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MAPS IN LOCALLY ORIENTABLE SURFACES AND INTEGRALS
OVER REAL SYMMETRIC SURFACES

I. P. GOULDEN AND D. M. JACKSON

ABSTRACT. The genus series for maps is the generating series for the number of
rooted maps with a given number of vertices and faces of each degree, and a given
number of edges. It captures topological information about surfaces, and appears in
questions arising in statistical mechanics, topology, group rings, and certain aspects of
free probability theory. An expression has been given previously for the genus series
for maps in locally orientable surfaces in terms of zonal polynomials. The purpose of
this paper is to derive an integral representation for the genus series. We then show
how this can be used in conjunction with integration techniques to determine the genus
series for monopoles in locally orientable surfaces. This complements the analogous
result for monopoles in orientable surfaces previously obtained by Harer and Zagier.
A conjecture, subsequently proved by Okounkov, is given for the evaluation of an
expectation operator acting on the Jack symmetric function. It specialises to known
results for Schur functions and zonal polynomials.

1. Introduction. Although the study of embeddings of graphs in surfaces is less
well developed for locally orientable surfaces than it is for orientable surfaces, there
are compelling algebraic and combinatorial reasons for studying them jointly. From the
algebraic point of view it has been shown [5] that the genus series for maps in these two
cases corresponds to the instances b = 1Ò 0 of

(1 + b)t
]

] t
log

�X
í

tjíj

hJíÒ Jíi1+b

Jí(x; 1 + b) Jí(y; 1 + b) Jí(z; 1 + b)
�
Ò

at t = 1, where í is summed over all partitions (of integers), Jí(x;ã) is the Jack symmetric
function in the parameter ã, and h Ò iã is the usual inner product (see (2)) for Jack
functions. From the combinatorial point of view it has been conjectured [6] that, in the
above series, b marks a combinatorial statistic positively correlated with a departure from
orientability. On the other hand, from the analytic point of view, a representation for the
genus series for maps in orientable surfaces by means of an integral over Hermitian
complex matrices has been given in [13]. The purpose of this paper is to derive an
integral representation of the genus series for maps in locally orientable surfaces. This
representation involves real symmetric matrices. These two account for two of the three
finite dimensional real division algebras (reals, the complexes and the quaternions).

1.1. Embeddings. Throughout this paper we are concerned with 2-cell embeddings of
graphs in locally orientable surfaces. Two embeddings of a graph are said to be equivalent
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if there is a homeomorphism of the surface that maps vertices to vertices, edges to edges,
and preserves the orientation assigned to each edge. The embedded graph is called a
map. Each edge has two ends, and two sides, so there are four side-end positions. A map
is rooted by distinguishing a side-end position and, throughout, all maps are assumed
to be rooted. The partition that lists the degrees of the vertices of the map is called the
vertex partition. The partition that lists the degrees of the faces of the map is called
the face partition, where the degree of a face is the number of edges that bound it. For
further details the reader is referred to [26] and to the brief account given in [5] that is
the starting point for this paper.

Rooted maps occur in a number of contexts. These include the analysis of sur-
faces [20], the determination of the partition function [1], the determination of the re-
duced Euler characteristic [8], the generalisation of the work of Farahat and Higman [2]
and Macdonald to arbitrary structure constants of the class algebra of the symmetric
group ring [4] and, more recently, the combinatorial investigation into free probability
theory [27]. Since almost all maps have only the trivial automorphism [23], asymptotic
results for maps with a large number of edges can be obtained from a study of rooted
maps.

If l(n)
ãÒå is the number of maps with n edges, face partition ã ` 2n and vertex partition

å ` 2n, then the genus series for maps in locally orientable surfaces is defined to be

M(xÒ yÒ z) =
X
n½1

X
ãÒå`2n

l(n)
ãÒåxãyåznÒ(1)

where x1Ò x2Ò    Ò y1Ò y2Ò    are commuting indeterminates, x = (x1Ò x2Ò   ), y =
( y1Ò y2Ò   ), xN = (x1Ò    Ò xN), and if í = (í1Ò    Ò ím) is a partition, then xí denotes
xí1 Ð Ð Ð xím. We let p(x) =

�
p1(x)Ò   

�
, where pi(x) is the i-th power sum symmetric func-

tion of x. The genus of the surface is recoverable from the numbers of vertices, edges
and faces, by the Euler-Poincaré theorem.

1.2. The main result. The main result of this paper, given as Theorem 1.1 below, is
a representation for the genus series by an integral over the vector space WN of all
N ð N real symmetric matrices M = [miÒ j]NðN 2 WN , with measure e�trace M2Û4dM
where dM =

Q
1� i� j�N dmiÒ j. The expectation operator h iWN

is defined formally for a
polynomial function f (M) of the entries of M by

hf (M)iWN
=

Z
WN

f (M)e�
1
4 trace M2

dM
Z

WN

e�
1
4 trace M2

dM
Ò

and its existence is ensured by the existence of
R
Re�t 2Û2dt.

