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The Combinatorial Relationship Between Trees, Cacti and Certain 
Connection Coefficients for the Symmetric Group 

I. P. GOULDEN AND D. M. JACKSON 

A combinatorial bijection is given between pairs of permutations in S, the product of which 
is a given n-cycle and two-coioured plane edge-rooted trees on n edges, when the numbers of 
cycles in the disjoint cycle representations of the permutations sum to n + 1. Thus the 
corresponding connection coefficient for the symmetric group is determined by enumerating 
these trees with respect to appropriate characteristics. This is extended to the case of m-tuples 
of permutations in S, the product of which is a given n-cycle, in which the combinatorial 
objects replacing trees are cacti of m-gons. 

1. INTRODUCTION 

Let 2, = (~1, /~2 . . . .  ) ,  where ~1 ~> ~L2 ~ ' ' "  are non-negative integers and A1 + A2 + 
. . . .  n. Then ~ is a partition of n, denoted ~, t- n. If m of the ;~i are positive we also 
write ~ = (~l, - - - ,  Am), and say that 2, has m parts, denoted by l(A) = m. If kj of the 
parts of ;~ are equal to j for j >i 1, we can write 2. -- lk12 k . . . .  

Associated with every permutation tl in S,, the symmetric group on { 1 , . . . ,  n}, is 
the partition of n the parts of which specify the lengths of the cycles in the disjoint 
cycle representation of or. This partition is called the cycle distribution of or. For cr ~-n, 
the set of all permutations in Sn with cycle distribution tr is a conjugacy class; let h ¢ be 
the size of this conjugacy class and let Ko~ be the formal sum of its elements. The set 
{K~J o~-n} is a basis for the centre of the group algebra CS,. Thus we can linearize 
the product of any elements in this set; so if o:i ~- n for i = 1 . . . . .  m we can write 

K¢, . . - K~ m = ~ c~ ......... Kr,  
y~-n 

and the numbers c re,,..., ~ are called connection coefficients for the symmetric group. 
The need to determine connection coefficients for the symmetric group often arises 

in combinatorial problems. In certain cases involving involutions (cycle distribution 
1"-22) and n-cycles (cycle distribution n) explicit expressions are known for these 
coefficients (Bertram and Wei [1], Boccara [2], Jackson [6-8], Stanley [12] and Walkup 
[14]). Jackson and Stanley used the character theory for the symmetric group in their 
work. 

Recently, Ooupil and B4dard [4] have given an explicit expression for c(~.).~, subject 
only to the restriction that l(o 0 + l ( f i ) = n  + 1. The argument used is inductive. In 
Section 2 of this paper we give a constructive proof to determine the equivalent 
connection coefficient c(~'. ). The equivalence is due to the fact that these coefficients 
satisfy some obvious symmetries, such as c ~  = c ~ ,  and 

~ p -  ,, ~v~. (1) 

In our constructive approach, we first demonstrate (Theorem 2.1) that the pairs o, p 
of permutations in S, the product  of which is a fixed permutat ion with cycle distribution 
(n) can be realized uniquely from two-eoloured plane edge-rooted trees on n edges, 
precisely when the sum of the numbers of cycles in o and p is n + 1. Then we 
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determine (Theorem 2.2) the connection coefficient c ( ~  when l ( t r ) +  l ( /3) - -n  + 1 by 
enumerating the two-coloured trees. 

In Section 3 this constructive method is extended to yield (Theorem 3.2) an explicit 
expression for c(~",! . . . . .  where l ( c r l ) + - - - +  l(crm)= n + 1, for any m I>2. The com- 
binatorial objects in the general case are cacti of m-gons (see, e.g., Harary and Palmer 
[5, p. 71]), and the case m = 2 is shown to be isomorphic to the coloured trees in 
Section 2. However ,  they are treated separately because of the elegance of the case 
m = 2, and so certain aspects of the general case can be simplified or omitted, by 
referring to the arguments for two-coloured trees. 

In Section 4 related connection coefficients are discussed. 
Throughout  the paper we write x i for ll~ x~,, where x and i are vectors with entries xj 

and i t, respectively, and [M]F for the coefficient of the monomial M in the formal 
power series F. 

