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Expository Paper 

Sequence enumeration 

I. P. GOULDEN and D. M. JACKSON 

1. Introduction 

The purpose of this paper is to present a method for treating uniformly a large 
number of enumeration problems involving sequences over a finite alphabet 
subject to general restrictions. Many of these problems are classical in origin, 
including the Mrnage problem (Lucas [16]), the alternating permutation problem 
(Netto [19], Andr6 [1, 2]), the derangement problem (Montmort [18]), and more 
recently, the Simon Newcomb problem (Riordan [21]) and the Smirnov problem 
(Smirnov, Saramanov, Zaharov [23]). Renewed interest in sequence enumeration 
has been shown in the recent literature. 

In a given situation, we obtain a regular expression which generates all 
permissible sequences. The generating function associated with the problem is 
obtained by a simple transformation of this expression. This process of transfor- 
mation has a direct combinatorial basis and involves the insertion of indetermi- 
nares to record the appropriate combinatorial information. Thus, we consider all 
sequences in a class and choose those with the required property by extracting the 
coefficient of the appropriate power of the indeterminate. Additive and multi- 
plicative properties of these generating functions are given, which allow us to 
induce a linear system of equations for the required function. The solution, 
obtained by Cramer's Rule, consists of generating functions for elementary 
objects. These in turn are easily found by combinatorial means. 

Our concern in this paper is to present a general method, together with a few 
examples which illustrate the ways in which the method is used. The reference 
which is cited for each result is, as far as it is possible to discover, a reference to 
the first solution, usually by other means. Several proofs are omitted. These are 

accessible in the literature and concern algebraic devices used in the theory. 
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However,  the proofs for combinatorial  theorems which use our  theory are 
included. A more complete collection of examples of sequence enumerat ion using 
the techniques given here  may be found in [8, 9, 11, 12, 13, 14, 15]. Other  
treatments in this area may be found in Cartier and Foata  [5], Foata  and 
Schiitzenberger [6], Gessel [7], Jackson and Aleliunas [10], Reilly [20], Stanley 
[24], and others. 

We adopt the following notational apparatus. The set {1, 2 . . . . .  n} for n -> 1 is 
denoted by W,. If i = ( i  1, . . . . . .  . ,  i,) and x = (xl, x,,) then x a = x]~ • • • x,~.i If f(x) is 
a power series in x then [x']f(x) denotes the coefficient of x a in f(x). Let  
g(x)=go+glx+gzxZ+ . . . ,  where x is an indeterminate,  and ~/=(3'1,~/z . . . .  ). 
Then g o~/= go + g13q +g23,2 + . . .  is the umbral composition of g and ~/. 

Let  n!q denote  __~ 1-q~  and I(or) denote  the number  of inversions in 
i 1 - q '  

~r = o'1 • • • trk, where an inversion is a pair (o'~, o'j) with o-~ >tri  and i<j. 
If A is an n × n matrix with elements a~i for i, j = 1 . . . . .  n, we write [A]~j = a 0. 

Moreover  {A[ and Ila~jl{,×, denote  the determinant  of A. If b is a column vector 
with n components  then [ A : b t  where i = 1 . . . . .  n, denotes the matrix obtained 
from A by replacing column i of A by b. 

9~* denotes the sequence monoid on ~- -{h~ ,  ha . . . .  }, the free monoid with 
concatenation (denoted by juxtaposition). Let  ~ ÷  = ~ * \ { e }  where e is the empty 
sequence. 

2. The maximal decomposition theorem 

Let  {zrl, ~r2} be a bipartition of •2. A Try-path of length r is a sequence 
or = tr, • - • o-r such that (o-i, orb+t) e ~rl for i = 1 . . . .  , r -  1. If r = 1, tr is always a 
7rl-path. The  type of a sequence or is ~-(or) = (il . . . . .  /,) where ] occurs i i times in 
or. The generating function for ~rl-paths of length k is 3'k (~r~) = ~_~ x ~(~, where the 
summation extends over  all 7r,-paths or of length k. A substring # of a sequence is 
a maximal Try-path if it is a 1rl-path which is not properly contained in another.  
For  example, the sequence 13213545 contains 4 maximal strictly increasing paths 
(i.e. ~r~-paths where 7r 1 is the set of all (i, j) with i <j), namely 13, 2, 135 and 45. 

Many questions in sequence enumerat ion may be rephrased in terms of 
restrictions on sequence type, and restrictions on maximal 7rl-path lengths for  
some bipartition {~rl, ~r2} of N~. The following theorem expresses the generating 
function for sequences on ~ r  with respect to type and maximal ~rl-path lengths in 
terms of the 1h-path generating functions ~/k(1rx), k-----0. 

T H E O R E M  2.1 (Jackson and Aleliunas [10], Gessel [7]). Let F ( x ) =  
l + f l x + f 2 x 2 +  " ' "  where fl,  f2 . . . .  are indeterminates. Then the number of se- 
quences on J¢, of type i, and with k i occurrences of maximal ~rl-paths of length 
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j , j > - i  is 

(1) [x~k](F-~ o 'y) - '  

where  l = ( f l ,  f2  . . . .  ) ,  k = ( k l ,  k 2 . . . .  ) a n d  ~, = (3"1(7r l ) ,  ']/2(71"1) . . . .  ). Moreover ,  the 

number of permutations on .At, with m inversions and k i maximal increasing paths 
of length j, j >- 1 is 

where  

I1,~ = ' 2 !q . . . . .  