THEOREM 1.1. Let X = diag(x1Ò    Ò xN). Then the integral representation for the
genus series for maps in locally orientable surfaces is

M
�
p(xN)Ò yÒ z

�
= 4z
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In Section 3.2 we give a proof of this result, using an algebraic expression for the
genus series in terms of zonal polynomials that was given in [5], and a combinatorial
construction for maps using pairings. The necessary background material for this is
developed in Sections 2 and 3.1. In Section 4, using the integral representation, we
derive an explicit expression for the genus series for monopoles in locally orientable
surfaces, given as Theorem 4.2. Both of these results are new. The integral representation
complements the result of Jackson [13] in the case of orientable surfaces, using integration
over complex Hermitian matrices. The monopole expression complements the one that
was obtained by Harer and Zagier [8] in the case of orientable surfaces.

An indirect consequence of this work is (Lemma 3.3(2)) that the expectation operator
acts remarkably simply on zonal polynomials. An analogous result for Schur functions
integrated over complex Hermitian matrices has been given a direct proof in Jackson [14].
These two results are evidence for Conjecture 3.4, involving an analogous expectation
operator acting on Jack symmetric functions. This conjecture was subsequently proved
by Okounkov [21]. Finally, another application of the integral representation given
here appears in [3], where a closed form expression is obtained for the virtual Euler
characteristic for the moduli spaces of real algebraic curves. Moreover, Conjecture 3.4
is used there to support in turn a further conjecture concerning the existence of moduli
spaces whose virtual Euler characteristics interpolate between the cases of real and
complex algebraic curves.

2. Zonal polynomials and the genus series. The approach that we adopt makes
use of an expression, given as Theorem 2.1 below, that was derived in [5] for the genus
series in terms of the zonal polynomials. To state the result the following terminology is
needed.

Let ΛQ denote the set of all symmetric functions in x of bounded degree, with
coefficients that are rational. For a partition ï of n (written ï ` n), let Cï be the
conjugacy class of ◊n with natural index ï, let l(ï) be the number of parts of ï, and let
jïj be the sum of the parts of ï (so jïj = n in this case). Then, if ã is an indeterminate,

hpïÒ pñiã = ãl(ï) jCïj
jïj! éïÒñ(2)

can be extended bilinearly to an inner product on Λ. Let� denote lexicographic ordering
on the set of partitions. The zonal polynomials Zï are the unique polynomials [12] that
are orthogonal with respect to this inner product with ã = 2, that satisfy the triangularity
condition [mñ]Zï = 0 for ï � ñ, and that have the normalization [m(1n )]Zï = n!, where
mñ is a monomial symmetric function.

Let Bn denote the hyperoctahedral group embedded in ◊2n as the stabiliser of a
prescribed matching, so jBnj = 2nn!. The double cosets of ◊2n by Bn are indexed
naturally by partitions of n, and the double coset indexed in this way by ï ` n is denoted
by Kï. Their size is readily determined to be

jKïj = 22n�l(ï) jB2nj jCïj (3)
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The set of all formal sums of the elements of Kï, for ï ` 2n, span a commutative
subalgebra of C◊2n called the double coset algebra. Let

†ï(ñ) =
X
õ2Kñ

ü2ï(õ)Ò

where üï is the character of the ordinary irreducible representation of ◊n indexed by
ï ` n, and 2ï is the partition obtained from ï by multiplying each part by 2. The product
of the hook lengths of ï is Hï. The zonal polynomials can be expanded in the power
sum basis by

Zí =
1

jB2nj
X
ñ`2n

†í(ñ)pñ(4)

For a concise account of the double coset algebra, and for the properties of this algebra
that are used here the reader is referred to [7]. For properties of zonal polynomials that
are used here, the reader is referred to the account on Jack symmetric functions given by
Stanley [24], since specialisation to zonal polynomials is by setting the Jack parameter
equal to 2. For terminology associated with symmetric functions the reader is directed
to Macdonald [17].

The following result for the genus series can be obtained by specialising the expression
for the genus series of hypermaps given in [5], where a hypermap is a map whose faces
can be coloured with two colours such that no pair of faces with a common edge have
the same colour. The specialisation is by constraining the faces of one colour to have
degree two, and then contracting each such face to an edge.

THEOREM 2.1. The genus series for maps on locally orientable surfaces is

M
�

p(x)Ò p( y)Ò z
�

= 4z
]

] z
log

�
1 +

X
n½1

X
í `2n

†í(2n)
22n(2n)! H2í

Zí(x)Zí(y)zn
�


Note that this expression for the genus series is with respect to the power sum
symmetric function basis in both x and y, whereas in Theorem 1.1 the genus series
is expressed with respect to power sums in xN, but with respect to y itself. Although
Theorem 2.1 could be expressed directly in terms of x and y using the expansion (4), the
resulting expression would disguise the simplicity of the presentation in terms of zonal
polynomials.

3. The genus series and the combinatorics of the expectation operator. In this
section we determine the genus series for maps in locally orientable surfaces. The
approach that we adopt makes use (in part (1) of Lemma 3.3) of an adaptation of the “fat-
graph” construction [1, 10, 22] that involves interconnecting regions homeomorphic
to open discs (local orientability) by “ribbons” that are allowed at most one “twist”.
This operation is represented algebraically by summing over all “pairings”, and a result
which expresses such a sum in terms of the expectation operator is given in Section 3.1 as
Lemma 3.2. Our construction results in the determination of the required map cardinality
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in terms of a single undetermined scalar. This scalar is then determined, using the results
of [5] outlined in Section 2 above, in terms of zonal polynomials. Standard symmetric
function results are then used to explicitly determine the integral representation for the
genus series.