2. TWO-COLOURED TREES AND PAIRS OF PERMUTATIONS 

In this section we consider two-coloured plane edge-rooted trees, using the colours 
white and black. Thus each edge joins a white vertex to a black vertex, and one edge is 
distinguished as the root  edge. The unordered list of degrees of the white (black) 
vertices forms a partition called the white (respectively, black) vertex distribution of the 
tree. 

The following result gives a combinatorial bijection between these trees and ordered 
pairs of permutations in Sn the product  of which is a specified n-cycle, where the 
numbers of cycles in the permutations sum to n + 1. 

THEOREM 2.1. Let oL, 3 be partitions o f  n such that 1(o 0 + l(fl) = n + 1. Then there is 
a bijection between two-coloured plane edge-rooted trees on n edges with white vertex 
distribution o~ and black vertex distribution fl, and pairs (o, p), o f  permutations in S,,  
with cycle distributions 06 fl respectively, such that op = (1, 2, . . . , n ). 

PROOF. Let  t be a two-coioured plane edge-rooted tree on n edges, with white 
vertex distribution cr and black vertex distribution ft. Each edge joins a white and a 
black vertex, since the vertices of t are two-coloured black and white, so ce and fl are 
each partitions of n. In addition, there are l(ac) white vertices and l(fl) black vertices, 
so l(0e) + l(fl) = n + 1. 

Now t is the boundary of an unbounded region of the plane. Describe the boundary 
by moving along the edges, keeping the region on the left, beginning along the root 
edge from its incident white vertex to black vertex. Each edge is encountered twice, 
once from black vertex to white vertex and once from white vertex to black vertex. 
Assign the labels 1, 2 , . . . ,  n to the edges as they are encountered in the white to black 
direction. As an example of this procedure for n = 14, in Figure 1 is given a 
two-coloured rooted tree,  with the root  edge represented by a doubled line and with 
edges labelled. 

The cyclic sequences of labels of the edges incident with the white vertices, in 
clockwise order,  give the disjoint cycle decomposition of a permutat ion o in S,, with 
cycle distribution or. Similarly, there is a corresponding permutat ion p in $n, with cycle 
distribution/3, specified by the black vertices. Now the procedure to determine edge 
labels guarantees that i is mapped to l + ( i m o d n )  in op for i = l , . . . , n ,  so 
op = (1, 2 . . . . .  n). For  example, the permutations specified by the tree in Figure 1, 
with fixed points suppressed, are a = (1, 5, 6, 11, 14) (2, 3, 4) (8, 9) and p = (1, 4) 
(6, 7, 9, 10) (11, 12, 13), and actual multiplication confirms, in this case, that op = 
(1, 2 , . . . ,  14). 
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FIGURE 1. A two-coloured rooted tree and its edge labels. 

To reverse this construction, consider a pair of permutations o and p in Sn with cycle 
distributions a~ and/3, respectively, (this means that tr and/3 are partitions of n), such 
that ~rp = (1, 2 , . . . ,  n) and l(a~) + I(/3) = n + 1. Now consider the graph the vertices of 
which correspond to the cycles of a and p, with incident edges specified by elements of 
the cycle. This is a two-coloured graph since each edge is incident with a vertex (call it 
white) corresponding to a cycle of tr and a vertex (call it black) corresponding to a 
cycle of p. 

Thus the graph has white vertex distribution a~ and black vertex distribution fl, giving 
it l(a 0 white vertices and I(/3) black vertices for a total of l(tr) + l ( /3)  = n + 1 vertices. 
Moreover,  the graph is connected since crp = (1, 2 , . . . ,  n) means that the group 
generated by tr and p is transitive. Together,  these imply that the graph is a tree. 

It is a straightforward matter  to embed the tree in the plane so that the cyclic 
sequence of edges incident clockwise at each vertex specifies the corresponding cycle. 
Moreover,  in this embedding, a traversal of the edges keeping the unbounded region 
on the left and beginning at edge 1 will cause us to encounter  edges 1, 2 , . . . ,  n in 
order of their traversal from white to black, since crp = (1, 2 , . . . ,  n). Now root the 
tree at edge 1 and remove the labels on the edges, to yield the required two-coloured 
plane edge-rooted tree on n edges with white vertex distribution tr and black vertex 
distribution/3. [] 

This bijection allows us to calculate the connection coefficient c~,~ when l ( t r ) +  
l ( f l )  = n + 1 by enumerating two-coloured edge-rooted trees on n vertices with white 
vertex distribution tx and black vertex distribution/3. This enumeration is carried out in 
the following result. 

