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Expository Paper

Sequence enumeration

L. P. GourpeN and D. M. JAackson

1. Introduction

The purpose of this paper is to present a method for treating uniformly a large
number of enumeration problems involving sequences over a finite alphabet
subject to general restrictions. Many of these problems are classical in origin,
including the Ménage problem (Lucas [16]), the alternating permutation problem
(Netto [19], André [1, 2]), the derangement problem (Montmort [18]), and more
recently, the Simon Newcomb problem (Riordan [21]) and the Smirnov problem
{Smirnov, Saramanov, Zaharov [23]). Renewed interest in sequence enumeration

has been shown in the recent literature.
In a given situation, we obtain a regular expression which generates all

permissible sequences. The generating function associated with the problem is
obtained by a simple transformation of this expression. This process of transfor-
mation has a direct combinatorial basis and involves the insertion of indetermi-
nates to record the appropriate combinatorial information. Thus, we consider all
sequences in a class and choose those with the required property by extracting the
coefficient of the appropriate power of the indeterminate. Additive and multi-
plicative properties of these generating functions are given, which allow us to
induce a linear system of equations for the required function. The solution,
obtained by Cramer’s Rule, consists of generating functions for elementary
objects. These in turn are easily found by combinatorial means.

Our concern in this paper is to present a general method, together with a few
examples which illustrate the ways in which the method is used. The reference
which is cited for each result is, as far as it is possible to discover, a reference to
the first solution, usually by other means. Several proofs are omitted. These are
accessible in the literature and concern algebraic devices used in the theory.
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However, the proofs for combinatorial theorems which use our theory are
included. A more complete collection of examples of sequence enumeration using
the techniques given here may be found in [8, 9, 11, 12, 13, 14, 15]. Other
treatments in this area may be found in Cartier and Foata [5], Foata and
Schiitzenberger [6], Gessel [7], Jackson and Aleliunas [10], Reilly [20], Stanley
[24], and others.

We adopt the following notational apparatus. The set {1,2,...,n} forn=1is
denoted by N,.. f i=(iy,..., i) and x=(x4,...,x,) then ¥ =x} - - - xiz. If f(x) is
a power series in x then [x']f(x) denotes the coefficient of x' in f(x). Let
g(x)=go+ g x+gx*+ -+, where x is an indeterminate, and y=(v;, v2,...).
Then goy=go+gv1+ &Y.+ is the umbral composition of g and v.

1—4g'
Let n!, denote I:[l 1_2 , and I{o) denote the number of inversions in

o =0y 0, Where an inversion is a pair (o, 0;) with ¢, >0; and i <j.

If A is an n X n matrix with elements a; for i,j=1,..., n, we write [A]; = a;.
Moreover |A| and ||a;|l.x, denote the determinant of A. If b is a column vector
with n components then [A:b], where i=1,..., n, denotes the matrix obtained
from A by replacing column i of A by b.

#* denotes the sequence monoid on # ={hy, h,, .. .}, the free monoid with
concatenation (denoted by juxtaposition). Let #* = #™*\{e} where ¢ is the empty
sequence.

2, The maximal decomposition theorem

Let {m,, m,} be a bipartition of 2. A m,-path of length r is a sequence
o=0g, g, such that {(o,,0.,)em, for i=1,...,r—1. If r=1,0 is always a
m,-path. The type of a sequence o is 7(0)=(iy, ..., i,) where j occurs i times in
o. The generating function for 1r,-paths of length k is v (7;) =Y, x*’, where the
summation extends over all 7-paths o of length k. A substring p of a sequence is
a maximal m-path if it is a #,-path which is not properly contained in another.
For example, the sequence 13213545 contains 4 maximal strictly increasing paths
(i.e. m,-paths where m, is the set of all (i, j) with { <j), namely 13, 2, 135 and 45.

Many questions in sequence enumeration may be rephrased in terms of
Testrictions on sequence type, and restrictions on maximal w;-path lengths for
some bipartition {m;, 7,} of &2, The following theorem expresses the generating
function for sequences on ¥, with respect to type and maximal ,-path lengths in
terms of the m-path generating functions v, (), k =0.