3.1. The expectation operator and pairings. Let P2k be the set of all permutations

�
ö1(1)Ò ö2(1)Ò    Ò ö1(k)Ò ö2(k)

�

of f1Ò    Ò 2ng such that

ö1(1) Ú Ð Ð Ð Ú ö1(k)Ò and ö1( j) Ú ö2( j)Ò for j = 1Ò    Ò k

An element of P2k is called a pairing, and the pairs are fö1( j)Ò ö2( j)g. The number of
pairings is

jP2kj =
(2k)!
2kk!



PROPOSITION 3.1. Let U be an NðN symmetric matrix of (algebraically independent)
indeterminates. Then D

e
1
2 trace UM

E
WN

= e
1
4 trace U2 

PROOF. Let U be an arbitrary real symmetric matrix. Then the change of variables
M 7! M � U gives

Z
WN

e�
1
4 trace M2

dM =
Z

WN

e�
1
4 trace (M�U)2

dM

= e�
1
4 trace U2 Z

WN

e
1
2 trace UMe�

1
4 trace M2

dM

since trace MU = trace UM. The result is established for all real symmetric matrices
U, and therefore for the case when the independent elements of U are algebraically
independent indeterminates.

In the next result, we show that a combinatorial sum over pairings naturally arises
when applying the expectation operator to a monomial in the entries of M. The result
is an adaptation of Wick’s Lemma, using an integral representation for the “propagator”
given as the righthand side of part (2).

LEMMA 3.2. Let 1 � r1Ò s1Ò    Ò rlÒ sl � N. Then

(1) hmr1Ò s1 Ð Ð ÐmrlÒ sliWN
= 0Ò l = 2k + 1 ½ 1Ò

(2) hmr1Ò s1 mr2Ò s2iWN
= ér1Ò r2és1Ò s2 + ér1Ò s2és1Ò r2 Ò

(3) hmr1Ò s1 Ð Ð ÐmrlÒ sliWN
=
X
P2k

kY
j=1

D
mr°1( j)Ò s°1( j)mr°2( j)Ò s°2( j)

E
WN

Ò l = 2k ½ 2
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PROOF. First we consider only the case rj � sj for j = 1Ò    Ò l. Then suppose that
rjÒ sj = aÒ b for faÒb choices of j = 1    Ò l, for each 1 � a, b � N.

Let U = [uiÒ j]NðN , and equate coefficients of ur1Ò s1 Ð Ð Ð urlÒ sl on both sides of Proposi-
tion 3.1. This gives

hmr1Ò s1 Ð Ð ÐmrlÒ sliWN

2 f1Ò1+ÐÐÐ+fNÒN
QN

iÒ j=1 fiÒ j!
=
h
ur1Ò s1 Ð Ð Ð url Ò sl

i e
1
2
P

1�ã�å�N u2
ãÒå

p
2

f1Ò1+ÐÐÐ+fNÒN
(5)

If l is odd, the coefficient on the righthand side of (5) is zero. This gives part (1) of the
result when rj � sj. When l = 2, equation (5) gives

hmr1Ò s1mr2Ò s2iWN
=

8>><
>>:

2 if r1 = s1 = r2 = s2,
1 if r1 = r2Ò s1 = s2Ò r1 6= s1,
0 otherwise.

Part (2) of the result follows for rj � sj.
When l = 2k, we have

h
ur1Ò s1 Ð Ð Ð urlÒ sl

i
e

1
2
P

1�ã�å�N u2
ãÒå =

1QN
iÒ j=1 fiÒ j!

X
P2k

² kY
j=1

h
urö1( j)Òsö1( j)urö2( j)Òsö2( j)

i
e

1
2
P

1�ã�å�N u2
ãÒå

¦


Substituting this on the righthand side of (5) gives part (3) of the result for rj � sj.
Now M is symmetric, so mrjÒ sj = msj Ò rj in all cases. Moreover, the expressions on the

righthand sides of parts (1), (2) and (3) of the result are all symmetric in rjÒ sj, and the
result follows for arbitrary rjÒ sj, for j = 1Ò    Ò l.
3.2. Expectation of symmetric functions and the genus series. Consider a graph em-
bedded in a locally orientable surface, so an open neighbourhood of each vertex is
homeomorphic to an open disc. In each face, and parallel to the bounding edges, draw
a line within distance ¢ of the edge. The two parallel lines on either side of an edge are
called the thick edge corresponding to the edge of the graph. The segments of a thick
edge associated with an edge in an open neighbourhood Dv containing the vertex v are
called the thick half-edge associated with the edge incident with v, and we say that such
a thick half-edge is incident with v. If the degree of v is k, there will be k thick half-edges
incident with v, and Dv is called a disc with k thick half-edges. A corner of a face is a
consecutive pair of thick half-edges in cyclic order at v, which is identified with the open
region of Dv that is bounded by the two thick half-edges.

The next result involves a combinatorial construction using discs with half-edges
attached, independent of the graph from which such discs are obtained in the above
description. The result gives an evaluation of the expectation of symmetric functions of
real symmetric matrices in terms of zonal polynomials. We use the notation pk(M) =
trace Mk, for k ½ 1, and as usual pí(M) = pí1 (M)Ò    Ò pím(M), for a partition í =
(í1Ò    Ò ím). Then Zí(M) is defined using the expansion (4) in terms of the power sums.
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LEMMA 3.3. If ó ` 2n, then

(1) hpó(XM)iWN
=

1
jKój

X
í`2n

1
H2í

†í(2n)†í(ó)Zí(xN)Ò

(2) hZó(XM)iWN
=

†ó(2n)
22n(2n)!