THEOREM 2.2. L e t  tr = li12 i . . . .  a n d  fl = 1k'2/'2. - • be  p a r t i t i o n s  o f  n >t 1, 

s = l(o:) = i 1 d- i 2 + .  • ", r = l ( f l )  = ka + k2 + "  " " .  I f s  + r = n + 1 t h e n  

n 
( s - 1 ) ! ( r - 1 ) !  

i1!i2!  " • " k l !  k z !  • • • 

w i t h  

PROOF. Let  F be the generating function for two-coloured edge-rooted plane trees 
with white and black vertices marked by indeterminates w and b, respectively, and 
white and black vertices of degree i marked by wi and bi, respectively, for i >i 1. Let  
w = (wl, w 2 , . . . ) ,  b = (bl, b2 . . . .  ), i = (i~, i2 . . . .  ) and k = (kl, k2 . . . .  ). Then,  from 
Theorem 2.1, 

c ~  = [w~br wibk]F.  
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In order  to de t e rmine  F, we  consider  two associa ted  genera t ing  funct ions.  Le t  W and 
B be the  genera t ing  funct ions  for  the  sets ~4# and  ~ of  two-co lou red  p lane  p lan ted  
trees,  the p lan ted  ve r t ex  of  which has colour  whi te  and black,  respect ively .  T h e  p lan ted  
ver tex  is not  m a r k e d ,  but  all o the r  ver t ices  are m a r k e d  in W and B exact ly  as they  are 
in F above.  By  consider ing the  poss ib le  degrees  of  the  ver tex  ad jacen t  to the  p lan ted  
ver tex,  we deduce  tha t  W, B satisfy the  s imul taneous  funct ional  equa t ions  

B = w(wa + w2W + W3 W2 "~ " " " ) ,  

W = b(bl  + bzB + b3 B2 + " " "). 

F u r t h e r m o r e ,  we can cons t ruc t  uniquely  every  two-co loured  p lane  e d g e - r o o t e d  t ree  
by identifying the  p lan ted  ver t ices  in a t ree  in ~V and a t ree  in ~ ,  suppress ing  this 
b ivalent  ver tex  and root ing  the resul t ing two-co lou red  p lane  t ree  on this edge.  Thus  we 
deduce  that  F = WB. But  WB can be  d e t e r m i n e d  by L a g r a n g e ' s  Impl ic i t  Func t ion  
T h e o r e m  in the two var iables  w and b (see,  e .g . ,  [3, p. 21]). Le t  q~l = W1 q- WZ~2 "1- 
w3)~22 + • - • and (~2 = bl  + b 2 , ~ , l  + b 3 ~ ,  2 - F  • • • . T h e n  

c~,)~ = [w'b 'w°~P]BW 

s r ~ s r 

But  

and 

~,2 0¢pl 
1 

Zl 0¢~2 
1 

cp2 OZl 

_ _  s - 1  r - - 1  ~ s r 

\ s  8~ .2] \r  8 )h]J  

m 8 = {1 - -  ( ~ ) ( ' ~ r  1)}[~-- l~-~-- 'Wa'~/] ]~]~,  since [ ~  ]~--'~f(~)~T~[~m]f(~), 
n[ sr r! = z ] - - l z ~  - 1 ]  - -  ~ i 2 + 2 i 3 + " "  I k 2 + 2 k 3 + - - -  "~2 "~1 , since r + s - 1 = n. 
sr il! i 2 !  • • " k l !  k 2 !  . • • 

i2 + 2i3 + . . . .  (il + 2i2 + 3i3 + -  - -) - (il -F i2 + -  - -) = n -- s = r -- 1 

k2 + 2k3 + . . . .  (k l  + 2k2 + 3k3 + - - ") - (kj + k2 + • • ") = n - r = s - 1, 

giving the  result .  [] 

Tu t te  [13] has prev ious ly  d e t e r m i n e d  the  genera t ing  funct ion W (and,  equivalent ly ,  B)  
used in the above  proof .  

