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The Combinatorial Relationship Between Trees, Cacti and Certain
Connection Coeflicients for the Symmetric Group

I. P. GouLDEN AND D. M. JACKSON

A combinatorial bijection is given between pairs of permutations in S,, the product of which
is a given n-cycle and two-coloured plane edge-rooted trees on n edges, when the numbers of
cycles in the disjoint cycle representations of the permutations sum to n +1. Thus the
corresponding connection coefficient for the symmetric group is determined by enumerating
these trees with respect to appropriate characteristics. This is extended to the case of m-tuples
of permutations in §, the product of which is a given n-cycle, in which the combinatorial
objects replacing trees are cacti of m-gons.

1. INTRODUCTION

Let A=(A;, A, ...), where 4, = A,>=--- are non-negative integers and A, + A, +
-+ =n. Then 4 is a partition of n, denoted A+n. If m of the A, are positive we also
write A= (A, ..., A,), and say that 1 has m parts, denoted by I(A) =m. If k; of the
parts of A are equal to j for j =1, we can write A =1¥2%- ..

Associated with every permutation o in S,, the symmetric group on {1,..., n}, is
the partition of n the parts of which specify the lengths of the cycles in the disjoint
cycle representation of ¢. This partition is called the cycle distribution of 0. For atn,
the set of all permutations in S, with cycle distribution « is a conjugacy class; let #* be
the size of this conjugacy class and let K, be the formal sum of its elements. The set
{K,. | «Fn} is a basis for the centre of the group algebra CS,. Thus we can linearize

the product of any elements in this set; so if a;Fn fori=1, ..., m we can write
Kal e Kﬂ'm = z Cll ----- a’mKY’
ykn

and the numbers ¢}, . are called connection coefficients for the symmetric group.

The need to determine connection coefficients for the symmetric group often arises
in combinatorial problems. In certain cases involving involutions (cycle distribution
1"722) and n-cycles (cycle distribution n) explicit expressions are known for these
coefficients (Bertram and Wei [1], Boccara [2], Jackson [6-8], Stanley [12] and Walkup
[14]). Jackson and Stanley used the character theory for the symmetric group in their
work.

Recently, Goupil and Bédard [4] have given an explicit expression for cf, , subject
only to the restriction that /(a)+/(f)=n+ 1. The argument used is inductive. In
Section 2 of this paper we give a constructive proof to determine the equivalent
connection coefficient ¢{%. The equivalence is due to the fact that these coefficients
satisfy some obvious symmetries, such as c%z = c},, and

h'cls=hPck . 1)

In our constructive approach, we first demonstrate (Theorem 2.1) that the pairs o, p
of permutations in S, the product of which is a fixed permutation with cycle distribution
(n) can be realized uniquely from two-coloured plane edge-rooted trees on n edges,
precisely when the sum of the numbers of cycles in ¢ and p is n+1. Then we

357
0195-6698/92/050357 + 09 $08.00/0 © 1992 Academic Press Limited



358 I. P. Goulden and D. M. Jackson

determine (Theorem 2.2) the connection coefficient ¢} when /(&) +1(8)=n +1 by
enumerating the two-coloured trees.

In Section 3 this constructive method is extended to yield (Theorem 3.2) an explicit
expression for ¢%) . where /() + - -+I(a,)=n+1, for any m=2. The com-
binatorial objects in the general case are cacti of m-gons (see, e.g., Harary and Palmer
[S,p-71]), and the case m =2 is shown to be isomorphic to the coloured trees in
Section 2. However, they are treated separately because of the elegance of the case
m =2, and so certain aspects of the general case can be simplified or omitted, by
referring to the arguments for two-coloured trees.

In Section 4 related connection coefficients are discussed.

Throughout the paper we write x' for []; x, where x and i are vectors with entries x;
and i;, respectively, and [M]F for the coefficient of the monomial M in the formal
power series F.

2. Two-coLOURED TREES AND PAIRS OF PERMUTATIONS

In this section we consider two-coloured plane edge-rooted trees, using the colours
white and black. Thus each edge joins a white vertex to a black vertex, and one edge is
distinguished as the root edge. The unordered list of degrees of the white (black)
vertices forms a partition called the white (respectively, black) vertex distribution of the
tree.

The following result gives a combinatorial bijection between these trees and ordered
pairs of permutations in S, the product of which is a specified n-cycle, where the
numbers of cycles in the permutations sum to n + 1.