Zó(xN)

PROOF. (1) Suppose the partition ó = (ó1Ò    Ò óm) ` 2n has m parts, and consider
the canonical permutation

õ = (12 Ð Ð Ð ó1) (ó1 + 1 Ð Ð Ð ó1 + ó2) Ð Ð Ð

with m cycles and cycle-type ó (so õ 2 Có). Let Dvi be a disc with ói thick half-
edges, i = 1Ò    Òm. Associate one of these with each disjoint cycle of õ as follows.
The k-cycle

�
i õ(i) Ð Ð Ð õk�1(i)

�
gives a disc with k thick half-edges and the corners

labelled iÒ õ(i)Ò    Ò õk�1(i) in cyclic order in the clockwise circulation of the vertex.
Thus f jÒ õ( j)g is associated with a unique thick half-edge for each j = 1Ò    Ò 2n.

Now consider the effect of taking all pairings of the 2n thick half-edges, and for each
pair

�
iÒ õ(i)

�
and

�
jÒ õ( j)

�
of thick half-edges in such a pairing, connecting them in either

of the following two ways:
(1) the i side of the first thick half-edge is connected to the j side of the second and

the õ(i) side of the first is connected to the õ( j) side of the second;
(2) the i side of the first thick half-edge is connected to the õ( j) side of the second and

the õ(i) side of the first is joined to the j side of the second.
In all cases the connected thick half-edges give a thick edge joining the vertices corre-
sponding to the discs.

Let A be the set constructed by this procedure. Each member of A corresponds to
a collection of rooted maps in locally orientable surfaces, with vertex distribution ó,
when taken together over all connected components. The multiplicity with which each
collection of maps occurs will be determined indirectly below.

However, first we refine the construction to give a set Ac as follows. Assign colours
1Ò    ÒN, without condition, to each of the 2n corners, and suppose that the corner labelled
i receives colour ci, for i = 1Ò    Ò 2n. The thick half-edges are paired and connected as
before, with the additional condition that sides which are connected must have the same
colour, in all cases. The resulting elements of Ac are identified simply as elements of A
with coloured faces, since the colouring condition forces every corner on a face to have
the same colour (which is thus the colour of the face). But parts (2) and (3) of Lemma 3.2
together imply that the number of elements in Ac, for each fixed c1Ò    Ò c2n, is

− 2nY
i=1

mciÒcõ(i)

×
WN



Now in this expression ci is the colour of the face containing the corner labelled i, so we
conclude that the generating series for Ac, with faces of degree j marked by pj(xN) for
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j ½ 1 is
X

1�c1ÒÒc2n�N

− 2nY
i=1

xci mciÒcõ(i)

×
WN

= h pó(XM)iWN


On the other hand, Ac is, up to a multiplicity to be determined, an unordered collection
of rooted maps. From Theorem 2.1, the genus series for maps, up to a multiplicity that
depends on the number of edges, is

log
�

1 +
X
n½1

X
í`2n

†í(2n)
22n(2n)! H2í

Zí(x) Zí(y)zn
�
Ò

so the generating series for Ac is, up to a multiplicity that depends on the vertex partition,

1 +
X
n½1

X
í`2n

†í(2n)
22n(2n)! H2í

Zí(x)Zí(y)zn

Then X
1�c1ÒÒc2n�N

− 2nY
i=1

xci mci Òcõ(i)

×
WN

Ò

up to a multiplicity that depends on ó, is equal to

X
í`2n

1
H2í

†í(2n)†í(ó)Zí(xN)Ò

so we conclude that

hpó(XM)iWN
= ãó

X
í`2n

1
H2í

†í(2n)†í(ó) Zí(xN)Ò(6)

where ãó is a constant depending only on ó.
To determine ãó we equate coefficients of x2n

1 on each side of (6). For the lefthand
side of (6), we obtain

h
x 2n

1

i
hpó(XM)iWN

=

Z
R
m2n

1Ò1e�m2
1Ò1Û4dm1Ò1Z

R
e�m2

1Ò1Û4dm1Ò1
=

(2n)!
n!

Ò

using integration by parts. For the righthand side, note that (see [24], p. 80)

1
H2í

Zí(1Ò 0Ò   ) =

8<
: 0 for í 6= (2n)Ò

1
jB 2nj for í = (2n)

and

†(2n)(ñ) =
X
õ2Kñ

ü(4n)(õ) = jKñj 
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Thus for the righthand side of (6) we obtain

h
x2n

1

i
ãó

X
í`2n

1
H2í

†í(2n)†í(ó) Zí(xN) = ãó
X
í `2n

1
H2í

†í(2n)†í(ó) Zí(1Ò 0Ò    Ò 0)

= ãó 1
jB2nj†

(2n)(2n) †(2n)(ó)

= ãó 1
jB2nj jK (2n )j jKój

Equating the coefficients from the two sides gives

ãó =
jB2nj (2n)!

jK (2n )j jKój n!
=

1
jKój

from (3) and the result now follows from (6).
(2) From (4) and part (1) of this result,

hZí(XM)iWN
=

1
jB2nj

X
ñ`2n

†í(ñ) hpñ(XM)iWN

=
1

jB2nj
X
ã`2n

†ã(2n)
H2ã

Zã(xN)
X
ñ`2n

1
jKñj†

í(ñ)†ã(ñ)

But the character sums †í satisfy the orthogonality relation

1
H2ã

X
ñ`2n

1
jKñj†

í(ñ)†ã(ñ) = éãÒí

and this gives the result directly.
We can now prove the main result, which gives an integral representation for the

genus series for maps in locally orientable surfaces.