F r o m  (1), with y = (n), we have  

h(n) 
= 

so, for  l(0;) + l(/3) = n + 1, T h e o r e m  2.2 is equ iva len t  to 

n! /n  ( s - l ) !  ( r - l ) !  
c~,),~= n! /k l !  k2! lk12 k2 n 

. . . . . .  i1! i 2 !  ' " " k l [  k 2 !  • • • 

= ( s -  a ) ! ( r -  1)! lk'2 < . . -  

i 1 !  i 2 !  • . . 

which was previous ly  given by Goup i l  and B6dard  ([4], T h e o r e m  3), using an induct ive  
a rgument .  
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3. CACTI OF m-GONS AND m-TUPLES OF PERMUTATIONS 

A cactus of m-gons, or m-cactus, is a connected graph in which every edge lies on 
exactly one cycle, which has length m, for fixed m/> 2. A plane m-cactus is an 
embedding of an m-cactus in the plane so that every edge is incident with the 
unbounded region. Thus all bounded connected regions in the plane defined by a plane 
m-cactus are incident with m edges and m vertices, and are m-gons if the edges are 
represented by straight lines. 

Now for a plane edge-rooted m-cactus we define a canonical m-colouring of the 
vertices with colours 1 , . . . ,  m as follows. Traverse the boundary of the unbounded 
region, keeping the unbounded region to the left. Assign colours m, m - 1 . . . .  , 1  in 
circular succession to the vertices encountered in this traversal, beginning by assigning 
colours 1 and m to the vertices incident with the root  edge. Note that a vertex of 
degree 2k in the graph will thus be assigned a colour k times, but fortunately by 
construction it will be the same colour every time, so the colouring is well-defined. 

For a coloured m-cactus the colour i vertex distribution is defined to be the partition 
giving the unordered list of numbers of m-gons incident with the vertices of colour i. 

The following result gives a combinatorial bijection between m-cacti and m-tuples of 
permutations in Sn the product  of which is a specified n-cycle, where the numbers of 
cycles in the permutations sum to n + 1. 

THEOREM 3.1. Le t  0 { 1 ,  . . . , O f  m be partitions o f  n such that l(oq) + .  • • + l(crm) = 
n + 1. Then there is a bijection between plane edge-rooted m-cacti  on n m-gons  with 
colour i vertex distribution o:,-, i = 1, . . . ,  m,  and m-tuples  ( o l , . . . ,  Ore) o f  permuta-  
tions in Sn with cycle distributions o q , . . . ,  trm respectively, such that c q . . ' c r m  = 
(1, 2 , . . . ,  n). 

PROOF. Consider a plane edge-rooted m-cactus on n m-gons. Suppose that when 
the m-cactus is canonically coloured, the colour i vertex distribution is or/ for 
i = 1 , . . . ,  m. We assign the labels 1 , . . . ,  n to the m-gons in the order  in which they 
are encountered,  when colouring the vertices, incident to an edge which is incident 
with vertices of colours 1 and m. As an example of this procedure for n = 9, in Figure 2 
is given a plane edge-rooted 3-cactus with vertices coloured and triangles labelled. The 
root edge is represented by a doubled line, the vertices of colour 1 by empty circles, 
colour 2 by stars, colour 3 by filled circles, and the labels assigned to the triangles 
appear inside the triangles. 

4 

1 6 

9 7 

FIGURE 2. A plane edge-rooted 3-cactus with coloured vertices and labelled triangles. 



362 I . P .  Goulden and D. M. Jackson 

The cyclic sequences of m-gons incident with the vertices of colour i, in clockwise 
order,  give the disjoint cycle decomposition of permutat ion cri in Sn, with cycle 
distribution c~, for i = 1 . . . .  , m. But the procedure for labelling the m-gons ensures 
that i is mapped to l + ( i m o d n )  in a l . - . o  m for i = l , . . . , n ,  so a ~ . . - o , , =  
(1, 2 , . . . ,  n). For example, the permutations specified by the 3-cactus in Figure 2, with 
fixed points suppressed, are aa = (1, 5, 9)(3, 4), era = (1, 4) and 03 = (1, 2)(5, 6, 7, 8), 
and actual multiplication confirms, in this case, that OlCr2cr 3 = (1, 2 , . . . ,  9). 

The proof  that this construction is reversible is similar to that given for Theorem 2.1, 
and is left to the reader. [] 

Note that there is a straightforward bijection between two-coloured plane edge- 
rooted trees with white and black vertex distributions c~1 and a~2, respectively, and 
plane edge-rooted 2-cacti with colour i vertex distribution o~i, for i = 1, 2. To carry out 
this bijection, let colour 1 of a canonically coloured 2-cactus be white, and colour 2 be 
black, replace the digons containing the root  edge by a single root edge and all other 
digons by single edges. The result is a two-coloured plane edge-rooted tree,  and this is 
reversible. 

