Discrete Mathematics 22 (1978) 99-104.
© North-Holland Publishing Company

THE ENUMERATION OF GENERALISED
ALTERNATING SUBSETS WITH
CONGRUENCES

I.P. GOULDEN and D.M. JACKSON

gepaar;mem of Combinatorics ana Optimization, University of Waterloo, Waterloo, Ont. N2L 3G
anada

Received 20 April 1977
Revised 25 July 1977

We show that a number of problems involving the enameration of alternating subsets of
integers may be solved by a direct method as special cases of the enumeration of configurations
which ve have termed (I, g)-sequences.

1. inréduction and notational conventions

In this paper we consider a class of enumeration problems which have received
attention recently. It contains a number of well-known problems including the
Terquem Problem, the Skolem Problem and their various generalisations. Each of
these may be obtained by specialising a configuration, icfined in Section 2, called
an (I, g)-sequence. Special cases are treated in Section 3.

We denote the sum of the elements of 1 vector x by s(x). The integer part of a
real number y is denoted by [y]. An cmpty sum is conventionally zero. A
sequence over Zn={1,..., N} is an element of Ji.o(Zy)' and Z, =Z3U{0}.
The coefficient of x™ in the Laurent series expancion of f(x) at the origin is
denoted by [x"]f(x). Throughout this paper

I=(,....0), q=(q,.....6,), a=(a,,....q,),

are sets of integers where O/ <q, g, =1 fori=1,2,. .., n,and a, =1, k, =0 for
i=12,...,m Finally, 1, is the m-tuple of all one’s.
2. The enumeration of ([, g)-sequences

We begin by defining an (I, g@)-sequence over Z.
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Lemma 2.2. The ‘{g',enefatiﬁg-‘ f@mﬁmeﬁm for {dn(h @): N=0} is

db(x)«» Z onl, q)x” = e0en(t - x) [T 1= x9),

,Na-D_. _!=1_.

Fmo! Let (0'1, 5 O )bean (l, q)—aeqdence over ZN, Thenfor i=1,2,...,n we
have o;=j +Z,_, L +3Yl ; Mg, where A,,.. ., \, are non-negative integers. Thus

¢‘,g_,(‘l, q)=‘ I{(;.,,.. AL z Aiq.<N—n s(l)}l

SO »
. N-n-sil) M
ol g = izo [x']il—[ (1-x%)?

ar.d the lemma follows.

There are many specnahsatmns of this lemma, each relying on the ease with
which s(I) may be determined, and 0. the ease with which the coefficient may be
extracted. The followmg is general enough for the present context.

Corollary 2.3. Let p be a positive integer. Then
[(N+n(p- 1)-S(l))/p])

n

il pl,) = (

Proof. From Lemma 2.2. we have

- [ N-mos] — vy D N i roN-mesan & %= (B i+
nlh pl) =[x =@ —xry et Y oxt=[xN e Y (T

i=0 it j=0

and the result follows.

The qu-atity s{l) may be evalu:ted in several circumstances. The iollowing
definition. furnishes a context wiich is general enough for present purposes.
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Definition 24, Let (o;, ..., 0,) be an arbitrary (I, p1,)-sequence over Z3; and let
-1 i
R’={6;:1+Zak$i$2ak, j:=1,...-.m}
k=1 k=1

where
s(@)=n, and Osk,<p for i=1,2,...,m.

(1) An (e, k, p)-sequence over Z}, is an (I, p1,)-sequence such that
@i ¥ aeR,, then a=(1+k,)mod p,
(ii) If a,be R, then b—a=0 modp for each i, 1si<m,
(iii) if aeR, and beR,,, then b—a=(1+k,,,) mod p, for each i, I<i<
m-1.
(2) Oy(a, k, p) is the number of such sequences
The enumeration of these sequences is given in the following corollary.

Corvollary 2.5.

s(a)
Proof. Let [,;,=k; where t(j)=1+Y/_] a; and ,=p—1 where 1+, o, <i<
Yf-10x and j=1,2,...,m. This identifies (I, p1,)-sequences over Zy with

(o, k, p)-sequences over Z 3.
Thus

s(h)= i k,+(p—l)§ (o, — D =(p—1)(sla) —m)+s(k)
i=1 i=1

and the result follows from Corollary 2.3.

3. Applications of (a, k, p)-sequences

We now obtain several specialisations of (a, k, p)-sequences.

Corollary 3.1. (The Moser and Abramson 1] generalisation of the Terquem

Problem). The number of sequences (a,... .a,) such thait 1<a,<a,<---<
a,, <N and

ali(l+k\) mod ps

a=(a_,tl+k)modp, j=2,3...., m,

1s

<[{,\ +(p—-Dm—-stk}Ypl

m



,"'(V‘:a,, Covstn)y 1 =s(@), such that 1 1a,<
'”have the saine pamy, the next a; have

~ 3 mepamy,thenextﬁhuvetheopposm pamy and so on,
'gl-panaes between successiv: blocks of @, B, @, B, . .. elements, where the
ﬁnal blo k is of length i since it may be a fragment of a block of length a or a block
of lengt1 B is

([%(N+ DI+ (n—-i)(a+ B)) . ([%N]+(n ~Dia+ B)) if 0<i<a
n [ 4
or
'({%’N]+ 1+(n~(e +;at))_r ([%(N+ DI+ (1= dila+ m)
n n
if a<isa+.
Proof. Let

o= {a if i=1mod?2,
B if i=0mod?2.
If there are m=2[+1 blocks then n=Ula+8)ri so m=2(n-i)(a+p)+1

where 0<i=sa If there are m =2l+2 blocks, then n=l{(a+8)+a+jso m=

2(n—a-j)/{c+ B)+2 where 0<j<pB. The results follows by substituting these
values into Corollary 3.2.

The sequence: enumerated in Corollary 3.3. have been called (a, 8) -¢lternating
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subsets. The sclution for (a, 1)-subsets is given by Tanny [4], and the solution for
(a, B)-subsets by Tanny [5] and Reilly {3].

Corollavy 3.4. (The Moser and Abramson [1] “circular” gencralisation of the
Terquem Problem). The number of sequences (a,,...,a,) such that 1<a,<
-+<a,<Nand

a,-(a,_,+l+k,)modp, i=2,3,...,m,

is

putmv+m (u+m)
utm m

where u=[(N-m-K)/pland v =N-m—-K-pu and K=k, +---+ k

m*

Proof. There are p cases, namely a,=(1+1)imnd p, t=0,1,...,p—1. Let k,=¢
so s(k)=t+ K so from Corolla:y 3.1 the number of sequences is

z‘, ([(N -m-— K':/p -tpl+ m).

But
[N—m-—K t]_{u if t=vp,

p _; u—1 if t>v

Acccrdingly the number of sequences is
- (u+m\  u—-1+m
+
|§0 ( m ) (:él ( m )
and the results follows.

Many other specialisations of Lemma 2.1 remain, but no effort is made here to
list them.
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