PROOF OF THEOREM 1.1. Let M
�
p(xN)Ò yÒ z

�
be temporarily denoted by MN. Then

from Theorem 2.1 and (4), with x replaced by xN and p(y) by y, we get

MN = 4z
]

] z
log

�
1 +

X
n½1

zn

jB2nj2
X
ñ`2n

yñ
X
í`2n

†í(2n)†í(ñ)
H2í

Zí(xN)
�

= 4z
]

] z
log

�
1 +

X
n½1

zn

jB2nj2
X
ñ`2n

jKñj yñ hpñ(XM)iWN

�
Ò

from part (1) of Lemma 3.3. Let ñ = (1a1 2a2 Ð Ð Ð) so a1 + 2a2 + Ð Ð Ð = 2n. But from (3), the
size of the double coset indexed by ñ is jKñj = jB2nj jCñj 22n�l( ñ) so

MN = 4z
]

] z
log

 
1 +

X
n½1

zn X
a1 Ò a2Ò½0

a1+2a2+ÐÐÐ=2n

*Y
j½1

1
aj!

� 1
2j

yj trace (XM) j
�aj
+

WN

!


From Lemma 3.2(1), the terms of odd degree in M contribute zero to the sum, and the
result follows.
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The expectation of the zonal polynomial given in part (2) of Lemma 3.3 can be made
particularly striking, by reexpressing the righthand side to obtain

hZí(XM)iWN
= Zí(xN)

�
[p(2n)]Zí

�
(7)

The simplicity of this result suggests that it might be possible to prove it directly using
analytic properties of the zonal polynomials, which, together with Theorem 2.1, would
give a proof of the integral representation of the genus series (the main theorem) that
avoids the combinatorial and topological constructions used in the above proof. Indeed,
there is an analogous result [14] associated with orientable surfaces, namely

hsí(XM)iVN
= sí(xN)

�
[p(2n)]sí

�
Ò(8)

where sí is the Schur symmetric function (orthonormal with respect to the inner product
h Ò i1), and the expectation operator h iVN

is defined by

hpí(M)iVN
=

Z
VN

pí(M)e�
1
2 trace M2

dM
Z

VN

e�
1
2 trace M2

dM

with dM = (
Q

jÚ k =dmjÒk)(
Q

j� k <dmjÒk), and VN is the vector space of all NðNHermitian
complex matrices. Macdonald [18] has obtained such a proof using the orthogonality
result of James [15] for integrating zonal polynomials over positive definite matrices.

Note that (8) is given in [14] only for the case X = I, but the proof given there can be
adapted easily to arbitrary X. The introduction of the matrix X in this way into the results
of this section combinatorially allows us to mark the degrees of faces. It also makes an
interesting departure from, for example, the model of Kontsevich [16], who considers
integrals over complex Hermitian matrices with an arbitrary matrix Λ introduced to
modify the weight in the expectation operator from e�trace M2Û2 to e�trace ΛM2Û2.

Results (7) and (8) suggest that there may be a comparable result for Jack functions.
For this purpose we introduce the expectation operator

hf (ï)iRN =

Z
RN
jV(ï)j2çe�

ç
2 p2 f (ï) dïZ

RN
jV(ï)j2çe�

ç
2 p2 dï



Then we make the following conjecture.

CONJECTURE 3.4.

hJí(ï; 1Ûç)iRN = Jí(1N; 1Ûç) ([pm
2 ]Jí)Ò

where 1N is the vector with N 1’s, and í ` 2m.

This correctly specialises to (7) and (8) through the Weyl integration theorems to diago-
nalise the families of matrices WN and VN, respectively. In addition, we have confirmed
this conjecture computationally for N = 4Ò í ` 6, with ç = 2 and 3. The integration was
reduced to the known moments of the normal distribution by expanding the Vandermonde
determinant and the Jack function into monomials.

This conjecture was subsequently proved by Okounkov [21].
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4. The genus series for monopoles. A monopole is a rooted map with a single
vertex. The genus series for monopoles in locally orientable surfaces with n edges, for
n ½ 0, is

Fn(u) =
X
k½1

fnÒkuk

where fnÒk is the number of monopoles in locally orientable surfaces with n edges and k
faces. Since the set of all maps with n edges is finite, Fn(u) is a polynomial in u. In this
section we determine the genus series for monopoles by applying Theorem 1.1 and then
explicitly carrying out the integration over real symmetric matrices, taking advantage
of the polynomiality and using the following transformation. This result is obtained by
means of the orthogonal group, the diagonalising group for WN . For a proof, see, for
example, [9].

PROPOSITION 4.1. Let ï = (ï1Ò    Ò ïN), and V(ï) =
Q

1� iÚ j�N(ïj � ïi) be the Van-
dermonde determinant. Then for a polynomial g,

D
g
�
p(M)

�E
WN

=

Z
RN
jV(ï)je�p2Û4g( p) dïZ
RN
jV(ï)je�p2Û4 dï

Ò

where pk denotes pk(ï).