THEOREM 2.1 (Jackson and Aleliunas [10], Gessel [7]). Let F(x)=
1+fix+f,x%+- - where f,,f,, ... are indeterminates. Then the number of se-
quences on N, of type i, and with k; occurrences of maximal ,-paths of length
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where £=(f1, f2,...), k=(k(, ks, ...) and y={(y.(my), vo{7my),...). Moreover, the
number of permutations on N, with m inversions and k; maximal increasing paths

of length j,j=1 is

xn
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n!,

where
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The proof of this theorem is given in Section 4. For the remainder of this
section we consider examples of the use of this theorem in the enumeration of
sequences with respect to a variety of characteristics. Each application requires a
specialization of F{(x) and a choice of ;. The first set of examples demonstrates
how the same F(x) allows us to solve a number of distinct problems through
appropriate choice of ;. Since a permutation on &, is a sequence of type
(1,1,...,1), the following device for the extraction of the coefficient of
X%, - * - X, from a power series in vy, (), k =1, for three choices of , allows us
also to solve the permutation version of any sequence problem associated with the
given F(x) and any of the three special choices for ;.

LEMMA 2.2 ([11). Let ®{v,, v, ...) be a power series in y,{my), vo{my).....
Then [x, - %, 1P(v1, V2, . . .) is equal to

1 x"(p(xx2 . 's the . D with i< i
¢)) el LA VYRR TRRRE if m, is the set of rises ((i, j) with i <j).

2 [x"] Z k'\[y*]1®(xy, x?y, .. .) if m, is the set of successions ((i, i +1) e N?).

k=0

3) [x"] Z (k—l)![yk]xg?; D(xy, x?y,...) if m, is the set of *-successions

k=1

((i, 1+ (i mod n)) e ¥2).

EXAMPLE 2.3 ([8)). We consider first the enumeration of sequences with
respect to type and number of occurrences of w (a (not necessarily maximal)
m,-path of length 2), recorded by the indeterminate u. A maximal m,-path of
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length k contains k—1 occurrences of r,, and occurrences of w; may only be
found internal to m;-paths. Accordingly we may set f, =u*"!, k=1 in Theorem
2.1(1), so

F(x)=1+x+ux®>+u’x>+-- - =(1-(u—-Dx)(1—ux)™’

and there are [/ x {1 Y, ., (u—1)* v (7} sequences of type i with j occur-
rences of elements in ,.

EXAMPLE 2.4 (Stanley [24]. It follows from Theorem 2.1(2) and the above
argument that there are

[ A

*q k=1

permutations on A, with m inversions and j rises.

EXAMPLE 2.5. If mr, is the set of rises on &, then we immediately obtain

Ye(m)=[2*T [T (1 + 2x).

i=1
Thus from Example 2.3, there are
N s —1
fu'x'fu~— 1){u - n (1+{u- 1)xk)}
k=1

sequences of type i over ¥, with j rises.

This is the Simon Newcomb problem [21].

EXAMPLE 2.6 (Carlitz [3]). If =, is the set of levels on W, ((i, i) N?), then
v(m)=x5+-+-+xk=s5, a power sum symmetric function in x,, ..., x, Thus,
from Example 2.3, there are [u/x'{1—-Y, ., (u—1)*"'s.}* sequences on N, of
type i with j levels.

It follows that there are [X'}[{1—s;+s,—s3+ - -} sequences of type i with no
levels, so that adjacent elements in the sequence are distinct. This is called the
Smirnov problem [23].
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EXAMPLE 2.7. From Exampie 2.3 and Lemma 2.2 there are
[u;’ x_](u . 1){!1 — eiu—»l)x}~1
n!
permutations on N, with | rises,

[wix"] Y k! x*{1—(u—1)x}™*

k=0

permutations on A, with j successions, and

[wx"] Y k! x*{1—(u—1D)x} &P

k=1

permutations on J, with j *-successions.

The first of these results is an Eulerian number [21] and may, of course, also
be obtained from Example 2.4 by specializing to the case g = 1. The latter are
given in [12]. Tanny [25] has found these two numbers in another form.

Of the many other specializations of F(x), we give one involving the enumera-
tion of sequences with respect to 1r,-paths (not necessarily maximal) of length

p, p=1.