The proof of this theorem is given in Section 4. For the remainder of this 
section we consider examples of the use of this theorem in the enumeration of 
sequences with respect to a variety of characteristics. Each application requires a 
specialization of F(x)  and a choice of 7r~. The first set of examples demonstrates 
how the same F(x)  allows us to solve a number of distinct problems through 
appropriate choice of 7r1. Since a permutation on N ,  is a sequence of type 
(1, 1 . . . . .  1), the following device for the extraction of the coefficient of 
xlxz" " " x,  from a power series in 3"k('rq), k - 1, for three choices of ~rl, allows us 
also to solve the permutation version of any sequence problem associated with the 
given F(x)  and any of the three special choices for 7rl. 

L E M M A  2.2 ([11]). Let ~(3"~, 3'z . . . .  ) be a power series in 3"1(q'1"1), 3"2(7rl)  . . . . .  

Then [xl . . .  x,]@(3"1, 3'2 . . . .  ) is equal to 

(1) ~ .  4~ ' 2! " ' "  if ~r~ is the set of rises ((i, j) with i <j) .  

(2) [x ~] ~ k![yk]4)(xy, x2y . . . .  ) if'rq is the set of successions ((i, i+l)~N2n). 
k ---z- 0 

(3) [x n] ~ (k -1 ) ! [yk]x  0 4 ) ( x y , x a y , . . . )  if ~rl is the set of *-successions 
k~ l  OA 

((i, 1+( i  mod n)) cX~).  

E X A M P L E  2.3 ([8]). We consider first the enumeration of sequences with 
respect to type and number of occurrences of 7rl (a (not necessarily maximal) 
Try-path of length 2), recorded by the indeterminate u. A maximal 7rl-path of 
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length k contains k -  1 occurrences of ~r~, and occurrences of ~r~ may  only be  
found internal to ~rl-paths. Accordingly we may  set fk = u k-l ,  k -> 1 in T h e o r e m  

2.1(1), so 

F(x)  = 1 + x + ux2 + u2x 3 + . . . .  (1 - (u - 1)x)(1 - ux) -1 

and there are [uJx~]{1 --5k_>1 (U -- 1)k- l~/k(qr l )}  -1 sequences of type i with ] occur- 
rences of e lements  in zq. 

E X A M P L E  2.4 (Stanley [24]. It follows f rom T h e o r e m  2.1(2) and the above  
argument  that  there are 

Xn X k )--1 
[UJqm~.q]{X--k~t(U--1)k--l-~.q~ 

permutat ions  on N ,  with m inversions and j rises. 

E X A M P L E  2.5. If ~r~ is the set of rises on W, then we immediately obtain 

w(~rl) = [z ~] I~I (1 + zx3. 
i = l  

Thus f rom Example  2.3, there are 

[uix~](u - 1 u - (1 + (u - 1)xk 
k = l  

sequences of type i over  3(. with ] rises. 

This is the Simon Newcomb problem [21]. 

E X A M P L E  2.6 (Carlitz [3]). If  Wl is the set of levels on 3(, ((i, i ) e  N2), then 

3'k(zrl) = x ~ + ' "  + x~= sk, a power  sum symmetr ic  function in Xl . . . . .  x,. Thus,  
f rom Example  2.3, there are [uJxa]{1-Y.k;1 ( u - 1 ) k - l S k } - I  sequences on J r ,  of 
type i with ] levels. 

It follows that there are [xt]{1- Sl + s 2 -  $3 i f - ' "  .}-1 sequences of type i with no 
levels, so that adjacent  e lements  in the sequence are distinct. This is called the 
Smirnov problem [23]. 
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E X A M P L E  2.7. From Example 2.3 and Lemma 2.2 there are 

[uJ ~ . v ] ( u - 1 ) { u -  e~U-1)x} -~ 

permutations on JV. with j rises, 

[u~x n] ~, k! xk{1  - ( u  - 1 )x}  -k 
k ~ 0  

permutations on ~Ar. with j successions, and 

[uix "] ~ k! xk{1 - ( u -  1)x} -(k÷~ 

permutations on Nn with ] *-successions. 

The first of these results is an E u l e r i a n  n u m b e r  [21] and may, of course, also 
be obtained from Example 2.4 by specializing to the case q = 1. The latter are 
given in [12]. Tanny [25] has found these two numbers in another form. 

Of the many other specializations of F ( x ) ,  we give one involving the enumera- 
tion of sequences with respect to 7rl-paths (not necessarily maximal) of length 
p, p -> l .  