The absolute value of the Vandermonde determinant in this result presents problems,
but these are surmounted in the monopole case below by a number of appeals to sym-
metry. In the proof we make extensive use of techniques that have been employed in
mathematical physics; a good source for such techniques is Mehta [19]. In particular,
the series ûj(x) that appears in the proof is a “wave function”, but is used here simply
as a convenience. Hermite polynomials also arise, since they are closely related to wave
functions; for general properties of the Hermite polynomials see Szegö [25]. The result
that is obtained is of interest in its own right, since it is the counterpart of the monopole
series in the orientable case obtained by Harer and Zagier [8] (see also [11, 13, 16, 22]),
in a study of singularities on orientable surfaces.

Some notation is needed. We write A = [aiÒ j]mÒn to mean that A is a block matrix
whose (iÒ j)-block is the matrix aiÒ j, with indexing i = 1Ò    Òm, and j = 1Ò    Ò n. If aiÒ j
is a 1 ð 1 matrix then we write it as a scalar.

THEOREM 4.2. The genus series Fn(u) for monopoles in locally orientable surfaces
with n edges, for n ½ 0, is

n!
nX

k=0
22n�k

nX
r=0

0
@n � 1

2

n � r

1
A
0
@k + r � 1

k

1
A
0
@ 1

2 (u � 1)
r

1
A +

(2n)!
2nn!

nX
k=0

2k

0
@n

k

1
A
0
@u � 1

k + 1

1
A

PROOF. From Theorem 1.1 we obtain immediately

X
ã`2n

l(n)
ãÒ(2n) pã(xN) = [ y2nzn]M

�
p(xN)Ò yÒ z

�
=
D
trace (XM)2n

E
WN
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Thus, replacing the xi’s by 1, we obtain Fn(N) =
D
trace M2n

E
WN

, and applying Proposi-
tion 4.1 gives

Fn(N) =
Z
RN
jV(ï)je�p2Û4p2n dïZ

RN
jV(ï)je�p2Û4 dï

It is convenient to change variables in these integrals by ïi 7!
p

2ïi for i = 1Ò    ÒN, so

Fn(N) = 2nN
In(N)
I0(N)

(9)

where
In(N) =

Z
RN
jV(ï)je�p2Û2p2n dïÒ(10)

and, in this context, p0 = N. But Fn(N) is a polynomial in N, so it is sufficient to consider
only the case where N = 2m, to obtain the series as a polynomial in m, and then to replace
m formally in this by NÛ2. Because of polynomiality, the resulting expression holds for
all N, and thus N can be replaced by the indeterminate u.

The first part of our strategy in determining In(2m) is to introduce a set of polynomials
that are orthogonal with respect to the measure. Thus consider the Hermite polynomials�
Hj(x)

�
j½ 0

, defined by the recurrence equation Hj+1 = 2xHj � 2jHj�1 for j ½ 0, with
initial conditions H0 = 1ÒH�1 = 0. These are orthogonal with respect to the measure
e�x2

dx on R. Then

ûi(x) =
Hi(x)e�x2Û2

p
ai

Ò i ½ 0Ò

where ai = 2ii!
pô, for i ½ 0, satisfy the orthonormality relation

Z
R
ûi(x)ûj(x) dx = éiÒ jÒ iÒ j ½ 0

Let
Φi( y) =

Z y

�1
ûi(x) dxÒ

and note that ûi(š1) = Φi(�1) = 0. We now re-express the Vandermonde determinant
in terms of the submatrices

vi(x) =
�Φi(x)
ûi(x)

½
and v0i(x) =

� ûi(x)
û0i(x)

½
Ò

and subsequent operations on matrices fully respect the partitioning of matrices into
these submatrices. First, note that 2�jHj(x) is a monic polynomial of degree j in x, so

V(ï)e�p2Û2 = det
h
ïi�1

j

i
2mÒ2m

e�p2Û2

= det
h
2�(i�1)Hi�1(ïj)

i
2mÒ2m

e�p2Û2

=
�2mY

i=1

p
ai�1

2i�1

�
det

h
ûi�1(ïj)

i
2mÒ2m
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But

ûj+1(x) = �
vuut 2

j + 1
û0j(x) +

vuut j
j + 1

ûj�1(x)(11)

for j ½ 0, and û�1(x) = 0. Then

det
h
ûi�1(ïj)

i
2mÒ2m

= det
� û2 i�2(ïj)
û2 i�1(ïj)

½
mÒ2m

= (�1)m

vuut mY
i=1

2
2i� 1

det
h
v02i�2(ïj)

i
mÒ2m

where we have substituted (11) into the even numbered rows, and used row operations.
Thus

V(ï)e�p2Û2 = d2m det
h
v02i�2(ïj)

i
mÒ2m

Ò(12)

where

d2m = (�1)m4m(1�m)

vuut m!
(2m)!

