 = y,a by inspection. Moreover, m, = a2 so 
p=r(u-l)y,at(r-l)(ru--l)a2.Nowfors,t>Owehave 

Y,(as(e - (zla t z2a2))-‘a’) = ZfZ:-iY2k+s+f+l-i 

so 

Y, (as(e - p)- ‘a’) 

(r(r4 - l))‘((r - l)(m - 1))k-iflY2k+s+t+i-is 

Let 
Zk+l+ 1 

(r(u - l))‘((r - l)(ra - l))“-i 
(2k:lt 1 -i)!. 

Thus the number of permutations in JYT, of odd length, with s rises and c rises 
between elements in adjacent odd positions is 

[rW(x”/n!)]@, where @ =f(ON(l -fW)‘-f(W +f(2))1-‘. 
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4. CONCLUDING COMMENTS 

The generating function for the number of permutations whose patterns 
belong to a prescribed set of T-graphs may also be obtained from the 
solution to a matrix Riccati equation, whose general form is 
Y’ = YAY + BY + YC + D, where Y = [ Yu]p Xp, Yij are functions of X, and 
A, B, C and D are p x p matrices which may depend on x. We demonstrate 
the principle briefly with the patterns given in Fig. 2. Accordingly, let H, A, 
and B, be the patterns given in Fig. 7. 

Let yoo, y,, , ylO, y,, be the exponential generating functions for the 
numbers of permutations with pattern in H*, H*B,, A,H* and A,H*B,, 
respectively. Now (H*) = (HH*) U (E), where (E) =.&. Thus, deleting the 
first occurrence of a maximum from the right in H* we have (H*) E 
W*B,) x (A,H*B,)U 1 i E since the deletion of the maximum in H yields 
B, WA,. Accordingly, from the generating function reformulation of 
Proposition 2.16 we have J&, = yoly,,, + 1. Similarly (H*B,) = 
(HH*B,)U(B,)r (H*B,)x (A,H*B,)U(&), whence y&=y,,y,, +x. 
Also (A,H*) = (A,HH*)U(A,) z (A,H*B,) x (A,H*B,)U(c) so 
Y;o = YllYlO + x. Finally, (A,H*B,) = (A,HH*B,) U (A,B,) = 
(A,H*B,) x (A,H*B,)U(&) x (E) soy’,, = yfl +x2. Let 

Thus Y satisfies the matrix Riccati equation Y’ = YPY + Q, where 
P=[i y] andQ=[i “, *I. This equation may be linearised as follows (see, 
for example, Reid [ 141). Let U, V be 2 x 2 matrices such that UY = V, 
where U is non-singular. But Y(0) = 0 so V(0) = 0 and we may set U(0) = I. 
Now V’=U’Y+UY’=U’Y+VPY+UQ so V’-UQ-(U’+VP)Y=O. 
Let V’ - UQ = 0 and U’ + VP = 0. Accordingly, we have linearised the 
matrix Riccati equation. It follows that U” = - V’P = - UQP so 
U” + UQP = 0. This may be solved for U in power series by the method of 
Frobenius, from which V may be determined by means of V’ = UQ. But 
Yoo = K-‘VI,,= IW :klol * p-‘9 where k is the 0th column of V, from 
which yoo may be obtained. 

H A, B, 

FIG. 7. Subpatterns of the T-graph given in Fig. 2. 
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In general, it appears that the dimension of the linear system of equations 
obtained by means of Theorem 2.11 is smaller than the dimension of the 
matrix obtained on the corresponding matrix Riccati formulation. Indeed, we 
have been unable to com.plete the hand calculations needed for deriving the 
matrix Riccati equations for the pattern given in Fig. 4. However, for a 
subclass of such problems the generating functions may be obtained by a 
direct application of matrix Riccati equations. This is done elsewhere [5]. 

We conclude with the derivation of y,, by the methods in Section 2. 
Instead of using Theorem 2.11, we proceed from first principles. Let 
h = S-(H), a, =3’(,4,), h, =Y(B,), a = 3(x1) and b = 7(nJ. The 
incidence system for h is, by Corollary 2.9, 

h=a,b,, 

a,+b,=ba, 

a+b=o. 

Thus, from Theorem 2.11, the required generating functions is, for q = 1, 

yoo = !JJ2u,(a(e - P)-‘){l - y2u,(a(e - p)PX’ 

since e-h=e-p-a,wa, where p = - ai - a, a*. Now w,;(m) = 
v,,(m) yF,(m + 2) = (m + l)(m + 3) and ~/,,,~(m) = m + 1. Thus, from 
Proposition 2.14 we have 

!P2(a(e - p)-‘al) = 1 + \‘ (-l)k(4k - 2) 
kyl I 

k-2 4k 

n (4j + 2)(4j + 5) - 
j=O !  (TIC)! 

and 

y2(a(e - p>-‘> = \’ (-l)k 
ky0 I 

k-l 4kt2 

r1 (4j + 2)(4j + 5) 
j=O I (4: + 2)! 

which completes the determination of the generating function. 
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