E X A M P L E  2.8 (Jackson and Aleliunas [10]). The only 7rx-paths of length 
p in a sequence are internal to maximal ~rl-paths of length k-> p. Each of these 
maximal paths contains k - p  + 1 ~-t-paths of length p and thus, if ~ri-paths of 
length p are recorded by the indeterminate u, we may set fk = u k - p ÷ ~ ,  k ~ p and 
fk = 1, k < p in Theorem 2.1. Accordingly 

F ( x )  = 1 + x + x 2 +  • • • + x p-~ + u x  p + u 2 x  0+1 +"  • • 

= ( 1 -  u x  + ( u -  1)x°) (1-  u x ) - l ( 1 -  x) -~ 

and from Theorem 2.1(1) there are [ u J ~ d ] ( { 1 - x ) ( 1 - u x ) { 1 - u x + ( u - 1 ) x  0} 1} o 

3,(-rrl)) -I sequences on Ac, of type i with j Try-paths of length p. 

E X A M P L E  2.9. When p = 3, we may conclude from Example 2.8 that there are 

k - 1  

sequences of type i with j ~rl-paths of length 3. 
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E X A M P L E  2.10. It follows from Theorem 2.1(2), and the above argument, 
that there are 

[uiq" .q _ (U--1)kl=0 U(k+l+l)'q}) -1 

permutations on N ,  with m inversions and j increasing paths of length 3. 

3. The algebra of patterns 

In this section we introduce the general theory which enables us to enumerate  
sequences on N ,  with various restrictions placed on strings of adjacent elements. 

Let  H={Trl ,  "trz} be a bipartition of X~, and let X~ be denoted by to. Let  
tr = oh- • • cr~ be a non-empty sequence over  X ,  and let tx = 7rm," • 7r . . . .  be a 
sequence over  the alphabet {Wo, -rq, "n'2} where ~0 = to. We say that the sequence o" 
has pattern tx if (o- i, ~+~)E ~r,,, for  j = 1 . . . . .  l -  1. We let (~)  denote  the set of all 
sequences over N ,  whose pattern is/x. The subset of these sequences which are 
permutations on Nk, for some k, is denoted by ((tz)). 

The incidence matrix, k(~),  for the pat tern ix is the matrix whose (i, j ) -element  
is 

~r~ . . . . .  ,r~(~> 
o"~=i, cri= i 

The properties of the incidence matrix which are required in our  theory are given 
in the following result. 

P R O P O S I T I O N  3 . 1  ([11]). Let/~1, ~t/'2, hi"3 E {qrl, 71"2, to}*, a n d  le t  (/./~1)[-J(bl,2)= 

(tx3) and ( /xl)N(/x2)=~.  Then 
(1) s(~1~2) = s (~ l )s (a2)  

(2) .¢(txl) + S(tx2) = .¢(t~3) 
(3) .¢(~rl) +~(7r2) = XJ where X = diag (xl  . . . . .  x~) and J is the n x n matrix of 

o n e s .  

In any problem involving sequence enumerat ion over 2¢, and a bipartition 
{~r~, ~r2} of  2 N ,  = to, we use the notation ~('trl)= A, ~(Ir2)= B and ~(to)= XJ = W, 
for convenience. 

Let  ~ denote  the set of all matrices of the form ~>_~ q.¢(txi) where 

{p~, [ i ----- 1} c_ {~rl, ~2, to}* 

and the c~'s are polynomials in the commutat ive indeterminates ya, Yz,- . .  with 
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rational coefficients (i.e. c~ ~Q[y], i-- > 1). A particular element of ~ represents the 
sum of the incidence matrices of permissible patterns associated with a given 
problem. The polynomials c~ are used to convey combinatorial information 
additional to the sequence type. The latter is recorded by the incidence matrices. 
We next associate a generating function with each element of ~ and establish the 
properties of such generating functions. 

LEMMA 3.2. Let 

u =  Y. 5". c, Y. x 
i ~ t  i ~ l  o'e<It,) 

and 

XlO'l 

Then,  if  V e ~ ,  
(1) ~ ( U + V )  = ~ ( U ) +  ~ ( V )  for i = 1, 2. 
(2) ~ (cU) = c~i (U) for i = 1, 2, and c ~ Q[y]. 
(3) ~i(UWV) = ~ / (U)~ (V)  for i = 1, and for i = 2  if % is the set of  rises. 

X k 

(4) ~ l (#(w~- ' ) )=  %(¢rl), and ~2(#(7r~-1)) =~-~... where % is the set of  rises. 

(5) gq(U) = trace (UW). 

These properties are all immediate except for (3) with i =  2. A proof for the 
latter may be found in [14]. 

To exploit these results in the solution of a particular sequence enumeration 
problem, we must first determine U ~ 0t so that ~ ( U )  is the required generat- 
ing function. This is in fact, often, a routine matter using direct combinatorial 
constructions and is illustrated in the examples. By Proposition 3.1(1), U is a 
power series in the matrices A, B, W. We may, using Proposition 3.1(3), replace 
B by W - A ,  and then use Lemma 3.2(1-3) to express qt~(U) as sums and products 
of gt~(Ak-1) for some k >-- 1. 