Thus Theorem 3.1 reduces to Theorem 2.1 in the case m = 2. 
The bijection in Theorem 3.1 allows us to calculate the connection coefficient 

c(~! ....... where l(crl) + - - - + l(trm) = n + 1 by enumerating plane edge-rooted m-cacti. 
This enumeration is carried out in the following result. 

THEOREM 3.2. L e t  o:i = lk"2 k . . . . .  be a par t i t ion  o f  n >1 1 and  6 = l(oL~) = kil  + ki2 + 

• . . ,  f o r  i =  1 . . . .  , m .  I f t  I + - .  " + t  m ----n q- 1 then  

H m ( t  i - -  1)! c(~! . . . . . .  = r i m - 1  i=1 
Him1 IIj>~l k i i ! "  

PROOF. Let  • be the generating function for plane edge-rooted m-cacti with 
vertices of colour i marked by xi, for i = 1 , . . . ,  m, and vertices of colour i incident 
with j m-gons marked by yij for i = 1  . . . .  , m  and j i>1 .  Let  x = ( x l  . . . .  ,xm), 
t = ( t l , . . . , t m ) ,  Y=(Y0)m×= and K=(ku)m×=. Then,  from Theorem 3.1, with 
v = 

....... = Lx'V K] 

In order  to determine ~, we define % to be the set containing a single vertex 
coloured i, together with plane edge-rooted m-cacti in which i -  1 has been added 
(mod m) to the colours assigned in the canonical colouring, for i = 1, _ . . ,  m. Let  Ce be 
the generating function for ~ in which the vertices are marked as in ~,  with the 
exception that the vertex of colour i incident with the root edge is marked by Yq÷l,  

instead of yq, when it is incident with j m-gons, for i = 1 , . . . ,  m. The single vertex 
element of cCi is marked by Ysl (as well as x~). 

Consider an arbitrary plane edge-rooted m-cactus. The m-gon containing the root 
edge contains one vertex of colour i for each i = 1 . . . .  , m, so if the edges of this 
m-gon are removed,  the resulting m-tuple of plane m-cacti is in c~ × . . .  × C~m ' where 
the rooting of these m-cacti makes this reversible. Moreover ,  

~ = C 1 " - C ~  

since the root vertices of the elements of qgi are incident with an additional m-gon (the 
deleted one in the above decomposition) when counted in q~. 
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It is a s t raightforward mat te r  to de te rmine  a funct ional  equa t ion  uniquely  satisfied by 
the Cv Consider  an e lement  o f  c G the vertex of  colour  i of  which incident with the roo t  
edge is incident with u m-gons .  In addit ion to this vertex of  colour  i, each of  these 
m-gons  contains a single vertex of  each o ther  colour ,  so if the edges of  these u m-gons  
are r emoved ,  the result  is u (m - 1)-tuples of  e lements  of  each q¢ except  ~i, and the 
root ing makes  this reversible. Thus  

Ci = x i E  yiu+l i = l . . . .  , m. 

However ,  we can solve this system of funct ional  equat ions  for  • = C 1 " "  Cm by 
Lagrange ' s  Implicit  Funct ion  T h e o r e m  in the m variables X l , - . - ,  xm (see, e.g. ,  
[3, p. 21]). Let  

( Z l - -  • ~m) ~ ' 
( P i =  E -J.i i =  l ,  . . . , m ,  

and q~ = 0Pl,  - - - ,  q~m), ;t = (;tl . . . .  , ,1.m), 1 = ( 1 , - - . ,  1). I f  I[aijll . . . .  is the deter-  
minant  of  the m x rn matrix with (i, j ) -en t ry  a o, then 

c<£! . . . . . . .  = [xtY~]C, ' ' -  Cm 

= [ZtYg]~.~q5 t 6~j ~b~ a~.j m × .  