2mY
i=1

ai�1

Now we consider the integration. First we take advantage of symmetry to restrict the
region of integration to the canonical cone

R 2m =
n

(ï1Ò    Ò ï2m) : ï1 Ú Ð Ð Ð Ú ï2m

o


Since the integrand of (10) is a symmetric function of ï, we thus obtain

In(2m) = (2m)!
Z

R 2m

jV(ï)je�p2Û2p2n dï

Let p(e)
k = ïk

2 + ïk
4 + Ð Ð Ð + ïk

2m and p(o)
k = ïk

1 + ïk
3 + Ð Ð Ð + ïk

2m�1, so pk = p(o)
k + p(e)

k . Then
Z

R 2m

jV(ï)je�p2Û2p(o)
2n dï =

Z
R 2m

jV(ï)je�p2Û2p(e)
2n dï

by the change of variables ïi 7! �ï2m+1�i for i = 1Ò    Ò 2m. From this additional
symmetry and the fact that jV(ï)j = V(ï) for ï 2 R2m, we obtain

I2n(2m) = 2(2m)!
Z

R 2m

V(ï)e�p2Û2p(e)
2n dïÒ

= 2(2m)! d2mEmÒnÒ(13)

where
EmÒn =

Z
R 2m

det
h
v02i�2(ïj)

i
mÒ2m

p(e)
2n dïÒ

from (12). Now we integrate over “alternate variables”: by integrating over ï2 j�1 from
ï2 j�2 toï2 j, with the convention thatï0 = �1, and then settingñi = ï2i, for i = 1Ò    Òm
and ñ = (ñ1Ò    Ò ñm), and denoting pk(ñ) by pk, we obtain

EmÒn =
Z

R m

det
h
v2i�2(ñj)� v2i�2(ñj�1)Ò v02i�2(ñj)

i
mÒmp2n dñ

=
Z

R m

det
h
v2i�2(ñj)Ò v02i�2(ñj)

i
mÒmp2n dñÒ
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where the second equality is by column operations within the matrix. But this integrand
is a symmetric function of ñ, so resymmetrising, but now with m variables, gives

EmÒn =
1

m!

Z
Rm

det
h
v2i�2(ñj)Ò v02i�2(ñj)

i
mÒmp2n dñ

=
1

(m � 1)!

Z
Rm

det
h
v2i�2(ñj)Ò v02i�2(ñj)

i
mÒmñ

2n
m dñ(14)

The matrix [v2i�2(ñj)Ò v02i�2(ñj)]mÒm is such that columns 2j�1 and 2j involve the same
variable. We therefore carry out m simultaneous Laplace expansions of the determinant,
one for each of the paired columns. There are three types of 2ð 2 submatrices that arise
in consequence, namely [vi(x)Ò vk(x)]t , [v0i(x)Ò v0k(x)]t , and [vi(x)Ò v0k(x)]t . Now, integrating
an odd function over R gives 0, so

Z
R
det

h
vi(x)Ò vk(x)

it
dx =

Z
R
det

h
v0i(x)Ò v0k(x)

it
dx = 0Ò

while by the orthonormality relation for the ûi(x) and integration by parts,

Z
R
det

h
vi(x)Ò v0k(x)

it
dx = �2éiÒk

Thus the Laplace expansions give

EmÒn = (�2)m�1
mX

i=1

Z
R

�
Φ2i�2(x)û02i�2(x) � û2

2i�2(x)
�

x2n dx(15)

The integral can be simplified in the following way. Integrating (11) yields
q

j + 1Φj+1 = �
p

2 ûj +
q

j Φj�1Ò j ½ 0Ò(16)

where Φ�1 = 0. But substituting for û02i�2 by means of (11) and then using (16), we get

Φ2i�2û02i�2 = Φ2i�2

 
�
r

1
2 (2i� 1) û2i�1 +

r
1
2 (2i � 2) û2i�3

!

=

8<
:�û

2
2i�3 �

q
1
2 (2i � 1) Φ2i�2û2i�1 +

q
1
2 (2i � 3) Φ2i�4û2i�3Ò i ½ 2Ò

� 1p
2
Φ0Φ1Ò i = 1Ò

to give a telescoping sum from which it follows that

mX
i=1

�
û2

2i�2 � Φ2i�2û02i�2

�
=
r

1
2 (2m� 1)Φ2m�2û2m�1 +

2m�2X
j=0

û2
j 

We now return to the determination of Fn(N). It follows from (9) and (13) that
Fn(2m) = 2n(2m)EmÒnÛEmÒ0. But EmÒ0 = (�2)mm, from (15), by orthonormality and
integration by parts. Thus, from (15) and the telescoping sum above,

Fn(2m) = 2n(ImÒn + KmÒn)Ò(17)



LOCALLY ORIENTABLE SURFACES AND INTEGRALS 879

where

ImÒn =
r

1
2 (2m� 1)

Z
R

x2nΦ2m�2(x)û2m�1(x) dxÒ KmÒn =
2m�2X

j=0

Z
R
û2

j (x)x2n dx

The proof is concluded by making use of classical expansions associated with Hermite
polynomials, which are listed as they are applied, for completeness. The two integrals
are considered in turn. First,

ImÒn =
1

2a2m�2

Z
R

Z y

�1
y2nH2m�1( y)H2m�2(x)e�x2Û2e�y2Û2 dx dy

=
1

2a2m�2

Z
R
H2m�2(x)e�x2Û2

Z 1

x
y2nH2m�1( y)e�y2Û2 dy dx(18)

by reversing the order of integration. But it is readily checked that, for k ½ 1 and odd,

Hk(x) =
(k�1)Û2X

j=0
bjÒkx2 j+1Ò where bjÒk =

(�1)(k�1�2 j)Û222 j+1k!�
1
2 (k � 1 � 2j)

�
! (2j + 1)!