EXAMPLE 2.8 (Jackson and Aleliunas [10]). The only m,-paths of length
p in a sequence are internal to maximal o -paths of length k =p. Each of these
maximal paths contains k—p+1 w-paths of length p and thus, if m,-paths of
length p are recorded by the indeterminate u, we may set f, =u* "', k=p and
fu=1, k<p in Theorem 2.1. Accordingly

Fx)=1+x+x%+- - +x" Hux? +ux?" '+ -
=(1—ux+u—Dx"Y1-ux) Y (1—x)"?

and from Theorem 2.1(1) there are [W/x]J({1—x)(1—ux}{1—ux+(u—1)x"}"}o
v(m)) "' sequences on N, of type i with j m,-paths of length p.

EXAMPLE 2.9. When p =3, we may conclude from Example 2.8 that there are

R ORI N W DCREARNER Y

k=0 =0

sequences of type i with j m,-paths of length 3.
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EXAMPLE 2.10. It follows from Theorem 2.1(2), and the above argument,
that there are

[“i"m . z: ] (,;2:0 (u=1* izz) (?){(kx: ;)Isq Mk f—k:;)zq }r

permutations on N, with m inversions and j increasing paths of length 3.

3. The algebra of patterns

In this section we introduce the general theory which enables us to enumerate
sequences on N, with various restrictions placed on strings of adjacent elements.

Let IT={m,, m,} be a bipartition of N2, and let #? be denoted by w. Let
o =0, -0 be a non-empty sequence over N, and let w=1, ' 7, be a
sequence over the alphabet {m,, 7, m,} where ;= w. We say that the sequence o
has pattern u if (g;, 0, )em, forj=1,...,1—1. We let (1) denote the set of all
sequences over &, whose pattern is u. The subset of these sequences which are
permutations on N, for some k, is denoted by (u)).

The incidence matrix, $(u), for the pattern p is the matrix whose (i, j)-element
is

The properties of the incidence mafrix which are required in our theory are given
in the following result.

PROPOSITION 3.1 ([11]). Let p,, pp, s €471, ma, @}*, and let {u,) U{p,) =
(na) and (py) N{po) = 9. Then
(1) $(pypz) = ) FH o)
(2) Hup)+H )= -9(#3)
(3)  $(m)+ $(my) = XTI where X=diag (x;, ..., x,) and ¥ is the n X n matrix of
ones.

In any problem involving sequence enumeration over N, and a bipartition
{m,, m,} of N2=w, we use the notation $(m,)=A, $(7,)=B and Hw)=XI=W,
for convenience.

Let & denote the set of all matrices of the form ¥, ¢;#{u;) where

{w |ize{m, m, o}*

and the ¢’s are polynomials in the commutative indeterminates yq, y,, ... with
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rational coefficients (i.e. ¢; e Qly], i=1). A particular element of & represents the
sum of the incidence matrices of permissible patterns associated with a given
problem. The polynomials ¢; are used to convey combinatorial information
additional to the sequence type. The latter is recorded by the incidence matrices.
We next associate a generating function with each element of & and establish the
properties of such generating functions.

LEMMA 3.2. Let

U=Y ¢dp)eR, Ww0)=Y¢ Y x°

i=1 izl o)
and

xicri

¥,(0)= Z G Z e,

i=1  celw) ol a

q

Then, if Ve R,
(1) YU+ =¥, U)+F (V) fori=1,2.
2) Y(cU)=c¥, (V) fori=1,2, and ccQlyl.
3y vOUOWV) =)W V) fori=1, and for i =2 if w, is the set of rises.
@) (I =y (7)), and T($(wE™Y) =-:—" where 1, is the set of rises.
(5) ¥,(U)=trace (UW). )

These properties are all immediate except for (3) with i =2. A proof for the
latter may be found in [14].

To exploit these results in the solution of a particular sequence enumeration
problem, we must first determine Ue R so that ¥;(U) is the required generat-
ing function. This is in fact, often, a routine matter using direct combinatorial
constructions and is illustrated in the examples. By Proposition 3.1(1), U is a
power series in the matrices A, B, W. We may, using Proposition 3.1(3), replace
B by W—A, and then use Lemma 3.2(1-3) to express ¥;(U) as sums and products
of W,(A*?) for some k=1.