By Lemma 3.2(4), each of these terms may be obtained directly and the 
problem is solved. The procedure outlined above is impractical in most instances, 
but an indirect method using the same properties may be used to advantage, 
yielding a linear system of equations for a set of generating functions which 
contains the required generating function. This indirect argument is demonstrated 
for sequences with a fixed, arbitrary pattern in the next example, and in more 
general circumstances in the next section. 
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E X A M P L E  3.3 (Stanley [24]). We consider the enumerat ion  of permutat ions  

on X ,  with the fixed pat tern  ~r~'l-~r2"tr~'~-*-rr2. • • ~r~ "~-~, with respect  to inver- 
sions, where  /Xl, Ix2 . . . . .  ~,,  are arbitrary positive integers with i z a + / a . 2 + . - . +  
tx,, = n and 1r I is the set of rises. Let  ~i = I / r z ( A ' - I B  " " " A "~-1) and ai =~}=x t~j 

for i = 1 . . . . .  m, with ao = 0. The  required generat ing function, f rom L e m m a  3.2, 
is thus ~1. Now by successively replacing the lef t -most  occurrence of B by W - A ,  
we have, f rom Proposit ion 3.1(3) and L e m m a  3.2, 

,~,= ~ (-1)J-~-:~2(A'~,-,,-'~,,-:)~i+(-1)~-'~2(A",o-'~, ,-,) 
i¢=i+ 1 

for i = 1 . . . . .  m. This is an m x m system of linear equations for  ¢1 . . . . .  ¢,~. Since 
X k 

~2(A k-~) = -  f rom L e m m a  3.2, we solve this linear system by Cramer ' s  Rule to 
k ! .  ' 

give 

~ = I~(a~ - a~-O! . ,  . . . .  " 

Accordingly, the number  of permuta t ions  on X .  with fixed pat tern  
7./.~C-1~ ~ t *  2 1 ~  -2,,  : - 2 " "  " r r ~  ~, for rq the set of rises, and k inversions is 

By setting q = l  we obtain MacMahon ' s  [17] result; that  there are 

[l(n-a*-:)[l permuta t ions  on J¢, with the fixed pat tern  
I1\  CI i - -  a i _ t  / l l m x m  

7r , , -~_ _ , , - 1  • • • 7r~ ~--1, where ~r: is the set of rises and ai = Y~}=a/xi, a0 = 0. 1 ~2*J 1 - "g/'2 

Stanley's result is more  general than that  of Example  3.3. H e  uses binomial  
posets to consider sets of r permuta t ions  simultaneously. The  extension of our  
method to handle this situation is presented in [8]. It  is based on the fact that the 
incidence matrices are r-fold tensor products  of those used here, say 

U1®" " "®U, ,  

and that ~ ( U I ® '  • "@Ur) =FI[=I ~ ( U j )  for i = 1, 2. 

4. The linear system 

In many  instances the generating function required as the solution to a 
problem has the form ~ t ( C ( I - H ) - I D ) .  For  example,  the ordinary generating 
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function for sequences with pattern in ix* = e O t~ O ~2 U. • • for some non-empty 
pattern ix, is clearly g q ( l + H + H 2 +  . .  . )=gz~(( l -H)  -1) where H=,¢(~) .  The 
matrix H need not be a single incidence matrix, but can be an element in ~ with 
indeterminates which retain combinatorial information in coefficients. An exam- 
ple of this use of indeterminates is given in the proof of the maximal decomposi- 
tion theorem, obtained as a corollary of the following theorem. This theorem 
allows us formally to express gzz(C(I-H)-ID) as a ratio of determinants whose 
elements are related generating functions. The theorem is given combinatorial 
meaning in later examples. The second part of the theorem gives a similar 
expression for trace log ( I - H )  -~, which appears in Section 7, as the form of the 
generating functions for circular sequences. 

T H E O R E M  4.1 ([9], [14]). Let Q , H , C , D ,  Li, R ~ e ~  for  i = 1  . . . . . .  s and  

H = Q - ~ = I  LkWRk. T h e n  

(1) ~ ( C ( I - H ) - t D )  = IUM:d]ol" IMI-' for  t =  1, 2. 

(2) trace log ( I -  H) -1 = log [M[ -1 + trace log ( I -  Q)-I for  1 = 1. 

where 

[M]ij = 3ij + g Z t ( R i ( I - Q ) - t L i ) ,  O<-i, ]~s  

= g*z(R,(I-Q)-~D) for  i = 0 ,  1 , . . . , s  

a n d  

Lo = 0, Ro = C,  d = (do, dx, . . . , d~) T. 

_ + s Proof.  ( 1 ) W e  premultiply both sides of I - H - I - Q  ~k=~LkWRk by 
T ( I - Q )  -1, for T ~ ,  postmultiply by ( I - H ) - I D ,  and apply g/l, yielding 

s& 

~ ( T ( I - Q ) - I D )  = ~ ( I - H ) - I D +  ~ T(I -Q)-1LkWRk(I-H)-1D}.  
k = l  

Substituting T = C, R1 . . . . .  R~ and using Lemma 3.2, we obtain an (s + 1) x (s + 1) 
system of linear equations for the generating functions ~ = gt~(R~(I-H)-ID), for 
i = 0 , 1  . . . . .  s. The result follows by determining ~ o = ~ ( C ( I - H ) - ~ D )  by 
Cramer's Rule. 

