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We &XV that a number of problems involving the en jmeration of alternating subsets of 
integers may be solved by a direct method as special cases of the enumeration of configurations 
which w have termed (2, q)-sequences. 

In this paper we consider a class of enumeration problems which have received 

attention recently. It contains a number of well-known problems including the 

Terquem Problem, the Slcolem Problem and their various generalisations. Each of 

these may be obtained by specialising a configuration, kfned in Section 2, called 

an (I, a)-sequence. Special cases are treated in Section 3. 

We denote the sum of the elements of ? vector x by S(X). The integer part of a 

real number y is denoted by [y]. An G;ii$pty sL;m is conventionally zero. A 

sequence over Z&=(1,. . . JV} is an ele:ncnt of ‘JT+,(Z&)i snd h,= H&J(O). 

The coefficient of x” in the Laurent serzes expansion of f(i) at the origin is 

denoted by [x”lf(x). Throughout this gaper 

I = (l,, . . . , !,,, q=(41,.*.,Lin), oL= (a),, . . . . cr,), 

k=(k,,. . . . k”,) 

are sets of inteps where 0 * 1, c y,, y1 z i fw- i 1 1. 2, . . . , II, and a, 2 1. k, 2 0 for 

i==1,2,..., m. Finally, 1, is the m-tuptr of ail on~‘s. 

We begin by defining an (I, @-sequence over Z,&. 
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T&e C an?. nxu~y- spdcialisati0ns of this Iennna, each relying on tie ease with 
which s’(l) may be determined, and 0~1 the east: with which the coefficient may be 
exf@acted. The following is general enough for the prest;nt mntext. 

Ca+ro&q 2.3. Let p be a positive integer. 7hm 

4vx pl,) = ( CW+w- lb-s(l))/p] 
n ) 

Proof. From Lemma 2.2. we: have 

and the result follows. 

The qu’ entity s(l) may be evalu; ted in seceraf ~ir~un~~tar~es. The lall~wing 
definitior; furnishes a context w lich is general enough fox present purposes. 
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lEhrlbitki 24 Let (q,. . . ) o,) be an arbitrary U, p&)-sequence over Z& and let 

jr=l,...,m 

s(a)=* and 041&p for i=l,2 ,..., M. 

(I) An (a, k, p)-sequence over rN is an (& p l&sequence such that 

(i) If a~&, therm a=(l+k,)modp, 
(ii) If a&R,, then b-o=0 modp for each i, lsism, 
(iii) if OER, and &I&+* then b-o=(l+k,+,) mod p, for each i, l<i< 

m-1. 
(2) &(a, k, p) is the number of such sequences 

The enumeration of these sequences is given in the following corollary. 

coM8?y 25. 

f)&, rt, p) = j[IN+ (P - lh - S(kWPl) 
da) 

Roof. Let Z*(j)= &j where fu) = 1+ Cisf a, and l,=p-1 where l+CiW.,lark<i< 

&ak and j=i,2,..., IVI. This identifies (I, pl,)-sequences oiler Z G with 

(a, S p)-sequences over 2;. 
Thus 

s(l)= 2 k,+(p-l)f (CYi-l)=(P-l)(S(BL)-mm)+s(k) 
j-1 i=l 

and the result follows from Corollary 2.3. 

We now obtain several specialisations of (OL, k, p)-sequences. 

Corollary 3.1. (The Moser and Abrarnson [I] generalisation of the Terquem 

Problem). The number of sequences (a,, . . , a,,,) such thaw 1 s a, < a,( - - - < 

a,~N and 

a,= (I+ k,) mod p, 

01~ (c+_~ + I+ k,) mod p, j = 2,3, . . . , m, 



( lm+ l)]+( n - w + 6) ) ( + Wl+( n - i)l(ru + 8) 
n n 1 if oci=h 

Pm& Let 

if i=lmod2, 

if isOmod2. 

If there are t?! = 22+1 blocks then n=l(cv-t#Q-+i so m=2(n--i)((ar+p)+l 
where 0 < i G cy If there are m - -22+2 blocks, then n=Z(a+@)+x+j so m= 
2ffi - QL -- i)/(cr + /3) + ‘2 where 0 C j s Is. The results fokws by sub&tuting these 
values into Car: INary 3.2. 

Th sequencers enumerated in Corollary 3.3. have been called (a, @) -al:erntAng 
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&sets The scOution for (a, 
(a, @)-subsets by Tanny [S] 

1).subsets is given by Tanny [4], and the solution for 
and Reilly [3]. 

Terqwm f%&lem). Tote nrrmber of sequences 
l -<o,GN& 

QI~~~-1+1+kf)modp* j = 2,3,. . 

is 

pu+mutm u+m 

u+m ’ m ( ) 

“circular” gencralisation of the 

(a,, l l * 9 q) wch that 1 s a, < 

7 m 

whtm u=[(N-m-K)lp] and r=N-m-K-p and K=k,+-•t k,. 

~.There~pcases,namelya,~(l+r~~~~dp,t=O,l,...,p-I.Letk,=~ 
SO S(&) = t + K SI from @ordk-y 3.1 the number of sequences is 

p-1 

I( 

W-m-Qtp-tlp:l+m 
. 

t-o m 1 

But 

L 

N-m-K t u if tsu, -- = P P II u-l if t>v. 

Acardingly the number of sequences is 

and the results follows. 

Many other specialkations of Lemma 2.1 remain, but no effort is made here to 
list them. 
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