Ò

while, for k ½ 0,

xk =
bkÛ2cX

l=0
clÒkHk�2l(x)Ò where clÒk =

k!
2kl! (k � 2l)!

Ò

and, for i ½ 1 and odd,

Z 1

x
zie�z2Û2 dz =

(i�1)Û2X
s=0

dsÒi xi�2s�1e�x2Û2Ò where dsÒi = (i � 1)(i � 3) Ð Ð Ð (i + 1 � 2s)

Now apply these expansions to evaluate expression (18) as follows: first expand H2m�1( y)
in powers of y using the b’s, then carry out the inner integration, giving d’s, and finally
express the resulting powers of x in terms of the H’s using the c’s. Orthonormality of the
û’s then gives

ImÒn = 1
2

m�1X
j=0

bjÒ2m�1

n+jX
s=0

dsÒ2n+2 j+1clÒ2n+2 j�2s

where n+ j�s� l = m�1, and 0 � l � n+ j�s. Now transform the summation variables
with a = m � j � 1 and b = j � s � m + n + 1, with the assumption that m Ù n ½ 0, to
obtain

ImÒn = 1
2

X
aÒb½0

a+b� n

bm�a�1Ò2m�1 cbÒ2b+2m�2 dn�a�bÒ2m+2n�2a�1

= n!
X
aÒb½0
a+b� n

(�2)n�a�b

0
@ 1

2 � m
b

1
A
0
@m� 1

2

a

1
A
0
@a � m

n

1
AÒ

on rearrangement of the series. Thus we have

ImÒn = n!
nX

k=0
(�2)n�kãnÒk(m� 1

2 )(19)
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where

ãnÒk( p) =
X
aÒb½0
a+b=k

0
@p

a

1
A
0
@�p

b

1
A
0
@a � 1

2 � p
n

1
AÒ

for nÒ k ½ 0. Then

X
nÒk½0

ãnÒk( p)xnyk = (1 + y)�p(1 + x)�
1
2�p

�
1 + y(1 + x)

�p

= (1 + x)�
1
2

 
1 � x

(1 + x)(1 + y)

!p

=
X
r½0

0
@p

r

1
A(�x)r(1 + x)�r� 1

2 (1 + y)�rÒ

so, evaluating the coefficient of xnyk, we obtain

ãnÒk( p) = (�1)n+k
nX

r=0

0
@n � 1

2

n� r

1
A
0
@k + r � 1

k

1
A
0
@p

r

1
AÒ

and substituting this into (19) gives, finally

ImÒn = n!
nX

k=0
2n�k

nX
r=0

0
@n � 1

2

n � r

1
A
0
@k + r � 1

r

1
A
0
@m� 1

2

r

1
A

For the second integral KmÒn we use the expansion, for j ½ 0,

H2
j (x) =

jX
k=0

ekÒ jH2 j(x)Ò where ekÒ j =
2j�kj!

k!

0
@j

k

1
AÒ

so

KmÒn =
2m�2X

j=0

jX
k=0

a2k

aj
ekÒ jclÒ2nÒ

where n � l = k, 0 � l � n, whence

KmÒn =
(2n)!
22nn!

nX
k=0

2k

0
@n

k

1
A 2m�2X

j=k

0
@ j

k

1
A =

(2n)!
22nn!

nX
k=0

2k

0
@n

k

1
A
0
@2m� 1

k + 1

1
A

The result now follows from (17), by combining the two evaluated integrals ImÒn and
KmÒn and by the polynomiality of the result in m, so m can be replaced by uÛ2 where u
is an indeterminate.

For example the result for n = 0Ò 1Ò 2 produces the expressions F0(u) = uÒF1(u) =
u + u2ÒF2(u) = 5u + 5u2 + 2u3, so there are, for example, 5 maps in locally orientable
surfaces with one vertex, 2 edges, and 1 face. In fact, we can be more specific than this
since the genus series for monopoles in orientable surfaces with n edges obtained in [8]
is

Gn(u) =
(2n)!
2nn!

nX
k=0

2k

0
@n

k

1
A
0
@ u

k + 1

1
A
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But locally orientable surfaces include both orientable and nonorientable surfaces. It
follows that the genus series for monopoles in nonorientable surfaces with n edges is
Fn(u) � Gn(u). For example, we have G2(u) = u + 2u3, so, for orientable surfaces, there
are 2 monopoles with 2 edges and 3 faces (they are in the sphere), and 1 with 2 edges and
1 face (it is in the torus). Moreover, F2(u) � G2(u) = 4u + 5u2. Thus, for nonorientable
surfaces, there are 4 monopoles with 2 edges and 1 face (these are therefore in the Klein
bottle) and 5 monopoles with 2 edges and 2 faces (these are therefore in the projective
plane).

The approach that has been used in the above result can be applied to determine the
genus series for other classes of maps. For example, in the case of dipoles, which are
maps with two vertices of equal degree, the integration proceeds as in the above result
for monopoles until we reach (14). At this stage, there is a slightly modified constant
outside, and the monomial ñ2n

m is replaced by ñn
m�1ñn

m. Thus in the ensuing Laplace
expansion, the last two paired columns are treated specially, which results in an iterated
sum of integrals which are quartic in the û’s, in place of (15). We have been unable to
simplify the resulting multiple summations in an attractive manner.
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