(2) We have I - H  = I - Q + ~ = ~  LkWRk SO that, taking determinants on both 
sides, 

II-HI = I I - Q t "  I I + ( I - Q )  -1 t LkWRkl. 
k = l  

Thus, taking inverses and togs of both sides, we have 

log II - HI-1 = log tl - Ql-i + log 11 + EFT I - ~, 
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where E = [El I'" "1E~], F = IF1 t'" "1F~], in which Ei = ( I -Q)-~LiX1,  F~ = Rirl, for 
i = l , . . . , s ,  and 1 is the column vector of n ones. Thus 

[FrE]ii = trace Ri (I - Q)- ILjW = a/Zl ( R  i ( I -  Q)-ILj),  

from Lemma 3.2. But I I+EFr l  = [I+FTEI since E and F have the same dimen- 
sions, and tl + FTE! = [MI from the above and since the only non-zero element in 
the first column of M is [M]oo = 1. The result follows from the identity e t~a°~A= 
leAt. 

The above result is clearly useful only when generating functions of the form 
~I (Ri ( I -Q) - IL i )  are easier to determine than ~ , ( C ( I - H ) - I D ) .  This is true when 
Q is expressed in terms of A alone, and thus our strategy is to use B = W - A  to 
express H in the form Q - ~ = I  LiWRi, where Q and Li, i = 1 . . . .  , s involve A 
alone. Using this strategy for s = 1, we prove the maximal decomposition theorem 
(Theorem 2.1) below. 

Proof of Theorem 2.1. For any bipartition {1h, *r2} of )/.2, each sequence in N ÷ 
has, as its pattern, a unique element of 

U {(~ 0 #10 ~ 0-..)~}~(~ 0 ~10 #210-. "). 
k>~O 

Furthermore, the elements e, ,lIrl, 7Fl, . . . are separated from other occurrences of 
~rl by ~r2's, so that they represent the occurrence of maximal lrl-patbs of lengths 
1, 2, 3 . . . .  in all sequences with the given pattern. Thus, from Proposition 3.1 and 
Lemma 3.2, the required generating functions are gtl(U) and gtz(U) where 

U - -  ~' .  {(f~l + h A  + h A  2 + ' " ) B }  k (f~l + h A  + h A  2 + ' " )  
k ~ 0  

and // records the occurrences of a maximal ~r~-path of length J. Thus U = 
( I - H ) - I D  where H = f ( A ) B ,  D = f ( A )  and [ ( x ) = f i + h x + h x 2 +  . . . .  Now r l =  
- f ( A ) A  + f (A)W from Proposition 3.1 and we may apply Theorem 4.1 with s = 1, 
Q = - f ( A ) A ,  L~ = - f (A) ,  R1 = I, C = I, D = f(A), H = f(A)B, so that I - Q = F(A). 
The result follows from Lemma 3.2(4). 

The final set of examples concerns the enumeration of sequences with pattern 
in (~r~r~)*. From Theorem 4.1, the solution will in general be a ratio of 
determinants. The case p = q = 1 for permutations with 7r~ equal to the set of rises 
is Andr6's [1] generating function, sec x + t a n  x. We consider the case p = q  = 2  
below. The general solution is given in [8]. 

E X A M P L E  4.2 ([11]). The generating function for sequences on N ,  with 
2 2 .  k pattern in the set (Try*r2) wt, k = 0, 1, with respect to type is, from Lemma 3.2, 

~ t  (,~o (A2B2)iAk) = ~1 ( ( I -  A2B2)-IAk). 
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We expand A2B 2 by casting out  B's occurring to the left of W's, using B = W -  A. 
Thus I - A 2 B 2 = I - A 4 - A 2 W B + A 3 W .  In the notation of Theorem 4.1 we have 
Lo = 0,  L 1 = - A  2, L2 = A 3, Ro = C = I, R1 = B,  R2 = I, D = A k, H = A2B 2 and 
Q = A  4. Thus ~ a ( ( I - Q ) - I A  r) = Gr+l where Gr+l = x r+ l (1 -x4 )  -1 °~/. Accordingly 
IMI= G 2 - G 1 G 3 ,  [ [ M : d ] o [ = G o G k + l - G 3 G k + 2  and the number  of sequences of 

(wx~r2) ~1 is type i and shape in 2 2 ,  k 

[xJ](GoGk+~- a 3 G k  + 2)( G2o - G1G3) - ~ 

where Gj = ~ ; o  74~+i (Irl). 

E X A M P L E  4.3. From I_emma 3.2 and Theorem 4.1, using a similar argument 
to that of Example 4.2, we find that the number  of permutations on N ,  with m 

(Trier2) ~'l, where ~rl is the set of rises, is inversions and pattern in 2 2 .  k 

where 
X41+r 

o, = y" (41+r)!q" 

E X A M P L E  4.4 ([11]). Setting q = 1 in Example 4.3, or applying Lemma 
2.2(1) to Example 4.2, we obtain the number  of permutations on J¢, with pattern 
in 2 2 .  k (~rlrra) ~rl, ~ t  the sets of rises, as 

[x__n"] tan x + t a n h x  for k = 0  
I.M] t + sec x sech x 

and 

[x~! ] tan x t a n h x  for k = l .  
1 + sec x sech x 

The  case k = 0 has been considered in Carlitz and Scoville [4], where a 
different form of solution has been given. 