By Lemma 3.2(4), each of these terms may be obtained directly and the
problem is solved. The procedure outlined above is impractical in most instances,
but an indirect method using the same properties may be used to advantage,
yielding a linear system of equations for a set of generating functions which
contains the required generating function. This indirect argument is demonstrated
for sequences with a fixed, arbitrary pattern in the next example, and in more
general circumstances in the next section.
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EXAMPLE 3.3 (Stanley [24]). We consider the enumeration of permutations
on N, with the fixed pattern @4 'm,my="1a, - -+ ="', with respect to inver-

sions, where py, by, ..., i, are arbitrary positive integers with pq+pp+--+
e =1 and a7, is the set of rises. Let & = V,(A*'B--- A% ") and g, =) _, i
for i=1,..., m, with gy = 0. The required generating function, from Lemma 3.2,

is thus &,. Now by successively replacing the left-most occurrence of B by W— A,
we have, from Proposition 3.1(3) and Lemma 3.2,

Z (—1)i-i1 ll,z(Aaw;a‘_,l-l)gi F (1), (A 1y

j=i+1

for i=1,...,m. This is an m X m system of linear equations for &, ..., §,. Since
V(A= —i , from Lemma 3.2, we solve this linear system by Cramer’s Rule to
give

x4 H

r>m

a; — ai‘—l)!q

Accordingly, the number of permutations on A, with fixed pattern
a e b, - - - a1 for 7, the set of rises, and k inversions is

o))
a; — Gy mxm

By setting q=1 we obtain MacMahon's [17] result; that there are

[ "ﬁq =[q“]

n—a_ . .
( . ) permutations on A, with the fixed pattern
ai — &/ Emxm

mi T e b, - - - e, where ry is the set of rises and a; =Yi_; ;, ao=0.

Stanley’s result is more general than that of Example 3.3. He uses binomial
posets to consider sets of r permutations simultaneously. The extension of our
method to handle this situation is presented in [8]. It is based on the fact that the
incidence matrices are r-fold tensor products of those used here, say

U,® - -QU,
and that ¥,(U,®- - -QU,)=[];., ¥,(U;)) fori=1,2.

4. The linear system

In many instances the generating function required as the solution to a
problem has the form ¥,(C(I—-H)'D). For example, the ordinary generating
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function for sequences with pattern in u*=gUu Uu>U- - - for some non-empty
pattern u, is clearly ¥, (I+H+H?+--)=¥ (I-H)") where H=4(u). The
matrix H need not be a single incidence matrix, but can be an element in & with
indeterminates which retain combinatorial information in coefficients. An exam-
ple of this use of indeterminates is given in the proof of the maximal decomposi-
tion theorem, obtained as a corollary of the following theorem. This theorem
allows us formally to express ¥,(C(I—H) 'D) as a ratio of determinants whose
elements are related generating functions. The theorem is given combinatorial
meaning in later examples. The second part of the theorem gives a similar
expression for trace log (I—H)™!, which appears in Section 7, as the form of the
generating functions for circular sequences.

THEOREM 4.1 ([9], [14)]). Let Q H,C,D, L. R, R for i=1,...,s and
H=Q-Y}_,L.WR,. Then

1) 7 (CA-H)'D)=|M:d],|- M| forI=1,2.

(2) trace log(I—H) ' =log M| !+tracelog(I-Q)* for I=1.

where

[M]; =8, + q’l(Ri(]*Q)—le), O=i,j=s

d="RA-Q'D) for i=0,1,...,s

and

LO:O,ROZC,d:(do, dl’ [P ds)T.

Proof. (1) We premultiply both sides of I-H=I-Q+Y;_.,L,WR, by
TA-Q) Y, for Te R, postmultiply by (I-H)'D, and apply ¥, yielding

V(TI-Q) D) = ¥ {T(I-H)"'D+ ), TU-Q) 'L, WR,(I-H) 'D}.

k=1

Substituting T=C, Ry, ..., R, and using Lemma 3.2, we obtain an (s + 1) X (s+1)
system of linear equations for the generating functions & = ¥, (R,(I—H)"'D), for
i=0,1,...,s. The result follows by determining £,=Y¥{(CA—H) 'D) by
Cramer’s Rule.