THEOREM 2.1. Let «, f3 be partitions of n such that [(«) + () =n + 1. Then there is
a bijection between two-coloured plane edge-rooted trees on n edges with white vertex
distribution « and black vertex distribution B, and pairs (o, p), of permutations in S,,
with cycle distributions «, B respectively, such that op=(1,2, ..., n).

Proor. Let t be a two-coloured plane edge-rooted tree on n edges, with white
vertex distribution « and black vertex distribution B. Each edge joins a white and a
black vertex, since the vertices of ¢ are two-coloured black and white, so a and f are
each partitions of z#. In addition, there are [(a) white vertices and /(B) black vertices,
so (&) +I(B)=n+1.

Now ¢ is the boundary of an unbounded region of the plane. Describe the boundary
by moving along the edges, keeping the region on the left, beginning along the root
edge from its incident white vertex to black vertex. Each edge is encountered twice,
once from black vertex to white vertex and once from white vertex to black vertex.
Assign the labels 1,2, . . ., n to the edges as they are encountered in the white to black
direction. As an example of this procedure for n =14, in Figure 1 is given a
two-coloured rooted tree, with the root edge represented by a doubled line and with
edges labelled.

The cyclic sequences of labels of the edges incident with the white vertices, in
clockwise order, give the disjoint cycle decomposition of a permutation o in §,, with
cycle distribution «. Similarly, there is a corresponding permutation p in §,,, with cycle
distribution B, specified by the black vertices. Now the procedure to determine edge
labels guarantees that i is mapped to 1+ (imodn) in op for i=1,...,n, so
op=(1,2,...,n). For example, the permutations specified by the tree in Figure 1,
with fixed points suppressed, are 0=(1,5,6,11,14) (2,3,4) (8,9) and p=(1,4)
(6,7,9,10) (11, 12, 13), and actual multiplication confirms, in this case, that gp =
1,2,...,14).
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FIGURE 1. A two-coloured rooted tree and its edge labels.

To reverse this construction, consider a pair of permutations ¢ and p in S, with cycle
distributions « and B, respectively, (this means that « and S are partitions of n), such
that op =(1,2, ..., n) and {(&) + I(B) = n + 1. Now consider the graph the vertices of
which correspond to the cycles of o and p, with incident edges specified by elements of
the cycle. This is a two-coloured graph since each edge is incident with a vertex (call it
white) corresponding to a cycle of o and a vertex (call it black) corresponding to a
cycle of p.

Thus the graph has white vertex distribution a and black vertex distribution f, giving
it /(&) white vertices and /() black vertices for a total of /(&) + /() =n + 1 vertices.
Moreover, the graph is connected since op=(1,2,...,n) means that the group
gencrated by o and p is transitive. Together, these imply that the graph is a tree.

It is a straightforward matter to embed the tree in the plane so that the cyclic
sequence of edges incident clockwise at each vertex specifies the corresponding cycle.
Moreover, in this embedding, a traversal of the edges keeping the unbounded region
on the left and beginning at edge 1 will cause us to encounter edges 1,2,... 1 in
order of their traversal from white to black, since op=(1, 2, ..., n). Now root the
tree at edge 1 and remove the labels on the edges, to yield the required two-coloured
plane edge-rooted tree on n edges with white vertex distribution @ and black vertex
distribution B. O

This bijection allows us to calculate the connection coefficient c%'% when /(a) +
[(f)=n+1 by enumerating two-coloured edge-rooted trees on n vertices with white
vertex distribution « and black vertex distribution . This enumeration is carried out in
the following result.

TueoreM 2.2. Let a=1"27---and B=1%2"-..be partitions of n=1, with

S:l(a)=ll+12+-,r=l(ﬂ)=k1+k2+ If5+"=ﬂ+1then
ooy _ S DI — 1!
* AN A

Proor. Let F be the generating function for two-coloured edge-rooted plane trees
with white and black vertices marked by indeterminates w and b, respectively, and
white and black vertices of degree i marked by w; and b;, respectively, for i = 1. Let
w=(w;, w,,...), b=(by, by, ...), i=(i1, br,...) and k= (ky, k,, .. .). Then, from
Theorem 2.1,

c0% = [w'b"Wb¥|F.
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In order to determine F, we consider two associated generating functions. Let W and
B be the generating functions for the sets % and % of two-coloured plane planted
trees, the planted vertex of which has colour white and black, respectively. The planted
vertex is not marked, but all other vertices are marked in W and B exactly as they are
in F above. By considering the possible degrees of the vertex adjacent to the planted
vertex, we deduce that W, B satisfy the simultaneous functional equations