5.  E x t e n s i o n  t o  a tr ipart i t ion  

In the previous sections we have given some examples of the application of 
our  method to the enumerat ion of sequences over a bipartition of N2,. The  method 
relied on our  being able to replace ~(~r2) by W-~(7 r l ) ,  where W allows a special 
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multiplicative property (Lemma 3.2(3)). Thus the solution is expressed in terms of 
generating functions for ~(~rl) only. In considering enumerat ion over a partition 
{7rl . . . .  , %} of N 2 with p > 2  blocks, it is evident that we can use the same 
properties for qq. However ,  since we now have at(Try)+. . .  + ~ ( % ) =  W, we may 
replace ,¢(%) (say) by W-~(~r l )  . . . . .  ,¢(%-1) and thus express the solution 
totally in terms of ~('nh) . . . . .  ~(1rp_l), In general, this is not a particularly useful 
reduction, but  in certain instances when p = 3 we can exploit the combinatorial 
interpretation of the reduced problem to give a solution, at least for the permuta-  
tion case. Such an instance is given in the following example. 

E X A M P L E  5.1 (Roselle [22]), We wish to determine the number,  c(n, t, u), 
of permutations on 2¢', with t successions and u rises. If {~h, w2} is the bipartition 
of 3/', z with ~r~ the set of rises, and ~r3 is the set of successions then, since 7r3 c ~rl. 
(Trl-Tr3, Ir2, 7r3) is a tripartition of N ,  2. Now each sequence in N + has, as its 
pattern, a unique element  of {~r~- ~'3, 7r2, "rr3}*. Furthermore,  the occurrence of 
~rl-7r3 in the pat tern produces one  rise and no succession in the sequence, the 
occurrence of ~r3 produces one rise and one succession, and the occurrence of ~rz 
produces neither. If rises and successions are recorded by the indeterminates r 
and s, the required number  is given by [rUs'x~ • • • x~]q~ where 

q~ = gq ({1 - ( r ( A -  E) + B + rsE)}-1) 

and E= . ) (~3) .  Thus ¢lb= ~1((I-I-I)-1) ,  and substituting B = W - A ,  we obtain 
H = Q + W  where Q = r ( s - 1 ) E + ( r - 1 ) A .  Accordingly, from Theorem 4.1 we 
obtain 

1 + q~ = (1  - g s ~ ( { l -  r ( s  - 1 ) E  - (r  - 1 ) A } - I ) )  - 1 .  

Let  r ( s -  1) = v and r -  1 = y. Thus 

g q ( ( I -  vE - yA) -1) = ~l~l(y- x{I - y ( l -  vE)- IA}-  ly( l  - rE)  -1) 

= y-1 ~ gcl({y(I-  vE) - lA}k-~y( I -  vE)-~). 
k_>l 

But g r x ( { y ( I - v E ) - l A } k - ~ y ( I - v E )  -1) is the generating function for increasing 
sequences formed by joining k "rr3-paths in increasing order.  Each of these paths is 
enumerated  by y Y~_>lvi-l%(~r3). There  are k! ways of ordering k non- 
overlapping ~r3-paths, only one of which produces an increasing sequence, so that 
(k!)-l(Y ~ 1  vi-lN(~r3)) k gives all increasing paths formed in this way, as well as 
some other  terms. Each of these terms corresponds to a set of ~'3-paths with some 
overlapping, and thus contains a squared x~ for some i = 1 . . . . .  n. However  we 
wish to determine [ x l " ' "  x,,]4~ so squared x~'s will make no contribution to 
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the solution, and we may replace ~ 1 ( ( I - r E - y A )  -~) by 

(y ~1 vj_l ,  j ))k ~. ( k ! ) - '  (¢r3 • 
k ~ l  " -  

T h u s  

A E Q ,  M A T H .  

c(n, t, u )=  

[r"s'xl''" X~]{ 1--(r--1, -1 (exp {(r--1)k~_> ' (r(s--1))k-tTk (~r3)}-1)}-1; 

and, using Lemma 2.2, we obtain finally 

c(n ,  t, u)  = [r"s 'x"]  ~,  ( r -  1 ) k+ t r - J - l f f x k {1  -- r(s - 1)x} -k. 
i , k ~ l  

6. Extension to other restrictions 

The previous results have been concerned with sequences with patterns which 
place restrictions on pairs of adjacent elements. If we regard a sequence as 
labelling the vertices of a graph in predetermined order, with edges labelled with 
~'1, 7r2, indicating from which block of W~ the pair of vertex labels must come, then 
our theory extends immediately. The incidence matrix for a pattern is defined in 
the same way and has the same additive and multiplicative properties, as long as 
an ordered pair of patterns is concatenated by identifying a unique pair of 
vertices. Consider patterns which are formed by concatenating the patterns 
~.~1 . . . . .  ~£6 in Figure 1. In the pictorial representation, the sequence labels the 
pattern graph from left to right (the predetermined order). 

- ~1 - /  + 

F1 F2 F3 

~4 P'5 F6 

Figure 1 
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2 

+ 

Figure 2 

We adopt  the convention that tx#j denotes the pat tern formed by identifying 
the vertex of vq marked with + with the vertex of ~ marked with - .  Figure 2 
gives the pattern /£4J£6J.L1. 