= [ ~ , - l y K ] ¢ p , - I  (~)i (~,j -- /~j ~/~j re×m" 

Now the de te rminant  can be explicitly evaluated,  by first not ing that  

~(Pi 
~,i~-~i = 0, i = 1, . . . , m, 

and that  

for , 

Thus,  J~j(O(~i/a~j) is i ndependen t  o f j  for j ~: i, and we call this c o m m o n  value Wi. But  

@i ~ij -- ~ j ~  ]mXm = II~i ~i! -- ~p,(1 - 6ij)[lm×m 

= II(~,, + ~Ji)6ij -- ~Pillm×m 

(~ij ~3i f i  (~)i "q- IPi) 
epi + Ipi ~ × m  i :1  

= 1 - u=l ~ ~u -}- ~)uJ2=~ (@i "]- ~di) 

since de t ( I  + A)  = 1 + t race(A)  when rank(A)  = 1 (Sherman  and Morr i son  [11]). Thus  

 Ifi } c(~! . . . . . .  = [ ~ , - l y K  ( ~)i "~ ~)i)~)~ i-1 -- Vu~)~ -1 ( ~)i "~ ~1)i)~)~ i-1 
'-i=1 u=l i~=u 

H m = l ( t / - - l ) [  {iI~I1 (E j k i ] )  ~ (]~>~l(J-1)ku,)H (j~>~lJkij)} , Him----1 I~]~1 ki][ -= j~>l u=l "i~:u 

where  ~j~l jki j  = n and ~j>>-i k~j = ti for  i = 1 . . . .  , m. The  result follows, using the fact 
that  tl + "  • • + tm  = ( m -  1)n + 1. [ ]  
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4. EXTENSIONS 

The connection coefficient determined in Section 2 is the case l(c~) + l ( f i )  = n + l(],) 

and l ( ] , )= 1 of C~13. The case l(oc)+ l ( [3 )= n + l ( y )  in general can be handled by 
considering l(7)-tuples of two-coloured plane edge-rooted trees, and yields a compli- 
cated summation over many partitions (the partitions distribute the vertices of given 
colour and degree amongst the trees). An equivalent result has been given in Goupil 
and B6dard [4, Theorem 4]. 

The restrictions satisfied by l(cQ, 1([3) and l(y) can be analysed most easily by 
considering the representation of a permutation as the product of a minimal number of 
transpositions. This minimal number,  for the conjugacy class with cycle distribution o:, 
was denoted by A(er) in the work of Goupil and B6dard. Indeed, they consider the 
graded lattice of conjugacy classes of Sn, with grading specified by A, and phrase all 
questions in terms of this lattice. 

Consider the effect of multiplying a permutation cr by a transposition v. If the 
elements of v lie on the same cycle of o, the cycle in cr will be split into two cycles in 
7:or. If the elements of v lie on two different cycles of o, those two cycles in o will be 
joined into one cycle in vo. Thus we find that l(),) ~< A(tr) + 1([3). But A ( t r )  = n - l(o:), 

and this gives 

+ l (v )  n + 1(16). 

Of course, the symmetry (1) of the connection coefficients also gives 

l(tr) + 1([3) ~< n + 1(),), 1([3) + 1()') < n + t(cr). 

Moreover, the preceding analysis means that when one of these inequalities is strict, 
the resulting difference between the two sides is an even integer. 

Thus the case l(c~) + 1(16) = n + l(7) considered in this paper is extremal. The next 
case is 

1(o:) + l([3) = n + l(y) - 2, 

which can be handled, for l(y) I> 2, by considering an (l(],) - 2)-tuple of two-coloured 
plane edge-rooted trees, together with a connected two-coloured plane graph with a 
single cycle, of even length, with a root edge inside or on the cycle, and another root 
edge outside or on the cycle (these may coincide). If the edges of this latter unicursal 
component are labelled 1 , . . . ,  n by traversing the outer face beginning at the root 
edge outside or on the cycle as in Theorem 2.1, and n + 1 . . . . .  n + k by traversing the 
inner face in a similar manner, then the product of the two permutations described in 
Theorem 2.1 is ( 1 , . . .  , n ) ( n  + 1 . . . . .  n + k ) .  Thus for this graph, the number of 
vertices minus the number of edges is l ( y ) - 2 ,  so l(cr)+ l ( [ 3 ) - n  = l ( Y ) - 2 ,  as 
required. The reversibility of this construction follows as in Theorem 2.1. 

It is a straightforward matter to express the generating function for this unicursal 
component in terms of the generating functions W and B considered in the proof of 
Theorem 2.2. We have been unable to determine a compact expression for the 
required coefficient from the Lagrange Theorem, though it does seem possible to 
deduce an efficient computational scheme. Similar comments can be made about 
m-tuples of permutations. 
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