B=ww +w,W + wsW?+--.),
W =b(b1 +sz +b3B2+ .- )

Furthermore, we can construct uniquely every two-coloured plane edge-rooted tree
by identifying the planted vertices in a tree in % and a tree in %, suppressing this
bivalent vertex and rooting the resulting two-coloured plane tree on this edge. Thus we
deduce that F=WB. But WB can be determined by Lagrange’s Implicit Function

Theorem in the two variables w and b (see, e.g., [3,p.21]). Let ¢; =w, +wyk, +
wsA3+ - - - and ¢, =b, + byA, + b3A2+-- .. Then

0% = [w'b"wbf|BW

_42 99
¢1 04,
=[A 25w *bPIA A, 0% 05
[ 142 ] 1 2¢1¢2 _—A-_l_%
¢2 OAy
e A, 3¢ (A a¢;>}
—[3s—137—1 B s or (22991 (M OP2
(72 wD ]{¢1¢2 (s 8}»2> r oA

1= (SR () s et lgis,  since (#7142 £0) = ma (b,

§ r

_ (A4 _ st Apt2iates _r Met 2t sincer+s—1=n
e N A k-t ’ '
But
i2+2l3+=(ll+212+3l3+')_(l1+l2+')=n_s:r_1
and
ko +2ky+- = (ki +2k,+3ks+ - - )= (ky +ky+ - )=n—-r=s5-1,
giving the result. O

Tutte [13] has previously determined the generating function W (and, equivalently, B)
used in the above proof.
From (1), with y = (n), we have

h
By NN ()
.= B Cap

so, for /(&) +1(B) =n + 1, Theorem 2.2 is equivalent to
P nl/n -1 (-1
Y P P s N PR B A SR
(s—DI(r—D11M2%. ..

iViy! - -

bl

which was previously given by Goupil and Bédard ([4], Theorem 3), using an inductive
argument.
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3. CACTI OF m-GONS AND #M-TUPLES OF PERMUTATIONS

A cactus of m-gons, or m-cactus, is a connected graph in which every edge lies on
exactly one cycle, which has length m, for fixed m=2. A plane m-cactus is an
embedding of an m-cactus in the plane so that every edge is incident with the
unbounded region. Thus all bounded connected regions in the plane defined by a plane
m-cactus are incident with m edges and m vertices, and are m-gons if the edges are
represented by straight lines.

Now for a plane edge-rooted m-cactus we define a canonical m-colouring of the
vertices with colours 1,...,m as follows. Traverse the boundary of the unbounded
region, keeping the unbounded region to the left. Assign colours m, m—1,...,1in
circular succession to the vertices encountered in this traversal, beginning by assigning
colours 1 and m to the vertices incident with the root edge. Note that a vertex of
degree 2k in the graph will thus be assigned a colour k times, but fortunately by
construction it will be the same colour every time, so the colouring is well-defined.

For a coloured m-cactus the colour i vertex distribution is defined to be the partition
giving the unordered list of numbers of m-gons incident with the vertices of colour .

The following result gives a combinatorial bijection between m-cacti and m-tuples of
permutations in S, the product of which is a specified n-cycle, where the numbers of
cycles in the permutations sum to n + 1.

THEOREM 3.1. Let a, ..., &y, be partitions of n such that l(a)) +---+1(a,) =
n+ 1. Then there is a bijection between plane edge-rooted m-cacti on n m-gons with
colour i vertex distribution «o;, i=1, ..., m, and m-tuples (o,, . .., 0,,) of permuta-
tions in S, with cycle distributions «, ..., a,, respectively, such that o,--- 0, =
(1,2,...,n).

Proor. Consider a plane edge-rooted m-cactus on n m-gons. Suppose that when
the m-cactus is canonically coloured, the colour [ vertex distribution is «; for
i=1,...,m We assign the labels 1, . . ., n to the m-gons in the order in which they
are encountered, when colouring the vertices, incident to an edge which is incident
with vertices of colours 1 and m. As an example of this procedure for n =9, in Figure 2
is given a plane edge-rooted 3-cactus with vertices coloured and triangles labelled. The
root edge is represented by a doubled line, the vertices of colour 1 by empty circles,
colour 2 by stars, colour 3 by filled circles, and the labels assigned to the triangles
appear inside the triangles.