By the conventions described above, the sequences 8167426 and 3235224 
have the pat tern tx4t~61xx, where ~r~ is equal to the set of rises. Note that the 
pattern of any sequence of length 3 is a unique element of {t~ . . . . .  W6}- 

E X A M P L E  6.1 ([14]). We determine the number  c(s, t, n) of permutations 
g l - " o ' 2 , + ~  on N2,+~ with s rises and t occurrences of (o2j-x,o'2j+l) with 
~rzj-~ < cr2j+l, j = 1 . . . . .  n. Let  ~r~ be the set of rises, and each permutat ion o- of 
odd length has as its pattern a unique element  of {t~l . . . . .  ~6}*, where ix1 . . . . .  ~1. 6 
are given in Figure 1. Let  the indeterminate r record rises in o" and u record 
occurrences of o'zj_~ < o'2~+~. Then,  since the occurrence of t~l in the pattern of or 
produces a single rise in cr and a single occurrence of o'2i-~ < o2j+~, we record the 
appearance of t~ in the pat tern of cr with the monomial ru. Similarly the 
appearance of/~2 is recorded by r2u,/x3 by ru, ~4 by r, ~ by 1 and j.g 6 by r. This is 
because the two end vertices of a pattern ~ ,  i = 1 . . . . .  6, always appear  in odd 
positions in a sequence with pat tern formed by concatenating these patterns. Thus 
we have 

c ( s ,  t, n ) =  [ r ~ u ' x l  " " " x2.+l ]~d( l -  I'I) -~} 

where H =  ruMl+r2uM2+ruM3+rM4+Ms+rM6 and M~ =# (W)  for i = 1 . . . .  ,6 .  

Now clearly ( t x l ) N ( ~ 4 ) = 0  and (~Lt>U(~L4)~---<ffT2"TTI> SO that ~(~.L1)"~-~(~LI,4)= 
#(rr27rl), or  M I + M 4 = B A .  Similarly M 3 + M 6 = A B ,  and M z = A  2, M s = B  2 so 
that, eliminating m4, Ms, m6, we obtain H = r(u- 1)(M1 + rMz +M3 )+  ( r A + B )  2. 
But M I + M 2 + M 3  = ~l(zrl)A since <t~l>, </~2>, </~3) are disjoint sets whose union 
gives all sequences of length 3 whose terminal elements form a rise and whose 
interior e lement  is arbitrary, and is thus enumerated  by ~/~(~rl). Eliminating 
M1 +M3 from H and using Me = A 2, we obtain 

H = Q - L l W R 1  - L 2 W R 2  

where Q=r(u-1)~/1A+(r-1)(ru-1)A 2, L I = I ,  R I = - ( r - 1 ) A ,  L 2 = r A + l l ,  
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R2 = - I .  We may now apply Theorem 4.1 to the required generating function 
gr1{(I-H)-1 }. Specializing to permutations by Lemma 2.2(i) we obtain 

r X 2 n + t  "] 

C(S, n): [eu '  (U. g(1)) 2 -  g(0)(x + g(2))) -1 t, 

where 

g ( m ) = ( r - 1 ) m  k~-o ~ ~=o ( r ( u - 1 ) ) ' ( ( r - 1 ) ( r u - 1 ) ) k - ~ ( 2 k + m - i + l ) ! "  

7. Circular sequences and a logarithmic connection 

Let s be a directed cycle on p vertices, embedded in the plane, such that an 
element of )¢, is assigned to each vertex. Such a configuration is called a circular 
sequence of length p on X, .  We represent a circular sequence by a linear 
sequence which begins with the label of an arbitrary vertex and then lists 
successive labels along the directed cycle. Accordingly 53214 and 21453 repres- 
ent the same circular permutation on Ns. Since edges are directed, we may define 
~ra-paths as before. For certain bipartitions there may be circular sequences each 
of whose pairs of consecutive elements belongs to 7rt. These circular sequences are 
called ,rq-cycles. If no Try-cycles exist then 7rl is said to be cycle-free. For example 
the set of rises is cycle-free. 

We enumerate circular permutations by combinatorially identifying the re- 
quired number as the coefficient of xa -- • x~ in trace log ( I - H )  -1. The solution 
follows immediately by applying Theorem 4.1(2), with an appropriate expansion 

H = Q -  ~ LiWRi. 
i = 1  

We may also enumerate circular sequences by using the cycle index polynomial 
for the cyclic group in conjunction with trace log ( I - H )  -~. The circular version of 
the maximal decomposition theorem is the first example of this method. 

T H E O R E M  7.1 ([9]). Let gl, g2 . . . .  and f l ,  f2 . . . .  be commutative indetermi- 
nares, with l = ([1, f2 . . . .  ), F(x)  = 1 + ~i~1 fix i and m = (ml ,  m2 . . . .  ). Then 

(1) The number of circular permutations on N ,  with mi maximal  Try-paths of 
length i >- 1, and t (either 0 or 1) "rrl-Cycles of length l is 

[xl • • ' x~fmg~]{1og (F -1 o ~,)-1 + ~b} 
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where t0=trace  log(F(A))- l+~i>_l i - lg i  trace A ~, A=~(~- t )  and ~ t = ( ' ] / l ( ' / ' r l )  , 

v 2 ( ~ )  . . . .  )- 

(2) I f  7rl is cyc le-[ tee  then tO = O. 