(2) We have I-H=1-Q+Y; ., L, WR, so that, taking determinants on both
sides,

I-H=-Q - 1+0-Q" ¥ LWR..

Thus, taking inverses and logs of both sides, we have

loglI-H|'=log - Q| ' +log I+ EF"|™,
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where E=[E, |- -|E,], F=[F, |- - /| F,], in which E; =(I—-Q)'L;X1, F, =R/1, for
i=1,...,s and 1 is the column vector of n ones. Thus

[FTE]; = trace R,1— Q) 'L,W = ¥,(R,(1- Q) "'L,),

from Lemma 3.2. But [I+EF"|=|I+FTE| since E and F have the same dimen-
sions, and |1+ FTE| =|M| from the above and since the only non-zero element in

the first column of M is [M]g, = 1. The result follows from the identity e"®=4 =
[

The above result is clearly useful only when generating functions of the form
¥,(R,(I-Q)'L;) are easier to determine than ¥,(C(1—H)™'D). This is true when
Q is expressed in terms of A alone, and thus our strategy is to use B=W-—A to
express H in the form Q—Y;_; L;WR,, where Q and L;,i=1,...,s involve A
alone. Using this strategy for s = 1, we prove the maximal decomposition theorem
{Theorem 2.1) below.

Proof of Theorem 2.1. For any bipartition {m;, m,} of ¥7, each sequence in &
has, as its pattern, a unique element of

U{eUm Um0 YmteUmUaniu- ).

k=0
Furthermore, the elements &, 7, 73, ... are separated from other occurrences of
7y by m,’s, so that they represent the occurrence of maximal ;-paths of lengths
1,2,3,...in all sequences with the given pattern. Thus, from Proposition 3.1 and
Lemma 3.2, the required generating functions are ¥,(U) and ¥,(U) where

U= Z {(fll+f2A+f3A2+ ot ‘)B}k(fll+f2A+f3A2+ S

k=0

and f; records the occurrences of a maximal m;-path of length j. Thus U=
(I—H)'D where H=f(A)B, D=f(A) and f(x)=f;+fox+fsx*+-+-. Now H=
~f(A)A + f(AYW from Proposition 3.1 and we may apply Theorem 4.1 with s =1,
Q=—fA)A,L,=-f(A), R =L C=L D=f(A), H=f(A)B, so that I- Q= F(A).
The result follows from Lemma 3.2(4).

The final set of examples concerns the enumeration of sequences with pattern
in (m{79* From Theorem 4.1, the solution will in general be a ratio of
determinants. The case p = q = 1 for permutations with 7r, equal to the set of rises
is André’s [1] generating function, sec x +tan x. We consider the case p=q=2
below. The general solution is given in [8].

EXAMPLE 4.2 ([11]). The generating function for sequences on N, with
pattern in the set (wim3)*n%, k =0, 1, with respect to type is, from Lemma 3.2,

(T (ABYAY) = %, (- ABY AN,

i =0
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We expand A”B? by casting out B’s occurring to the left of W’s, using B=W—A.
Thus I-A?B*>=1-A*—- A’WB+ A>W. In the notation of Theorem 4.1 we have
Ly=0, L,=-A% L,=A% R;,=C=I, R;=B, R,=1, D=AK H=A’B? and
Q=A% Thus ¥,(1-Q)*A"N=G,,, where G, ;=x""{1—x%"eov. Accordingly
M| = G2— GG, [M:d)s|=G¢Gy+1—G:Gy., and the number of sequences of
type i and shape in (wimd)*m% is

(¥ GoGir1— G3Grs2)(GE— G1G5) !
where G; =Yi=0 74:+;(7T1)-

EXAMPLE 4.3. From Lemma 3.2 and Theorem 4.1, using a similar argument
to that of Example 4.2, we find that the number of permutations on A, with m
inversions and pattern in (wim3)*m}, where m, is the set of rises, is

xn
[qm F](GOGI(+I - GsGk+z)(G% - Gng)”l
*q

where
4l+r

x
G = ,;0 @l+n,’
EXAMPLE 4.4 ([11]). Setting q=1 in Example 4.3, or applying Lemma
2.2(1) to Example 4.2, we obtain the number of permutations on W, with pattern
in (wiad)*wk, m, the sets of rises, as

x"] tan x +tanh x
[ marumhs
n!ll+secxsechx

and
x"] tanxtanhx
[-—— —— for k=1.
n!l1+secxsechx

The case k=0 has been considered in Carlitz and Scoville [4], where a
different form of solution has been given.