FIGURE 2. A plane edge-rooted 3-cactus with coloured vertices and labelled triangles.
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The cyclic sequences of m-gons incident with the vertices of colour i, in clockwise
order, give the disjoint cycle decomposition of permutation o; in §,, with cycle

distribution a;, for i=1, ..., m. But the procedure for labelling the m-gons ensures
that i is mapped to 1+ (imodn) in o,---0, for i=1,...,n, so 0,-+-0,=
(1,2, ..., n). For example, the permutations specified by the 3-cactus in Figure 2, with
fixed points suppressed, are o;,=(1, 5, 9)(3, 4), 0,=(1,4) and 05=(1, 2)(5, 6, 7, 8),
and actual multiplication confirms, in this case, that ,0,0,=(1,2,...,9).

The proof that this construction is reversible is similar to that given for Theorem 2.1,
and is left to the reader. 0O

Note that there is a straightforward bijection between two-coloured plane edge-
rooted trees with white and black vertex distributions «;, and «,, respectively, and
plane edge-rooted 2-cacti with colour i vertex distribution «;, for i =1, 2. To carry out
this bijection, let colour 1 of a canonically coloured 2-cactus be white, and colour 2 be
black, replace the digons containing the root edge by a single root edge and all other
digons by single edges. The result is a two-coloured plane edge-rooted tree, and this is
reversible.

Thus Theorem 3.1 reduces to Theorem 2.1 in the case m =2.

The bijection in Theorem 3.1 allows us to calculate the connection coefficient

This enumeration is carried out in the following result.

TuEOREM 3.2. Let a;=1%2%. .. be a partition of n=1 and t;=l(a;) = k;; + k5 +
ce-Lfori=1,... ,m Ifty+---+t,=n+1 then

=nm-1 H:n=] (ti - 1)'
----- o ;n=l Hj?l kl]'

Proor. Let @ be the generating function for plane edge-rooted m-cacti with
vertices of colour i marked by x;, for i=1,..., m, and vertices of colour i incident
with j m-gons marked by y; for i=1,...,m and j=1. Let x=(x{,...,x,),
t=(t1, ..., ), Y=(¥j)mxe and K= (k;)pmxe Then, from Theorem 3.1, with
Y*=1I", =1 )’:']("7;

In order to determine &, we define 6 to be the set containing a single vertex
coloured i, together with plane edge-rooted m-cacti in which i — 1 has been added
(mod m) to the colours assigned in the canonical colouring, fori=1, ..., m. Let C; be
the generating function for %; in which the vertices are marked as in @, with the
exception that the vertex of colour 7 incident with the root edge is marked by y;. |,
instead of y;, when it is incident with j m-gons, for i=1, ..., m. The single vertex
element of %; is marked by y;; (as well as x;).

Consider an arbitrary plane edge-rooted m-cactus. The m-gon containing the root
edge contains one vertex of colour i for each i=1,...,m, so if the edges of this
m-gon are removed, the resulting m-tuple of plane m-cacti is in 6, X - - - X €,,, where
the rooting of these m-cacti makes this reversible. Moreover,

&=C,---C,

since the root vertices of the elements of €; are incident with an additional m-gon (the
deleted one in the above decomposition) when counted in .
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It is a straightforward matter to determine a functional equation uniquely satisfied by
the C,. Consider an element of €; the vertex of colour i of which incident with the root
edge is incident with u m-gons. In addition to this vertex of colour i, each of these
m-gons contains a single vertex of each other colour, so if the edges of these u m-gons
are removed, the result is u (m — 1)-tuples of elements of each € except €;, and the
rooting makes this reversible. Thus

C Cm u
Ci=xiz yiu+l(lT> » l=1);m
u=0 i

However, we can solve this system of functional equations for &=C, - --C,, by
Lagrange’s Implicit Function Theorem in the m variables x,, ..., x,, (see, e.g.,
(3, p- 21]). Let