Proof. (1) There are [ x ~ . . .  x , ] n  -~ trace A" circular permutations which are 
Try-cycles, where we divide by n since each permutation is counted once in trace 
A" for each of the n possible cyclic rotations. Each other circular permutation 
may be d~composed into k maximal "rr~-paths, for some k --> 1. The contribution of 
these permutations, recording a maximal ~h-path of length i by /~, is 
[ x ~ " "  x , ] k  -~ trace { ( f ~ l + f 2 A + ' '  ")B} k, by considering one of the k possible 
starting points of some maximal ~r~-path. We sum over k >-1 to obtain the 
solution as [Xx " • • x, lU'gl]q b where 

q~ = trace log ( I -  f ( A ) B )  1 + Y~ i-lgi trace A ~ 
i ~ l  

and f ( x )  = f l  + f2x + f3x 2 +" • ". B u t / ( A ) B  = f (A)W - f (A)A and the result follows 
from Theorem 4.2(2) with H = f(A)B, Q = - f ( A ) A ,  L1 =-- / (A)  and R1 = 1, since 
I -  Q -- F ( A ) .  

(2) If zrl is cycle-free then trace A k = 0 for all k -> 1. 

Accordingly, the generating functions for the linear and circular versions of 
the maximal decomposition theorem are very closely related. We shall refer to 
this striking relationship between the linear and circular versions of sequence 
enumeration problems as a logarithmic connection. Another example of this 
connection is given in the next example, where we consider a circular version of 
Example 4.4. 

E X A M P L E  7.2 ([8]). The number of circular permutations on ,N'4k whose 
pattern consists of alternating pairs of 7rl's and 7r2's is 
Ix1 "" • x4k]k -1 trace (A2B2) k = [x~ -. - x4~] trace log (I-A2B2) -1. ff ~rl is the set of 
rises, then, by Theorem 4.2(2) and Example 4.2, the required number is 
[Xl • • • x4k] log ( G ~ -  G1G3) -1 where G i = ~l~0 3'4z+j(Tr0. Accordingly, by Lemma 
2.2 the required number of permutations on Jr ,  is 

x[~.. ] log (~+½ cos x cosh x) -~. 

Finally we calculate the M6nage numbers m,, (Lucas [16]) the number of ways 
of seating n couples around a circular table so that no members of the same sex 
are adjacent and no man is adjacent to his wife. 
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E X A M P L E  7.3. I f  D = 1 -  I,  X = d iag  ( x ~ , . . . ,  x . ) ,  Y = d i a g  (y~ . . . . .  y . )  w h e r e  

xt  . . . . .  x. ,  y~ . . . . .  y .  a re  c o m m u t a t i v e  i n d e t e r m i n a t e s  then  we have  

m .  = [x l "  • • x . y l "  • • y . ]{ t race  ( X D Y D ) "  + t race  (YDXD)"} .  

H e r e  x~ a n d  y~ r e c o r d  the  o c c u r r e n c e  of  t he  m a n  and  w o m a n  in coup le  i. X and  Y 

a re  s e p a r a t e d  by  the  ma t r i x  D to  ensu re  tha t  a m a n  is no t  a d j a c e n t  to  his  wife.  

T h e y  a l t e rna t e  to  ensu re  tha t  no  m e m b e r s  of  t he  s ame  sex are  a d j a c e n t .  W e  

ex t r ac t  t he  coeff ic ient  of  x~ • • • x.y~ • • • y .  so tha t  e ach  m a n  and  w o m a n  occurs  

once ,  and  cons ide r  two cases  s ince  the  a r r a n g e m e n t  m a y  b e  r o o t e d  on  a m a n  o r  a 

w o m a n .  T h u s  m .  = 2n[xx  • • • x .ya  . .  • y . ]  t race  log  ( I - X D Y D )  -a w h e r e  X D ¥ D  = 

X Y -  X J Y  + X D Y J .  A c c o r d i n g l y ,  f r o m  T h e o r e m  4.1 (2) we  have  

[ x l "  • • x ~ y l .  • .  y . ]  t r ace  log  { I - X D Y D }  - 1  

= Ix  1 • . • xny I • • • y. ]{ t race  log ( I - X Y )  -a + l o g  IM~I 1} 

i M l l = [ l u  w t ÷  l+w-uv-VW Ii, w h e r e  w = t r a c e  ] ~ l r = x l y l + - - ' + x ~ y , .  u = w h e r e  

t race  X =  Xl+"  • • + ~ ,  v = t race  Y = Yl +"  " "+ Y. and  M1 is o b t a i n e d  f rom M of 

T h e o r e m  4.1(2)  by  d e l e t i n g  s q u a r e d  t e r m s  in x~ and  y~, i = 1 . . . . .  n, s ince  we  a re  

on ly  i n t e r e s t ed  in ex t r ac t ing  the  coeff ic ient  of  x l ' " x . y l " " y . .  T h u s  m .  = 

2 n [ x l "  • x~yl"  • • y . ]{w + l o g  ((1 + w)  a -  uv)  -1} so 

m .  = 2 ( n ! )  Y. k 2n  2 n -  
k=,, ( - 1 )  2--n-~-k ( k k )  ( n - k ) '  rou t ine ly .  
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