5. Extension to a ftripartition

In the previous sections we have given some examples of the application of
our method to the enumeration of sequences over a bipartition of #'2. The method
relied on our being able to replace $(m,) by W— $(ar,), where W allows a special
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multiplicative property (Lemma 3.2(3)). Thus the solution is expressed in terms of
generating functions for $(r;) only. In considering enumeration over a partition
{my,...,m,} of ¥2 with p>2 blocks, it is evident that we can use the same
properties for ¥,. However, since we now have () +- - -+ $(m,) =W, we may
replace #(m,) (say) by W—$(m )~ -~ $(m,_,) and thus express the solution
totally in terms of #(m,), ..., #m,_1): In general, this is not a particularly useful
reduction, but in certain instances when p =3 we can exploit the combinatorial
interpretation of the reduced problem to give a solution, at least for the permuta-
tion case. Such an instance is given in the following example.

EXAMPLE 5.1 (Roselle [22]). We wish to determine the number, c(n, t, u),
of permutations on A, with ¢ successions and u rises. If {m,, 7>} is the bipartition
of &2 with m, the set of rises, and =5 is the set of successions then, since 73 < 1.
(7~ s, T, ws) is a tripartition of &2, Now each sequence in A, has, as its
pattern, a unique element of {m,—m;, m,, m}*. Furthermore, the occurrence of
1, — 1, in the pattern produces one rise and no succession in the sequence, the
occurrence of 15 produces one rise and one succession, and the occurrence of ar,
produces neither. If rises and successions are recorded by the indeterminates r
and s, the required number is given by [r“s'x, - - - x,, ]® where

&=V {I-(r(A-E)+B+rsE)}" ")

and E=9(m;). Thus & =¥ (I-H)Y, and substituting B=W—A, we obtain
H=Q+W where Q=r(s—1)E+(r—1)A. Accordingly, from Theorem 4.1 we
obtain

1+@=1-¥,{I-r(s—-DE-(F—DA} ).
Let r(s—1)=v and r—1=1y. Thus
¥, (I-vE-yA) ) =¥,y {I-yd-vE)'A} 'y(I-vE)™")

=y ;fg 7, ({yd-vE) Ay vE) ).

But ¥, ({y(I—vE) 'A}"'y(I—vE)™") is the generating function for increasing
sequences formed by joining k 7r5-paths in increasing order. Each of these paths is
enumerated by yJY,., v’ 'vy(m;). There are k! ways of ordering k non-
overlapping ry-paths, only one of which produces an increasing sequence, so that
(k)" My ¥;21 'y, (ars))* gives all increasing paths formed in this way, as well as
some other terms. Each of these terms corresponds to a set of m5-paths with some
overlapping, and thus contains a squared x; for some i=1,..., n. However we
wish to determine [x;--- x,]® so squared x;’s will make no contribution to
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the solution, and we may replace ¥, (I—vE—yA) ) by

Y (k!)"(y X vi“w(wg))k-

k=1 ji=1

Thus
cln, t,u)=

[rs'x, -« xn]{1~(r— 1! (exp’ {(r-— 1) Z (r(s— 1))k“‘yk(7r3)}— 1)}’1;

k=1

and, using Lemma 2.2, we obtain finally

c(n, t, u)=[r*s'x"] Z (r—DF+ itk {1 —r(s — Dx} .

k=1

6. Extension to other restrictions

The previous results have been concerned with sequences with patterns which
place restrictions on pairs of adjacent elements. If we regard a sequence as
labelling the vertices of a graph in predetermined order, with edges labelled with
774, 7., indicating from which block of A2 the pair of vertex labels must come, then
our theory extends immediately. The incidence matrix for a pattern is defined in
the same way and has the same additive and multiplicative properties, as long as
an ordered pair of patterns is concatenated by identifying a unique pair of
vertices. Consider patterns which are formed by concatenating the patterns
P1, ..., Mg in Figure 1. In the pictorial representation, the sequence labels the
pattern graph from left to right (the predetermined order).