Acor A\ ]
¢i=zyiu+l<1—_>7 l=1)"-)m1

u=0 }'

and ¢=(¢1,---, Pm), A=(A1, ..., A,), 1=(1,...,1). If ||a;ll,xm 1s the deter-

minant of the m X m matrix with (i, j)-entry a;, then
cf,"]?___,am =[x'Y¥|C,--- C,
A; O¢;
=[}.tYK]ll¢' 6ij__] ¢l
¢i aﬂ'] mxm
d¢;
= [A7Y¥)p |9, 6, — A, —— .
[ ](P ¢l i J a).] xm

Now the determinant can be explicitly evaluated, by first noting that

L 59

Bl N
o !

and that

3¢, A A\ )
A ¢“Zuy.-u+1( I_A ), for j #1.

ja—lj—uao

Thus, 4,(3¢./84;) is independent of j for j #i, and we call this common value ;. But

o¢;
¢: 05— Ay =19: 65 — Y1 = )l mxm
Ry W L LR e ]
= 1(¢: + ¥:) 8 — Willmxrm
Y *
= 6,"— i+ i
‘ ’ ¢i+lpim><mi=1_-[l(¢ w)
i % A
-1 Zl¢u+wu}g(¢"+""')

since det(/ + A) =1 + trace(A) when rank(4) =1 (Sherman and Morrison [11]). Thus

0o = YT @+ w107 = 3 vt [T (0 w0t

B %}cﬂ' {ﬁ @f") - 53 (; G- 1)""’),1;!, @ ,-k,.,.)},

where Y- jky=n and Y-, k; =t fori=1, ..., m. The result follows, using the fact
thatt; +---+t,=(m—-Dn+1. O
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4. EXTENSIONS

The connection coefficient determined in Section 2 is the case I(a) + I(8)=n + I(y)
and [(y)=1 of Cs The case I(&)+I(f)=n+I(y) in general can be handled by
considering [(y)-tuples of two-coloured plane edge-rooted trees, and yields a compli-
cated summation over many partitions (the partitions distribute the vertices of given
colour and degree amongst the trees). An equivalent result has been given in Goupil
and Bédard [4, Theorem 4].

The restrictions satisfied by /(«), /(f) and [(y) can be analysed most easily by
considering the representation of a permutation as the product of a minimal number of
transpositions. This minimal number, for the conjugacy class with cycle distribution «,
was denoted by A(«) in the work of Goupil and Bédard. Indeed, they consider the
graded lattice of conjugacy classes of S,, with grading specified by A, and phrase all
questions in terms of this lattice.

Consider the effect of multiplying a permutation o by a transposition 7. If the
elements of 7 lie on the same cycle of g, the cycle in o will be split into two cycles in
7o. If the elements of 7 lie on two different cycles of o, those two cycles in o will be
joined into one cycle in 7a. Thus we find that I(y) < A(&) + I(f). But A(a) =n — (),
and this gives

o) +U(y)=n+I(B).

Of course, the symmetry (1) of the connection coefficients also gives
Ha)y+1(B)<n+1(y), I(B)+I(y)sn+l(a).

Moreover, the preceding analysis means that when one of these inequalities is strict,
the resulting difference between the two sides is an even integer.

Thus the case /(a)+ /() =n + I(y) considered in this paper is extremal. The next
case 1s

Ka) +1(B)=n+I(y) -2,

which can be handled, for {(y) =2, by considering an (/(y) — 2)-tuple of two-coloured
plane edge-rooted trees, together with a connected two-coloured plane graph with a
single cycle, of even length, with a root edge inside or on the cycle, and another root
edge outside or on the cycle (these may coincide). If the edges of this latter unicursal
component are labelled 1,...,n by traversing the outer face beginning at the root
edge outside or on the cycle as in Theorem 2.1, and n + 1, . . ., n + k by traversing the
inner face in a similar manner, then the product of the two permutations described in
Theorem 2.1 is (1,...,n)(n+1,...,n+k). Thus for this graph, the number of
vertices minus the number of edges is I(y)—2, so l(a)+I(B)—n=1(y)—2, as
required. The reversibility of this construction follows as in Theorem 2.1.

It is a straightforward matter to express the generating function for this unicursal
component in terms of the generating functions W and B considered in the proof of
Theorem 2.2. We have been unable to determine a compact expression for the
required coefficient from the Lagrange Theorem, though it does seem possible to
deduce an efficient computational scheme. Similar comments can be made about
m-tuples of permutations.
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