+
EA + k3] 2
E]
- (2 e *

() - - Ty

#1 H2 Hs

- 2 - 77 4 71
90 + - -
™ " i +
fa #s ke

Figure 1
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Figure 2

We adopt the convention that wu; denotes the pattern formed by identifying
the vertex of w; marked with + with the vertex of u; marked with —. Figure 2
gives the pattern w,pgpty.

By the conventions described above, the sequences 8167426 and 3235224
have the pattern w met,, where my is equal to the set of rises. Note that the
pattern of any sequence of length 3 is a unique element of {u,, ..., e}

EXAMPLE 6.1 ([14]). We determine the number c(s, t, n) of permutations
Ty Oy ON Ny, with s rises and t occurrences of (631, 0541) With
02-1<02j+1, j=1,...,n. Let 7, be the set of rises, and each permutation ¢ of
odd length has as its pattern a unique element of {i, . .., pet™, where uy, . .., we
are given in Figure 1. Let the indeterminate r record rises in o and u record
occurrences of 05;_; <03;.;. Then, since the occurrence of w, in the pattern of o
produces a single rise in o and a single occurrence of o,;_; <0y;,,, We record the
appearance of w, in the pattern of ¢ with the monomial ru. Similarly the
appearance of ., is recorded by r*u, u; by ru, u, by r, us by 1 and pg by r. This is
becaunse the two end vertices of a pattern u;,i=1,...,6, always appear in odd
positions in a sequence with pattern formed by concatenating these patterns. Thus
we have

cls, t, n)=[r'u'x, < - Xpp JE{A-H) 1}

where H=ruM, + r*uM, +ruM; +rM,+M;+rMg and M, = $(u,) for i=1,...,6.
Now clearly () N{py)=0 and (u,)U{py)=(mym;) so that H(u)+Hu,)=
Hmmy), or M{+M,=BA. Similarly M;+M;=AB, and M,=A% M;=B’ so
that, eliminating M,, Ms, M, we obtain H=r{u—1)(M;+rM,+M,)+(rA+B)".
But M, +M,+M, = v, (m)A since (), (&), {i5) are disjoint sets whose union
gives all sequences of length 3 whose terminal elements form a rise and whose
interior element is arbitrary, and is thus enumerated by <,(s,). Eliminating
M, +M,; from H and using M, = A%, we obtain

H=Q-L,WR,-L,WR,

where Q=r(u—1)y,A+(r~1)(ru—1A? L,=I, R;=—(r-1DA, L,=rA+B,
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R, =-1. We may now apply Theorem 4.1 to the required generating function
v, {(I—H)'}. Specializing to permutations by Lemma 2.2(1) we obtain

ols t,m) = [P s Je (1~ )P g(O)x-+ g
where
gm=-0 ¥ 3 (Mow- 0y e 2
k=0i-0 ‘1 QCk+m—i+ 1t

7. Circular sequences and a logarithmic connection

Let s be a directed cycle on p vertices, embedded in the plane, such that an
element of &, is assigned to each vertex. Such a configuration is called a circular
sequence of length p on &,. We represent a circular sequence by a linear
sequence which begins with the label of an arbitrary vertex and then lists
successive labels along the directed cycle. Accordingly 53214 and 21453 repres-
ent the same circular permutation on #'s. Since edges are directed, we may define
m,-paths as before. For certain bipartitions there may be circular sequences each
of whose pairs of consecutive elements belongs to 7r;. These circular sequences are
called m,-cycles. If no w,-cycles exist then 7, is said to be cycle-free. For example
the set of rises is cycle-free.

We enumerate circular permutations by combinatorially identifying the re-
quired number as the coefficient of x, - - - x,, in trace log (I—H) '. The solution
follows immediately by applying Theorem 4.1(2), with an appropriate expansion

H=Q- Z L. WR..

i=1

We may also enumerate circular sequences by using the cycle index polynomial
for the cyclic group in conjunction with trace log (I—H)'. The circular version of
the maximal decomposition theorem is the first example of this method.

THEOREM 7.1 ({9)). Let g1, €., ... and fy, f», . . . be commutative indetermi-
nates, with £=(f;, f5,...), F(x)=1+Y,., fx' and m=(my, m,,...). Then

(1) The number of circular permutations on X, with m; maximal m-paths of
length i=1, and t {(either 0 or 1) my-cycles of length [ is

[x1 - x.f"gi{log (F~ o) ' + 4}
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where ¥ =trace log (FA) '+3%,.,i g trace A, A=9(m,) and v={(y,{(m),

Yoy, .. )
(2) If my is cycle-free then ¢y = 0.

Proof. (1) There are [x; -+ x,]Jn"" trace A" circular permutations which are
wy-cycles, where we divide by n since each permutation is counted once in trace
A" for each of the n possible cyclic rotations. Each other circular permutation
may be décomposed into k maximal =, -paths, for some k = 1. The contribution of
these permutations, recording a maximal ,-path of length i by f, is
[xy - x. )k trace {(fiI+f,A+---)B}, by considering one of the k possible
starting points of some maximal m,-path. We sum over k=1 to obtain the
solution as [x; - - - x,,f"g}]® where

@ =trace log I—f(A)B) '+ Z i~'g trace A’

i=1

and f(x)=f,+fox +f3x°+- - -. But f(A)B=f(A)W—f(A)A and the result follows
from Theorem 4.2(2) with H=f(A)B, Q= —f(A)A, L, =--f(A) and R, =1, since
1-Q=F(A).

(2) If m, is cycle-free then trace A* =0 for all k=1.

Accordingly, the generating functions for the linear and circular versions of
the maximal decomposition theorem are very closely related. We shall refer to
this striking relationship between the linear and circular versions of sequence
enumeration problems as a logarithmic connection. Another example of this
connection is given in the next example, where we consider a circular version of
Example 4.4.

EXAMPLE 7.2 ([8]). The number of circular permutations on N4 whose
pattern  consists of alternating pairs of w’s and w’s s
[x - xg k7! trace (AZB?)* =[x, - « - x4 ] trace log (I— AZB?) L. If =, is the set of
rises, then, by Theorem 4.2(2) and Example 4.2, the required number is
[x, - x4 ]log (G~ G,G3) " where G; =Y,.0 Yai+; (7). Accordingly, by Lemma
2.2 the required number of permutations on N, is

xn
[;;] log (3 +3 cos x cosh x)™".

Finally we calculate the Ménage numbers m,, (Lucas {16]) the number of ways
of seating n couples around a circular table so that no members of the same sex
are adjacent and no man is adjacent to his wife.
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EXAMPLE 7.3, It D=J-1 X=diag (x,,...,x,), Y=diag (v, ..., y.) where
XisevosXp Yis-- -5 Yo are commutative indeterminates then we have

M, =Xy x%,¥1° * * Vo Ktrace (XDYD)" +trace (YDXD)"},

Here x; and vy, record the occurrence of the man and woman in couple i. X and Y
are separated by the matrix D to ensure that a man is not adjacent to his wife.
They alternate to ensure that no members of the same sex are adjacent. We
extract the coefficient of x, - -+ x,y, " - v, so that each man and woman occurs
once, and consider two cases since the arrangement may be rooted on a man or a
woman. Thus m, =2n[x; - - - x,y; - * * v,.] trace log I—-XDYD) ! where XDYD =
XY -XJY+XDYJ. Accordingly, from Theorem 4.1(2) we have

[x;° - x, 91" y.]trace log I-XDYD}*
=[xy %.y1 - - - yaJitrace log A—XY) " +log M|}

14w —~DOW

where [M,|= , where w=trace XY=x,y,+ - +Xx,y,, U=

u 1+w-—-uv
trace X=x;+--+x,, v=traceY=y,+---+vy, and M, is obtained from M of
Theorem 4.1(2) by deleting squared terms in x; and y, i =1, ..., n, since we are
only interested in extracting the coefficient of x, - x,y;*"* ¥.. Thus m, =

2n[x; - %,y Vo Kw+log (1 +w)y>—uv) ™'} so

m, = 2("!)2:0(“1)'(2 2n (2nk~ k

o 1 3
— )(n k)! routinely.
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